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Abstract 
The design of experiments (DoEs) have much recent interest and this is likely to grow as more and more 

simulation models are used to carry out research. A good experimental design should have at least two 

important properties namely projective property (non-collapsing) and Space-filling (design points should be 

evenly spread over the entire design space) property. Any Latin Hyper-cube design (LHD) is inherently preserve 

projective property. In consequence, in sense of space-filling, Optimal LHDs is required for good DoEs. In this 

study, we consider maximin LHDs obtained by Iterated Local search (ILS) heuristic approach in which inter-
site distances are measured in Euclidean distance measure.  We have compared the performance and 

effectiveness of ILS approach with some well-known approaches available in the literature regarding maximin 

LHDs in Euclidean distance measure. The experimental study agrees that ILS approach outperforms regarding 

maximin LHDs measured in Euclidean distance measure. We compare Audze-Eglais values of  maximin LHDs, 

which are optimized regarding  ɸp optimal criterion and obtained by ILS approach, with  Audze-Eglais value of 

Audze-Eglais LHDs,  which are optimized regarding  Audze-Eglais optimal  criterion and obtained by 

Enhanced Stochastic Evolutionary (ESE) algorithm. In the experimental results show that the Audze-Eglais 

value of Maximin LHDs are comparable. We have also compared the performance of ILS approach with other 

approaches regarding various characteristics of the optimal designs by considering a typical design namely (k, 

N) = (4, 9). The comparison study reveals that ILS approach is one of the best approaches for finding maximin 

LHDs. 
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I. Introduction 
Design of experiments (DOE) or experimental design is the design of any information-gathering 

exercises where variation is present, whether under the full control of the experimenter or not. However, in 

statistics, these  terms are usually used for controlled experiments. Design of experiments is thus a discipline 

that has very broad application across all the natural and social sciences and engineering. 

Computer simulation experiments [e.g., Santner et al (2003); Fang et al (2006)] have now become a 

popular substitute for real experiments when the physical experiment are infeasible or too costly. In these 

experiments, a deterministic computer code, the simulator, replaces the real (stochastic) data generating process. 

This practice has generated a wealth of statistical questions, such as how well the simulator is able to mimic 

reality or which estimators are most suitable to adequately represent a system. However, the foremost issue 

presents itself even before the experiment is started, namely how to determine the inputs for which the simulator 

is run? It has become standard practice to select these inputs such as to cover the available space as uniformly as 

possible, thus generating so called space-filling experimental designs. Naturally, in dimensions greater than one, 
there are alternative ways to produce such designs. 

For the design of computer experiments Latin Hypercube Designs (LHDs), first introduced in [McKay 

et al. (1979)], fulfill the non-collapsing property. LHDs are important in the design of computer-simulated 

experiments (e.g., [Fang et al. (2006)]). Here LHD is defined a bit different than [McKay et al. (1979)] but 

similar to [Johnson et al. (1990); Husslage et al. (2006); Morris and Mitchell (1995); Grosso et al. (2008)]. 

Assume that we have to place N design points and that there are k distinct parameters. We would like to place 

the points so that they are uniformly spread when projected along each single parameter axis. We will assume 

that each parameter range is normalized to the interval [0, N-1]; Then, a LHD is made up by N points, each of 

which has k integer coordinates with values in 0,1, . . . , N-1 and such that there do not exist two points with one 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Controlled_experiment
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common coordinate value. This allows a non-collapsing design because points are evenly spread when projected 

along a single parameter axis.  

 

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points   where xi = (xij, xi2, . . . , xik)∈ {0, 

. . . , N − 1}
k
 such that for each factor j all xij are distinct. In this definition, we assume that our design space is 

equal to the [0, N−1]k hypercube. However by scaling, we can use LHDs for any rectangular design space. 

Alternative definitions of LHDs also occur in the literature. One alternative definition is  to divide each axis into 

n equally sized bins and randomly select points such that each bin contains exactly one point. However, we refer 

to this technique as Latin hypercube sampling (LHS). In this paper the term ‘LHD’ thus only refers to the first 

definition. 

A configuration  
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with all  1,1,0  Nx
ij

  is a LHD if each column has no duplicate entries. This one-dimensional projective 

property ensures that there is little redundancy of design points when some of the factors have a relatively 

negligible effect (sparsity principle). 

Unfortunately, randomly generated LHDs almost always show poor space-filling properties or / and the factors 

are highly correlated. On the other hand, maximin distance objective based designs proposed by [Johnson et al. 

(1990)], have very good space-filling properties but often no good projection properties under the Euclidean 

(L2), or the Rectangular (L1), distance. To overcome this shortcoming, Morris and Mitchell [Morris and Mitchell 

(1995)] suggested for searching maximin LHDs which have both the important properties when looking for 

“optimal” designs. An LHD is 
ij 

min d(xi, xj) is 

maximal among all LHDs of given size n, where d is a certain distance measure. In this paper, we concentrate 

on the Euclidean (L2) distance measure, i.e., 
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Besides maximin LHDs, and minimax LHDs  we also treat Audze-Eglais LHDs. Audze-Eglais designs are 

obtained by minimizing the following objective:       

                                                                                                        

here d(xi, xj) is again the Euclidean distance between points xi and xj . By minimizing this objective, we can also 

obtain LHDs with “evenly spread” points (Bates et al. 2004).The problem of finding Audze Eglais LHD is 

formulated and a permutation genetic algorithm is used to generate them by [Liefvendahl and Stocki (2006)]. 

They compared maximin and Audze Eglais LHDs and recommend on Audze Eglais criterion over the maximin 

criterion.  
 

II. Definition Of Some Important Topics 
2.1. ILS approach 

Iterated Local Search (ILS) has been reinvented numerous times in the literature, with one of its earliest 

incarnations appearing in [Lin and Kernighan (1973)]. This simple idea [Baxter et al. (1981)] has a long history, 

and its rediscovery by many authors has lead to many different names for iterated local search like iterated 

descent [Baum.et al. (1986) ], large-step Markov chains [Martin et al. (1991)], iterated Lin-Kernighan [Johnson 

D. S. (1990)], chained local optimization [Martin Otto (1996)], or combinations of these [Applegate et al. 

(1999)]. ILS has many of the desirable features of a meta-heuristic: it is simple, easy to implement, robust and 
highly effective. Two main points in ILS are the following: (i) there must be a single chain that is being 

followed (this then excludes population-based algorithms); (ii) the search for better solutions occurs in a reduced 

space defined by the output of a black box heuristic. In practice, local search has been the most frequently used 

embedded heuristic, but in fact any optimizer can be used, be it deterministic or not. The essential idea of ILS 

lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions 

that are locally optimal for a given optimization engine. In what follows we will give a formal description of 

ILS and comment on its main components. 

         Procedure Iterated Local Search 

       s0  = Generate Initial Solution 

       s*  = Local Search(s0) 

   repeat 
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       s′   = Perturbation(s* ) 

       s*′   = Local Search(s′) 

       s*   = Acceptance Criterion (s*, s*′) 
    until     termination condition met 

end. 

 

2.2. Maximin Latin Hypercube Designs 

We will denote as follows the p-norm distance between two points xi and xj,  i, j = 1, 2, · · · , N: 

d i j =║xi− x j ║ p,                                                                                             

Unless otherwise mentioned, we will only consider the Euclidean distance measure (p = 2) and Manhattan 

distance (p = 1). In fact, we will usually consider the squared value of dij (in brief d), i.e. d2 (saving the 

computation of the square root) in case of Euclidean distance. This has a noticeable effect on the execution 
speed since the distances d2 will be evaluated many times. 

 

2.3. Audze –Eglais design and optimal criteria 

The Audze-Eglais Design of Experiment (DoE) is based on the following physical analogy: a system consisting 

of points of unit mass exert repulsive forces on each other causing the system to have potential energy. When 

the points are released from an initial state, they move. If the magnitude of the repulsive forces is inversely 

proportional to the distance square between the points, mathematically for unit mass, it can be written as follow: 

                        U=                                                                                

where U is the potential energy and d(xi, yj) be the Euclidean distance between points xi and yj. They will reach 

equilibrium when the potential energy U of the repulsive forces between the masses is at a minimum i.e.  

 min U =                                                                           

The Audze and Eglais criterion was first introduced by Audze and Eglais (1977) and is based on the analogy of 

minimizing forces between charged particles. If d(xi, yj)|s be the distance between two points xi and yj i,j =1,2, 

…., N of any DoE in some distance measure s , then Audze-Eglais designs are obtained by minimizing the 

following Audze-Eglais optimal criterion is : 

  Opt(A-E) =                                                                             

The principle of the Audze-Eglais DoE is to distribute experiment points as uniformly as possible within the 

design variable domain. This is achieved by minimizing the potential energy of the points (A-E criteriion) of a 

DoE. The DoE for k variables and N experiments is independent of the application under consideration, so once 

the design is formulated for N points and k design variables, it is stored in a matrix and need not be formulated 

again.  
 

III. Experiments On Optimal Lhds Regarding Audze-Eglais Distance Measure 
 

Table 1: Comparison of  Maximin LHD A and Audze-Eglais LHD B in various aspects  

regarding ILS and ESE approaches respectively 

LHD k N 

In Euclidean measure (L
2
) In Manhattan measure (L

1
) 

D1J1 DMax, JMax AE value  D1J1 DMax, JMax AE value  

A 6 12 142 , 12 286 , 6 0.440568 23 , 12 36 , 6 2.57439 

B 6 12 134 , 2 294 , 2 0.440954 21 , 2 38 , 2 2.57795 

 

It is remarkable that though Audze-Eglais LHD B is optimized by the Audze-eglais criterion but in the 

table we observe , in column 6 (L2) and in column 9 (L1),  that Maximin LHD A  is also better than Audze-

Eglais LHD B regarding Audze-Eglais  (AE) value. Moreover It is notice that Maximin LHD A  is better than 

Audze-Eglais LHD B  regarding DMax, JMax values measured both L1 and L2 respectively. In this experimental 

study it may be said that Maximin LHD A obtained by ILS approach with (ɸp,D1) optimal criterion is better than 

Audze-Eglais LHD B with Audze-Eglais optimal criterion in all aspects.  
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Table 2: Comparison of  Maximin LHD C and Audze-eglais LHD D in various aspects  

regarding ILS and ESE approaches respectively 

LHD k N 

In Euclidean measure (L
2
) In Manhattan measure (L

1
) 

D1J1 DMax, JMax AE value  D1J1 DMax, JMax AE value  

C 6 9 82 , 6 166 , 3 0.415 17 , 6 30 , 3 1.834 

D 6 9 69 , 1 164 , 1 0.414 16 , 1 30 , 1 1.826 

 
Again we have performed experiments on those distance matrices L, M, U and V to find out the 

characteristics of the LHD C and D respectively. The experimental results are displayed in the Table 2. Again it 

is notice (in column 4) that Maximin LHD C  is much better than Audze-eglais LHD D regarding maximin 

value D1J1 in Euclidean measure (L2) where  LHD C  is optimized regarding (ɸp,D1) [Grosso et al. (2009] 

optimal criterion by ILS approach and Audze-eglais LHD B is optimized regarding Audze-eglais criterion by 

ESE approach. Though Maximin LHD C  is optimized regarding L2 measure but in this experiment we again 

notice that Maximin LHD C  is better than Audze-eglais LHD D regarding D1J1 value according to Manhattan 

measure (L1) too. On the other hand, it is notice that Maximin LHD C  and Audze-Eglais LHD D are 

comparable  regarding DMax, JMax values measured both L1 and L2 respectively. Note that LHD C  is a bit worse 

compare to Audze-Eglais LHD D regarding Audze-Eglais  (A-E) value. 

Now we will perform another experiment to analysis the Maximin LHD and Audze-Eglais LHD 
according to the ILS [Grosso et al (2009)] and Genetic Algorithm (GA) [Bates et al. (2003)] approaches 

respectively. In this context we consider (k, N) = (3, 10) and the optimal LHDs are experimental results are 

Maximin LHD F and  Audze-Eglais LHD G. 

 

Maximin LHD F Audze-eglais LHD G 

1 7 5 

2 2 6 

3 4 1 

4 5 10 

5 9 2 

6 10 7 

7 1 8 

8 3 3 

9 6 9 
10 8 4 

 

1 3 5 

2 7 3 

3 9 8 

4 2 2 

5 5 10 

6 1 7 

7 10 4 

8 6 1 

9 8 9 
10 4 6 

 

 

The experimental results are shown in Table 3.  It is observe that Maximin LHD F is significantly 

better compare to Audze-Eglais LHD G as well regarding D1J1 and DMax, JMax value in Euclidean distance 

measure. But there is a remarkable observation is that Maximin LHD F is better that Audze-Eglais LHD G 

regarding Audze-Eglais (A-E) value, though Audze-eglais LHD G is optimized regarding Audze-Eglais optimal 

criterion. 

 

 

 

 

LHD k N 

In Euclidean measure (L
2
) In Manhattan measure (L

1
) 

D1J1 DMax, JMax A-E value D1J1 DMax, JMax A-E value 

Maximin LHD F 3 10 27, 3 104, 3 1.0258 7 , 3 16 , 3 4.3706 

Audze-eglais LHD G 3 10 19, 1 110, 1 1.0401 7 , 2 18 , 1 4.3504 

 

From the above experiments, we observe that maximin LHDs obtained by ILS approach are always significantly 

better regarding D1  and  DMax values measured L2 distance measure. On the other hand according to A-E value 

maximin LHDs obtained by ILS approach are at least comparable with that of Audze-Eglais LHDs obtained by 

ESE algorithm.  Similarly according to D1  and  DMax values measured L1 distance measure maximin LHD is 

better or at least comparable with  Audze-Eglais LHDs.  

 

Comparison on ILS VS Other Approach Regarding Audze-Eglais distance measure:  

 

Table 3: Comparison of  Maximin LHD  and Audze-Eglais LHD  in various aspects regarding ILS 

and GA approaches respectively 
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Figure 1: Comparison of ILS vs PerGA and ESE approaches regarding Audze-Eglais values of LHDs for k=4 

and N=3,…, 50 

 

Now we consider several optimal LHDs optimized by different approaches as well as different optimal 

criteria to analyze the Audze-Eglais values. In this experiment we will compare maximin LHDs (optimized by 

(ɸp, D1) criterion) obtained by ILS approach regarding Audze-Eglais values with Audze-Eglais LHDs 

(optimized by Audze-Eglais criterion) obtained by Permutation Genetic Algorithm (PerGA) and Enhanced 
Stochastic Evolutionary (ESE) algorithm regarding Audze-Eglais values. It is noted that maximin LHDs is 

optimized on the basis of (ɸp,D
1) criterion not Audze-Eglais criterion. For this comparison we will calculate the 

Audze-Eglais value of each maximin LHDs. 

At first we consider k = 4 and N =3,…, 50. The experimental results are displayed in the Figure 1. In 

the figure R_PerGA indicates the  ratio PerGA/ILS regarding Audze-Eglais values of the LHDs, R_ESE  

indicates the ratio ESE/ILS regarding Audze-Eglais values of the LHDs. In the Figure 1 it is observed that 

the  ratio ESE/ILS is almost equal to unity. On the other hand the ratio PerGA /ILS is always greater than one. 

It is also remark that the ratio PerGA /ILS decrease with the increasing of N. From the Figure 1 it may 

conclude that the Audze-Eglais values of maximin LHDs obtained by ILS approach are comparable with other 

Audze-Eglais LHDs obtained by ESE algorithm in dimension k =4. Moreover the Audze-Eglais values of 

maximin LHDs obtained by ILS approach are better than that of Audze-Eglais LHDs obtained by PerGA 
approach.  

Again we have performed further similar experiments for k =4,  k = 6 and k = 8 for all N= 4, …, 50.  In 

this experiments we have compared Audze-eglais values of maximin LHDs (optimized by (ɸp,D
1) criterion) 

obtained by ILS approach regarding with Audze-Eglais values of Audze-Eglais LHDs (optimized by Audze-

Eglais criterion) obtained by Enhanced Stochastic Evolutionary (ESE) algorithm and Audze-Eglais LHDs 

(optimized by Audze-Eglais criterion) obtained in Web [www.spacefillingdesigns.nl (2015)].  The experimental 

results are reported in the Table 4.  It is notice that though maximin LHDs are optimized regarding (ɸp,D
1) 

criterion but till Audze-Eglais values of maximin LHDs are comparable with Audze-Eglais LHDs obtained by 

ESE algorithm mentioned in [Husslage et al. (2011] as well as and ESE algorithm mentioned in Web 

[www.spacefillingdesigns.nl (2016)].  

 

Table 4 Comparison of maximin LHDs vs Audze-Eglais LHDs  in Euclidean measure regarding 

Audze-Eglais values  

N  

    

Audze-eglais values of  optimal LHDs 

(k=4) (k=6) (k=8) 

 ILS ESE AE_Web ILS ESE AE_Web ILS ESE AE_Web 

4 0.454 .454 0.454 0.300 0.300 0.300 0.225 0.225 0.225 

5 0.533 0.509 0.509 0.484 0.336 0.518 0.250 0.250 0.250 

6 0.564 0.561 0.561 0.359 0.358 0.358 0.268 0.268 0.268 

7 0.601 0.599 0.600 0.377 0.376 0.376 0.359 0.282 0.359 

8 0.619 0.619 0.620 0.399 0.398 0.398 0.292 0.292 0.292 

9 0.667 0.660 0.660 0.415 0.414 0.414 0.301 0.301 0.300 

10 0.692 0.686 0.687 0.427 0.425 0.425 0.311 0.311 0.311 

11 0.716 0.709 0.709 0.435 0.434 0.434 0.320 0.319 0.319 

12 0.734 0.724 0.724 0.440 0.441 0.441 0.326 0.326 0.326 

13 0.754 0.746 0.746 0.454 0.453 0.453 0.331 0.331 0.331 

14 0.767 0.762 0.762 0.464 0.462 0.461 0.335 0.335 0.335 

15 0.777 0.755 0.774 0.473 0.470 0.470 0.339 0.339 0.338 

16 0.796 0.791 0.790 0.480 0.477 0.476 0.341 0.341 0.341 

17 0.812 0.805 0.805 0.484 0.483 0.483 0.348 0.347 0.346 

18 0.820 0.816 0.816 0.489 0.488 0.488 0.289 0.350 0.350 

19 0.830 0.827 0.827 0.493 0.492 0.492 0.356 0.354 0.354 



Comparison Of Maximin LHD And Audze-Eglais LHD  In Various Aspects Regarding .. 

DOI: 10.9790/5728-1702031320                                www.iosrjournals.org                                             18 | Page 

20 0.835 0.835 0.835 0.497 0.496 0.496 0.359 0.358 0.357 

21 0.853 0.847 0.848 0.456 0.501 0.501 0.361 0.361 0.360 

22 0.865 0.856 0.856 0.507 0.505 0.505 0.364 0.363 0.363 

23 0.877 0.868 0.867 0.511 0.510 0.509 0.367 0.366 0.365 

24 0.884 0.875 0.875 0.514 0.513 0.513 0.368 0.368 0.368 

25 0.890 0.884 0.884 0.517 0.516 0.516 0.370 0.370 0.370 

26 0.898 0.891 0.890 0.519 0.518 0.518 0.372 0.372 0.371 

27 0.903 0.898 0.896 0.521 0.521 0.520 0.374 0.373 0.373 

28 0.909 0.906 0.906 0.525 0.524 0.524 0.375 0.375 0.375 

29 0.918 0.912 0.912 0.529 0.527 0.527 0.377 0.376 0.376 

30 0.927 0.919 0.919 0.532 0.530 0.530 0.378 0.378 0.378 

31 0.934 0.925 0.925 0.534 0.533 0.532 0.380 0.380 0.379 

32 0.935 o.931 0.930 0.537 0.535 0.535 0.382 0.381 0.381 

33 0.943 0.935 0.935 0.539 0.537 0.537 0.383 0.383 0.382 

34 0.948 0.941 0.941 0.541 0.540 0.539 0.384 0.384 0.384 

35 0.952 0.946 0.946 0.544 0.542 0.541 0.385 0.385 0.385 

36 0.960 .950 0.950 0.544 0.543 0.543 0.386 0.386 0.386 

37 0.980 0.956 0.956 0.547 0.545 0.545 0.387 0.387 0.387 

38 0.970 0.959 0.959 0.548 0.547 0.547 0.388 0.388 0.388 

39 0.987 0.965 0.965 0.549 0.548 0.549 0.389 0.389 0.389 

40 0.978 0.968 0.968 0.550 0.550 0.549 0.390 0.390 0.390 

41 0.993 0.971 0.971 0.551 0.551 0.551 0.391 0.391 0.390 

42 0.990 0.975 0.974 0.552 0.552 0.552 0.392 0.392 0.391 

43 1.002 0.979 0.978 0.555 0.554 0.554 0.393 0.393 0.392 

44 1.007 0.983 0.982 0.556 0.555 0.555 0.394 0.394 0.393 

45 1.010 0.986 0.986 0.559 0.557 0.557 0.395 0.394 0.394 

46 1.015 0.990 0.990 0.560 0.559 0.558 0.396 0.395 0.395 

47 1.015 0.993 0.993 0.561 0.560 0.560 0.397 0.396 0.396 

48 1.010 0.997 0.997 0.563 0.561 0.561 0.397 0.397 0.397 

49 1.022 1.001 1.001 0.565 0.563 0.563 0.398 0.398 0.397 

50 1.025 1.004 1.003 0.566 0.564 0.564 0.399 0.398 0.398 

 

It is also worthwhile to mention here that the Audze-Eglais values of maximin LHDs are become 

better (more closed to Audze-Eglais LHDs’s values) with the increasing of the dimension k. To view it clearly 

the difference between maximin LHDs and Audze-Eglais LHDs regarding Audze-Eglais values are reported in 

the Table 5. Note that negative value implies maximin LHDs is better  than Audze-Eglais LHDs regarding 

Audze-Eglais values.  

 

Table 5:  difference between maximin LHDs and  Audze-Eglais LHDs regarding Audze-Eglais 

values 
N k = 4 k = 6 k = 8 N k = 4 k = 6 k = 8 

 
4 0.000   28 0.003 0.001 0.000 

5 0.024 -0.034  29 0.006 0.002 0.000 

6 0.003 0.001  30 0.008 0.002 0.000 

7 0.002 0.001 -0.001 31 0.009 0.002 0.000 

8 0.000 0.001 0.000 32 0.004 0.002 0.001 

9 0.007 0.002 0.000 33 0.008 0.002 0.001 

10 0.006 0.001 0.001 34 0.007 0.001 0.000 

11 0.008 0.000 0.001 35 0.007 0.002 0.001 

12 0.009 0.000 0.001 36 0.010 0.001 0.000 

13 0.008 0.001 0.001 37 0.024 0.002 0.000 

14 0.006 0.002 0.000 38 0.011 0.001 0.000 

15 0.002 0.004 0.000 39 0.022 0.001 0.000 

16 0.005 0.004 0.000 40 0.010 0.001 0.000 

17 0.007 0.002 0.001 41 0.022 0.000 0.000 

18 0.004 0.002 -0.062 42 0.016 0.000 0.000 

19 0.003 0.001 0.002 43 0.024 0.001 0.001 
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20 0.001 0.002 0.001 44 0.024 0.001 0.001 

21 0.006 -0.045 0.001 45 0.024 0.002 0.001 

22 0.009 0.001 0.001 46 0.025 0.002 0.001 

23 0.009 0.001 0.001 47 0.022 0.002 0.001 

24 0.009 0.002 0.001 48 0.013 0.002 0.001 

25 0.007 0.001 0.001 49 0.021 0.002 0.001 

26 0.007 0.001 0.001 50 0.021 0.001 0.001 

27 0.005 0.000 0.001     

 

IV. Conclusion 
ILS outperforms regarding maximin LHDs compare to several well known approaches existing in the 

literature. it may be concluded that ILS approach is a state-of-the-arts approach for finding maximin LHDs 

measured in L2 with Opt (ɸp, D1) criterion. Audze-Eglais optimal criterion is used for providing good space-

filling DoE. Moreover in the literature it is shown that distance measures are also crucial for measurement good   

space-filling property of the DoEs. In this perspective extensive experiments have been performedz.  Firstly 

several experiments have been carried out to compare the maximin LHDs obtained by ILS approach and Audze-

Eglais LHD obtained by ESE approach regarding both D1 values as well as Audze-Eglais values. From the 

experimental study it is observed that maximin LHDs are significantly better compared to Audze -Eglais LHD 

regarding D1 values (minimum inter-site distance value) where inter-site distance are measured in Euclidean 

distance measure. But it should be imposed attention that the Audze - Eglais values of maximin LHDs are 

comparable with that of Audze-Eglais LHD (1977).  
We again observe in this experiment that maximin LHD obtained by ILS approach is significantly 

better than all other optimal LHDs regarding D1 value. Though according to the ρ (correlation coefficient) value 

maximin LHD obtained by ILS approach is worse compare to OMLH – SA_M and OLH- Y in which DoE are 

optimized by ρ2 optimal criterion, the value of ρ in maximin LHD are enough small.  

 From these experimental studies It may be concluded that maximin LHDs obtained  by ILS approach 

is state-of the-arts regarding D1 values are comparable with other Audze-Eglais values. 
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