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Abstract: The quotient coarse category Qcrs, equipped with a small amount of extra structure, is a Baues 

cofibration category [12], [13]. In this article we show that the pointed quotient coarse category PQcrs is also 

a Baues cofibration category and use the coarse cofibration category machinery to define controlled and coarse 

homotopy groups, compute these groups for coarse spheres, and define relative coarse homotopy. For  the last 

we show that any two classes in the coarse category PQcrs, that are strongly coarsely homotopic relative to 𝐴, 

will be relatively coarsely homotopic. 
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I. Introduction And Preliminaries 
Coarse geometry is a model for the study of geometric objects regarding only large scale structures and 

where only large scale characteristics are well defined. Many notions in topology and abstract geometry have 

been studied over years to examine and explore their large scale versions. For example, (co)homology theory 

has analogues in coarse geometry, and homology groups (see [7],[8],[14]) is not away from homotopy, It is well 

known that homotopy groups yields homotopy theory and this has been investigated in coarse geometry long 

time ago and called coarse homotopy theory. 

Another modern progress in studying classical homotopy theory is the use of category theoretic 

methods with extra structure, Baues introduced a weaker notion of cofibration category in [1], [2] as a 

generalization of a Quillen model category. To define coarse version of abstract homotopy groups, a coarse 

analogues of a notion of Baues cofibration category is defined in [13]. In this article (see [12], [13], [15], and 

[16] ) we define controlled and coarse path components, and we define also the 𝑛-th controlled and coarse 

homotopy groups, and we calculate them for some important coarse spaces, such as ℝ+, ℝ, and ℝ2.  

Later in this article we define the pointed quotient coarse category PQcrs and show that it is a Baues 

cofibration category, and we show that any classes in PQcrs that are strongly coarse homotopic relative to an 

initial object 𝐴 are relatively coarse homotopic. Thus, these results are important in defining coarse homotopy 

groups in a more geometric way (see [11])  in order to proving the Whitehead theorem in algebraic topology 

(see for example [17] for an account).  

In the large scale we can define an abstract coarse space in terms of entourages ([5], [7], [16], [18]). 

We recall the following definitions and propositions which found also in [12] and [13].                  

The following definition comes from [7]. 

 

Definition 0.1. Let 𝑋 be a set. Then 𝑋 is called a unital coarse space if it is equipped with a coarse structure, 

defined to be a collection 𝜀 of subsets 𝑀 of 𝑋 × 𝑋 called entourages satisfying the following axioms: 

(1): If 𝑀 ∈ 𝜀 and 𝑀′ ⊆ 𝑀, then 𝑀′ ∈ 𝜀. 

(2): Let 𝑀1,𝑀2 ∈ 𝜀, then 𝑀1 ∪𝑀2 ∈ 𝜀, and 𝑀1𝑀2 ∈ 𝜀 where 𝑀1𝑀2 = {(𝑥, z) ∣ (𝑥, 𝑦) ∈ 𝑀1, (𝑦, 𝑧) ∈ 𝑀2 for 

some  𝑦 . We call 𝑀1𝑀2 the composite of 𝑀1 and 𝑀2. 

 (3):Δ𝑋 ∈ 𝜀 where Δ𝑋 =   x, 𝑥 : 𝑥 ∈ 𝑋 .  
 (4):⋃𝑀∈𝜀  𝑀 = 𝑋 × 𝑋. 

(5): If 𝑀 ∈ 𝜀,𝑀𝑡 =   𝑦, 𝑥 ∣∣  𝑥, 𝑦 ∈ 𝑀  ∈ 𝜀.    
We can use (𝑋, 𝜀) to refer to a coarse space when we need to emphasise the collection of entourages. A subset 

𝑀 is called symmetric if 𝑀 = 𝑀𝑡 .    

A non-unital coarse space is a coarse space defined as above, but we drop the axiom where 𝛥𝑋  must be an 

entourage. 

 

Definition 𝟎. 𝟐. Let 𝑋 and 𝑌 be (unital) coarse spaces. Then a map 𝑓 = 𝑋 → 𝑌 is said to be controlled or 

coarsely uniform if for every entourage 𝑀 ⊆ 𝑋 × 𝑋, the image 

𝑓(𝑀] = {(𝑓(𝑥), 𝑓(𝑦)) = (𝑥, 𝑦) ∈ 𝑀} 
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is an entourage- A controlled map 𝑓 is called coarse if the inverse image of 𝑎 bounded set under the map 𝑓 is 

also bounded. 

A subset 𝐵 ⊆ 𝑋 is said to be bounded if 𝐵 takes the form 𝑀(𝑥) = {𝑦: (𝑥, 𝑦) ∈ 𝑀} for some entourage 𝑀 ⊆ 𝑋 ×
𝑋 and point 𝑥 ∈ 𝑋. 

 

The problem of constructing a nonzero product arises in the category of proper metric spaces and proper maps 

(modulo closeness. Here in the non-unital case. we get many more coarse maps. Consequently, using non-unital 

coarse spaces, it becomes extremely easy to construct (nonzero) categorical products in the coarse category and 

show that the non-unital coarse category have all nonzero (projective) limits see [6]. Initially, let us focus on the 

unital case. 

 

Definition 0.3. We call two coarse maps 𝑓, 𝑔: 𝑋 → 𝑌 close, and write 𝑓 ∼Crs 𝑔, if the set {(𝑓(𝑥), 𝑔(𝑥)) ∣ 𝑥 ∈ 𝑋} 

is an entourage. 

A coarse map 𝑓: 𝑋 → 𝑌 is called a coarse equivalence if there is a coarse map 𝑔:𝑌 → 𝑋 such that the 

compositions 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 are close to  the identity maps 1𝑌 and 1𝑋  respectively. 

 

We call two coarse spaces 𝑋 and 𝑌 coarsely equivalent if a coarse equivalence 𝑓:𝑋 → 𝑌 exists. 

Alternatively, a subset 𝐵 ⊆ 𝑋 is said to be bounded if the inclusion 𝐵 ↪ 𝑋 is close to a constant map. 

 

Definition 0.4 . Let 𝑋 be a set and e a collection of subsets of 𝑋 × 𝑋. The coarse structure generated by 𝜀 is the 

minimum coarse structure on 𝑋 that contains 𝜀. We write this structure < 𝜀 >. 

Note that here we do not assume that the coarse structure generated by a collection is unital. The following 

definition comes from [5]. 

Definition 0.5. Let 𝑋 be a Hausdorff space. A coarse structure on 𝑋 is said to be compatible with the topology if 

every entourage is contained in an open entourage. and the closure of any bounded set is compact. We call a 

Hausdorff space equipped with a coarse structure compatible with the topology a coarse topological space. 

 

Any coarse topological space is locally compact, and the bounded sets are precisely those which are 

precompact. 

 

Example 0.6. Let (𝑋, 𝑑) be a proper  (i.e, closed bounded subsets are compact) metric space. Then 𝑑 induces a 

coarse structure on 𝑋. which is called metric structure such that: 

Let 𝐷𝑟 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣ 𝑑(𝑥, 𝑦) < 𝑟}. Then 𝐸 ⊆ 𝑋 × 𝑋 is an entourage if 𝐸 ⊆ 𝐷𝑟  for some 𝑟 > 0. 

Any coarse topological space is locally compact. The coarse space 𝑋 equipped with the metric coarse structure 

is a coarse topological space if 𝑋 is locally compact. 

The following definition induces from [10] . 

 

Definition 0.7 . Let 𝑅 be the topological space [0, ∞) equipped with the coarse structure arising from the metric. 

We call the space 𝑅 a generalised ray if the following conditions hold. 

 Let 𝑀,𝑁 ⊆ 𝑅 × 𝑅 be entourages. Then the sum 

𝑀 + 𝑁 = {(𝑢 + 𝑥, 𝑣 + 𝑦) ∣ (𝑢, 𝑣) ∈ 𝑀, (𝑥, 𝑦) ∈ 𝑁} 

is an entourage. 

 Let 𝑀 ⊆ 𝑅 × 𝑅 be an entourage. Then the set 

𝑀∗ = {(𝑢, 𝑣) ∈ 𝑅 × 𝑅 ∣ 𝑥 ≤ 𝑢, 𝑣 ≤ 𝑦, (𝑥, 𝑦) ∈ 𝑀} 

is an entourage. 

 Let 𝑁 ⊆ 𝑅 × 𝑅 be an entourage, and 𝑎 ∈ 𝑅. Then the set 

𝑎 + 𝑁 = {(𝑎 + 𝑥, 𝑎 + 𝑦) ∣ (𝑥, 𝑦) ∈ 𝑁} 

is an entourage. 

For example, the space ℝ+ (with the metric coarse structure) is a generalised ray. 

Proposition 𝟎. 𝟖. Let 𝑋 be a coarse space, and let 𝑅 be a generalised ray. Let 𝑝, 𝑞: 𝑋 → 𝑅 be controlled maps, 

then 𝑝 + 𝑞 is a controlled map. 

Proof. Let 𝑀 ⊆ 𝑋 × 𝑋 be an entourage. Then the images 𝑝[𝑀], 𝑞[𝑀] are entourages, Now 

(𝑝 + 𝑞)[𝑀] = {((𝑝 + 𝑞)(𝑥), (𝑝 + 𝑞)(𝑦)): (𝑥, 𝑦) ∈ 𝑀} ⊆ 𝑝[𝑀] + 𝑞[𝑀] 
which implies that (𝑝 + 𝑞)[𝑀] is an entourage. Hence 𝑝 + 𝑞 is controlled. ■ 

 

Definition 0.9. Let 𝑋 and 𝑌 be coarse spaces, equipped with collections of entourages 𝜀𝑋  and 𝜀𝑌  respectively. 

Then we define the product of 𝑋 and 𝑌 to be the Cartesian product 𝑋 × 𝑌 equipped with the oarre structure 

generated by finite compositions, unions of entourages, and all subsets of entourages in the set 
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 𝑀 × 𝑁:𝑀 ∈ 𝜀𝑋 , 𝑁 ∈ 𝜀𝑌  
 

Unfortunately, the above product is not a product in the category-theoretic sense since the projections 𝑝𝑋 : 𝑋 ×
𝑌 → 𝑋 and 𝑝𝑌: 𝑋 × 𝑌 → 𝑌 are not in general coarse maps. We shall see that there is a solution to this issue in the 

world of non-unital coarse spaces. 

Now we define two different coarse versions of disjoint union of coarse spaces. The following definition comes 

from [10]. 

Definition 0.10. Let 𝑋 and 𝑌 be coarse spaces. Then we define the disjoint union to be the set 𝑋 ⊔ 𝑌 equipped 

with the coarse structure generated by the entourages to be subsets of unions of the form 

𝑀 ∪𝑁 ∪  𝐵𝑋 × 𝐵𝑌 ∪  𝐵𝑌
′ × 𝐵𝑋

′   
where 𝑀 ⊆ 𝑋 × 𝑋 and 𝑁 ⊆ 𝑌 × 𝑌 ure entourages, and 𝐵𝑋 , 𝐵𝑋

′ ⊆ 𝑋 and 𝐵𝑌𝐵𝑌
′ ⊆ 𝑌 are bounded subsets, We 

denote this disjoint union by 𝑋 ⊔ 𝑌. 

The following result is easy to check. 

Proposition 0.11. Let 𝑋 and 𝑌 be coarse spaces, 𝑅 be a generalised ray. Let 𝑝𝑋 : 𝑋 → 𝑅 and 𝑝𝑌: 𝑌 → 𝑅 be 

controlled maps, Then 𝑋 ⊔ 𝑌 is coarse space, and the map 𝑝𝑋⊔𝑌: 𝑋 ∪ 𝑌 → 𝑅 defined by the formula 

𝑝𝑋⊔𝑌(𝑥) =  
𝑝𝑋(𝑥) 𝑥 ∈ 𝑋
𝑝𝑌(𝑥) 𝑥 ∈ 𝑌

  

is a controlled map. ■ 

Definition 0.12 . Let 𝑋 and 𝑌 be coarse spaces, Then we define another type of disjoint union to be the set 

𝑋 ⊔ 𝑌 equipped with the coarse structure generated by the entourages to be subsets of unions of the form 𝑀 ∪𝑁 

where 𝑀 ⊆ 𝑋 × 𝑋 and 𝑁 ⊆ 𝑌 × 𝑌 are entourages. We denote this disjoint union by 𝑋 ⊔∞ 𝑌. 

The space 𝑋 ⊔∞ 𝑌 is a non-unital coarse space even when 𝑋 and 𝑌 are unital coarse spaces. The following is 

also easy to check. 

 

Proposition 0.13. Let 𝑋 and 𝑌 be coarse spaces, 𝑅 be a generalised ray. Let 𝑝𝑋 : 𝑋 → 𝑅 and 𝑝𝑌: 𝑌 → 𝑅 be 

controlled maps. Then the map 𝑝𝑋⊔𝜔∞
𝑌:𝑋 ∪∞ 𝑌 → 𝑅 defined by the formula 

𝑝𝑋∪∞Y(𝑥) =  
𝑝𝑋(𝑥) 𝑥 ∈ 𝑋
𝑝𝑌(𝑥) 𝑥 ∈ 𝑌

  

is a controlled map. ■ 

The following definitions are prompted from [6]. 

 

Definition 0.14 . Let 𝑋, 𝑌 be coarse spaces and 𝑓:𝑋 → 𝑌 a map. 

 We call 𝑓 a locally proper map if  𝑓 𝑋 ′  is proper whenever 𝑋′ ⊆ 𝑋 is a unital coarse subspace, that is, 

the inverse image of a bounded set 𝐵 ⊆ 𝑌 under the map  𝑓 𝑋 ′ is bounded. 

 We call 𝑓 a coarse map between non-umital coarsc spaces if it is a controlled and locally proper map. 

Any proper map is locally proper, but the converse in not always true. We define two maps between non-unital 

coarse spaces being close as follows. 

Definition 𝟎. 𝟏𝟓. Let 𝑓, 𝑔: 𝑋 → 𝑌 be two coarse maps between non-unital coarse spaces. We say that 𝑓 is close 

to 𝑔 if for any unital subspace 𝑋′ ⊆ 𝑋, we have  𝑓 𝑋 ′ is close to  𝑔 𝑋 ′ in sense of definition (0.3) . 

We call 𝑓 a coarse equivalence between non-unital coarse spaces if  𝑓 𝑋 ′: 𝑋′ → 𝑌′ is a coarse equivalence in 

sense of definition (0.3) whenever 𝑋′ ⊆ 𝑋 and 𝑌′ ⊆ 𝑌 are unital coarse subspace. 

 

Let 𝑋 be a topological space. The product 𝑋 × [0,1] is called a cylinder on 𝑋. We need to define a coarse 

version of the topological cylinder in order to define a coarse version of homotopy. 

 The following definition comes from [9]. 

 

Definition 0.16. Let 𝑋 be a coarse space, 𝑅 be a generalised ray, and 𝑝; 𝑋 → 𝑅 be some controlled map. Then 

we define the 𝑝 -cylinder of 𝑋: 

𝐼𝑝𝑋 = {(𝑥, 𝑡) ∈ 𝑋 × 𝑅 ∣ 𝑡 ≤ 𝑝(𝑥) + 1} 

The cylinder is a coarse space. We define the projection 𝑝′: 𝐼𝑝𝑋 → 𝑅 by the formula 𝑝′(𝑥, 𝑡) = 𝑝(𝑥) + 𝑡 and we 

define coarse mups 𝑖0 , 𝑖1: 𝑋 → 𝐼𝑝𝑋 by the formula 𝑖0(𝑥) = (𝑥, 0) and 𝑖1(𝑥) = (𝑥, 𝑝(𝑥) + 1) respectively. 

Our aim in this work is to define a Banes cofibration category on the category of non-unital coarse spaces, The 

above definition yields ideas of homotopy and mapping cylinder which are vital to the axioms. 

Definition 0.17 . Let 𝑓0 , 𝑓1: 𝑋 → 𝑌 be coarse maps between non-unital coarse spaces, 𝐴 coarse homotopy 

between 𝑓0 , 𝑓1 is a coarse map 𝐻: 𝐼𝑝𝑋 → 𝑌 for some controlled map 𝑝: 𝑋 → 𝑅 such that 𝑓0 = 𝐻 ∘ 𝑖0 and 𝑓1 = 𝐻 ∘

𝑖1 respectively, We say the maps 𝑓0 , 𝑓1: 𝑋 → 𝑌 are coarsely homotopic between non-unital coarse spaces if  𝑓0 𝑋 ′ 

is coarsely homotopic to  𝑓1 𝑋 ′ whenever 𝑋′ ⊆ 𝑋 is a unital coarse subspace. 𝐴 coarse map 𝑓: 𝑋 → 𝑌 is termed a 

coarse homotopy equivalence if there is a coarse map 𝑔:𝑌 → 𝑋 such that the compositions 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 are 



Relative Coarse Homotopy 

DOI: 10.9790/5728-1702034051                                www.iosrjournals.org                                             43 | Page 

coarsely homotopic to the identities 1𝑋  and 1𝑌 respectively. In this case, we call 𝑋 and 𝑌 are coarsely homotopic 

equivalent, and denoted by 𝑋 ≈Crs 𝑌. 

Example 0.18 , Let 𝑋 and 𝑌 be coarse spaces, and let 𝑝: 𝑋 → 𝑅 be a controlled map. Consider two close coarse 

maps 𝑓0 , 𝑓1: 𝑋 → 𝑌. Then we can define a coarse homotopy 𝐻: 𝐼𝑝𝑋 → 𝑌 between the maps 𝑓0 and 𝑓1 by the 

formula 

𝐻(𝑥, 𝑡) =  
𝑓0(𝑥) t < 1
𝑓1(𝑥) t ≥ 1

  

Similarly we can define controlled homotopy between 𝑓0 and 𝑓1, when 𝑓0 and 𝑓1 are close controlled maps.  

Thus, close coarse maps are also coarse homotopic. In particular, any coarse equivalence is a coarse homotopy 

equivalence which is also a controlled homotopy equivalence since coarse equivalence and controlled 

equivalence are the same. 

The following definition is from [10]. 

 Definition 0.19 . Let 𝑋 be a subspace of the unit sphere 𝑆𝑛−1. Then we define the open cone on 𝑋 to be the 

metric space 

𝐶𝑋 =  𝜆𝑥: 𝜆 ∈ ℝ+, 𝑥 ∈ 𝑋 ⊆ ℝ𝑛  

The open cone 𝐶𝑋 is a coarse space. The coarse structure is defined by the Euclidean metric on ℝ𝑛 . 

The cone of 𝑆𝑛−1 is the Euclidean space ℝ𝑛 , and the n-cell 𝐷𝑛  can be viewed as the upper hemisphere in the 

cone of 𝑆𝑛 , so its cone is ℝ𝑛 × ℝ+. The following definition comes from [8] and [4] . 

Definition 0.20. Let 𝑅 be a generalized ray, 𝑛 ∈ ℕ. Write 

𝑆𝑅
𝑛−1 = (𝑅 ⊔ 𝑅)𝑛 , 𝐷𝑅

𝑛 = (𝑅 ⊔ 𝑅)𝑛 × 𝑅 

We call 𝑆𝑛
𝑛−1 a coarse 𝑅 -sphere of dimension 𝑛 − 1, 𝐷𝑅

𝑛  a coarse 𝑅 -cell of dimension 𝑛, and the coarse R-

sphere  (𝑥, 0) ∈ 𝐷𝑅
𝑛 : 𝑥 ∈ 𝑆𝑅

𝑛−1  is called the boundary of the coarse 𝑅 -cell 𝐷𝑅
𝑛 , i.e. ∂𝐷𝑅

n = 𝑆𝑅
𝑛−1 × {0}. 

 

1-CONTROLLED AND COARSE PATH COMPONENTS 

Definition 1.1. Let 𝑓0 , 𝑓1: 𝑋 → 𝑌 be controlled maps. A controlled homotopy between 𝑓0 , 𝑓1  is a controlled map 

𝐻: 𝐼𝑝𝑋 → 𝑌 for some controlled map 𝑝: 𝑋 → 𝑅 such that 𝑓0 = 𝐻 ∘ 𝑖0 and 𝑓1 = 𝐻 ∘ 𝑖1 respectively. 

A controlled map 𝑓: 𝑋 → 𝑌 is termed controlled homotopy equivalence if there is a controlled map 𝑔: 𝑌 → 𝑋 

such that the compositions 𝑔 ∘ 𝑓 and 𝑓 ∘ 𝑔 are controlled homotopic to the identities 1𝑋  and 1𝑌 respectively. In 

this case, we call 𝑋 and 𝑌 are controlledly homotopic equivalent, and denoted by 𝑋 ≈Crd 𝑌. 

Definition 1.2. Let 𝑓:𝑋 → 𝑌 be a controlled map. The controlled equivalence class of a controlled map 𝑓 under 

the equivalence relation of controlled homotopy is denoted 

[𝑓]𝐶𝑟𝑑 =   controlled map 𝑔: 𝑋 → 𝑌 ∣ 𝑔 ≃Crd 𝑓  
and called the controlled homotopy class of 𝑓, The family of all such controlled homotopy classes is denoted by 

[𝑋, 𝑌]𝐶𝑟𝑑 . 

Definition 1.3. Let 𝑓:𝑋 → 𝑌 be a coarse map. The coarse equivalence class of a coarse map 𝑓 under the 

equivalence relation of coarse homotopy is denoted 

[𝑓]Crs =   coarse map 𝑔:𝑋 → 𝑌 ∣ 𝑔 ≃𝐶𝑟s 𝑓  
and called the coarse homotopy class of 𝑓. The family of all such coarse homotopy classes is denoted by 

[𝑋, 𝑌]𝐶𝑟𝑠 . 
We define 𝜋0

𝐶rd (𝑋) to be the set of all controlled homotopy classes [𝑓] of controlled maps 𝑓: ℝ → 𝑋, and we 

define 𝜋0
𝐶𝑟𝑠(𝑋) to be the set of all coarse homotopy classes [𝑓] of coarse maps 𝑓:ℝ → 𝑋, These sets for 

different choices of ℝ are related by natural bijections. 

Proposition 1.4. 𝜋0
𝐶𝑟𝑠 ℝ+  has one element which is the identity on ℝ+. 

Proof. Let 𝑓:ℝ+ → ℝ+ be a coarse map, we need to show that 𝑓 is coarsely homotopic to a homotopy class of 

the identity. Define a map 𝐻: 𝐼𝑓ℝ+ → ℝ+ by 

𝐻(𝑠, 𝑡) =  
𝑠 + 𝑡 𝑡 ≤ 𝑓(𝑠)
𝑠 + 𝑓(𝑠) 𝑡 ≥ 𝑓(𝑠)

  

Then 𝐻 is a coarse homotopy between 𝑖𝑑𝑅+
, 𝑖𝑑𝑅+

+ 𝑓 by lemma (2.2.7) and corollary (2.2.8)(1)) in [12]. 

Similarly we define 𝑎 map 𝐻′: 𝐼𝑖𝑑ℝ+
ℝ+ → ℝ by 

𝐻′(𝑠, 𝑡) =  
𝑡 + 𝑓(𝑠) 𝑡 ≤ 𝑠
𝑠 + 𝑓(𝑠) 𝑡 ≥ 𝑠

  

Then 𝐻′ is a coarse bomotopy between 𝑓, 𝑖𝑑ℝ+
+ 𝑓 again by lemma ((2.2.7)(2)) and corollary ((2.2.8)(2)) in 

[12]. By theorem (2.2.5) in [12] , we have 𝑖𝑑ℝ+
 is coarsely homotopic to 𝑓. This shows that 𝜋0

𝐶𝑟𝑠 ℝ+ = {1}. ■ 

Proposition 1.5. (1): Lef 𝑓:ℝ+ → ℝ he a controlled map, then 𝑓 is close to some Lipschitz controlled map. 

(2): Let 𝑓:ℝ+ → ℝ be a coarse map, then 𝑓 is close to some Lipschitz coarse map. 
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Proof. We prove (2), and (1) is identical. Since ℝ+, ℝ are geodesic, then by proposition (1.4) in [3] , the map 𝑓 

is asymptotically Lipschitz, and so the map  𝑓 𝑧+
 is coarse and asymptotically Lipschits, that is, we have two 

constants 𝐴,𝐵 ≥ 0 such that 
| 𝑓 𝑧+

(𝑥) −  𝑓 𝑧+
(𝑦)| ≤ 𝐴|𝑥 − 𝑦 ∣ +𝐵, 𝑥, 𝑦 ∈ 𝑍+

If 𝑥 ≠ 𝑦, |𝑥 − 𝑦| ≥ 1 so 𝐵 ≤ 𝐵|𝑥 − 𝑦|, then 

|𝑓|𝑧+
(𝑥) −  𝑓 𝑧+

(𝑦)| ≤ 𝐴|𝑥 − 𝑦| + 𝐵|𝑥 − 𝑦| = (𝐴 + 𝐵)|𝑥 − 𝑦 ∣
 

which implies that  𝑓 𝑧+
 is a Lipschitz map. Now we extend the map  𝑓 𝑧+

 piecewise linearly to the map 𝑔:ℝ+ →

ℝ as follows 

𝑔(𝑘 + 𝑡) =  𝑡𝑓 𝑧+
(𝑘 + 1) +  (1 − 𝑡)𝑓 𝑧+

(𝑘), 𝑘 ∈ ℤ+, 𝑡 ∈ [0,1] 

Then the map 𝑔 is a coarse, Lipschitz map, and close to the map 𝑓. ■ 

Proposition 1.6. 𝜋0
𝐶𝑟𝑠(ℝ) has two elements. 

Proof. Let 𝑓:ℝ+ → ℝ be a coarse map, then 𝑓 is close to the coarse map 𝑔 defined in proposition 1.5. This 

implies that 𝑔−1[0] is bounded, so 𝑔−1[0] ⊆ [0,𝑎] for some 𝑎 > 0. Now since 𝑔 is continuous, and by the 

intermediate value theorem either: 

𝑔(𝑥) > 0 for all 𝑥 > 𝑎, or 𝑔(𝑥) < 0 for all 𝑥 > 𝑎 

Then  𝑔 (𝑎,∞) is never zero, and since 𝑔 is continuous which means that  𝑔 ⟨𝑎,∞) is always positive or always 

negative. 

Now we need to show that 𝑔 is coarsely homotopic to 𝑟:ℝ+ → ℝ defined by 𝑟(𝑥) = 𝑥 or 𝑔 is coarsely 

homotopic to 𝑠:ℝ+ → ℝ defined by 𝑠(𝑥) = −𝑥. 
Without loss of generality, let 𝑔 be always positive. In other words 𝑔(𝑥) > 0 for all 𝑥 > 0. 

First, we show that 𝑟 + 𝑔 is a coarse map which is so by definition of generalised ray, and it can be shown also 

as follows; Let 𝑅 > 0 such that |𝑥 − 𝑦| < 𝑅, then there is 𝑆 > 0 such that 
|(𝑟 + 𝑔)(𝑥) − (𝑟 + 𝑔)(𝑦)| = |𝑟(𝑥) + 𝑔(𝑥) − 𝑟(𝑦) − 𝑔(𝑥)|

≤ |𝑥 − 𝑦| + |𝑔(𝑥) − 𝑔(𝑦)|

< 𝑅 + 𝑆

 

Now let 𝐵 ⊆ ℝ+ be a bounded set, then we can choose 𝑎 > 0 such that 𝐵 ⊆ [0, 𝑎]. Hence 

(𝑟 + 𝑔)−1(𝐵) = {𝑥 ∈ ℝ: 𝑟 + 𝑔(𝑥) ≤ 𝑎} ⊆ {𝑥 ∈ ℝ:𝑔(𝑥) ≤ 𝑎} = 𝑔−1[0, 𝑎] 
So the inverse image (𝑟 + 𝑔)−1(𝐵) is a bounded set. Therefore 𝑟 + 𝑔 is a coarse map. Now define a map 

𝐻: 𝐼𝑝ℝ+ → ℝ by 

𝐻(𝑠, 𝑡) =  
𝑡 + 𝑟(𝑠) 𝑡 ≤ 𝑝(𝑠)
𝑟(𝑠) + 𝑔(s) 𝑡 ≥ 𝑝(𝑠)

  

where 𝑝: ℝ+ → ℝ+ is the identity map. Then 𝐻 is a coarse homotopy between r, 𝑟 + 𝑔 by lemma (2.2.7) and 

corollary ((2.2.8)(1)) in [12] . Similarly we define a map 𝐻′: 𝐼pℝ+ → ℝ by 

𝐻′(𝑠, 𝑡) =  
𝑡 + 𝑔(𝑠) 𝑡 ≤ 𝑝(𝑠)
𝑟(𝑠) + 𝑔(𝑠) 𝑡 ≥ 𝑝(𝑠)

  

Then 𝐻′ is a coarse homotopy between 𝑔, 𝑟 + 𝑔 again by lemma (2.2.7) and corollary ((2.2.8)(1)) in [12]. 

By theorem (2.2.5) in [12] , we have 𝑟 is coarsely homotopic to 𝑔, and hence we have 𝑟 is coarsely homotopic 

to 𝑓. 

Now let 𝑔(𝑥) < 0 for all 𝑥 > 0. Similarly we show that 𝑔 is coarsely homotopic to 𝑠 such that 𝑠(𝑥) = −𝑥 

where 𝑥 ∈ ℝ+. But 𝑔 is close to 𝑓, and so they are coarsely homotopic. Therefore 𝑓 is coarsely homotopic to 𝑟 

or 𝑠, and hence 𝜋0
𝐶𝑟𝑠(ℝ) has only two elements. ■ 

Proposition 𝟏. 𝟕. 𝜋0
𝐶𝑟𝑠 ℝ2  has one element. 

To prove this proposition we need the following propositions. 

 

Proposition 1.8. Let 𝑚, 𝑛 ∈ ℕ, and let 𝑓: ℝ𝑚 → ℝ𝑛  be a coarse map. Then the map 𝑓 is close to some coarse 

Lipschitz map. 

Proof. This is a higher dimension case of proposition 1.5. ■ 

 

Proposition 1.9. Let 𝑓: ℝ+ → ℝ2 be a coarse map. Then the map 𝑓 is coarsely homotopic to the map 𝑖: ℝ+ →
ℝ2 defined by 𝑖(𝑠) = (𝑠, 0). 

Proof. By proposition (1.8), we can assume without loss of generality that 𝑓 is Lipschitz. In polar coordinates, 

we can write 𝑓 as follows: 

𝑓(𝑠) = (𝑟(𝑠), 𝜃(𝑠)) 

where the map 𝜃: ℝ+ → ℝ is bounded. In polar coordinates the map 𝑖 is defined by the formula 𝑖(𝑠) = (𝑠, 0). It 
is not hard to prove that 𝑖 is coarsely homotopic to the map 𝑗: ℝ+ → ℝ2 defined by 𝑗 𝑠 =  𝑟 𝑠 , 0 . 
Define a map 𝐻: 𝐼pℝ+ → ℝ2 by writing 
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𝐻(𝑠, 𝑡) =  
 𝑟(𝑠),

𝑡

𝑟(𝑠) + 1
 t ≤ (𝑟(𝑠) + 1)𝜃(𝑠)

(𝑟(𝑠), 𝜃(𝑠)) t ≥ (𝑟(𝑠) + 1)𝜃(𝑠)

  

where 𝑝 is the identity on ℝ+. The map 𝑠 ↦ (𝑟(𝑠) + 1)𝜃(𝑠) is a controlled map, so 𝐻 is a coarse homotopy 

between 𝑓 and 𝑗 and since coarse homotopy is transitive, so 𝑓 is coarsely homotopic to 𝑖. ■ 

Proving all the above propositions proves proposition (1.7). ■ 

Note that the above propositions presented in this section are special cases of a main result found in [10]. 

Example 1.10. Let 𝐵 be a bounded coarse space. Then there are no coarse maps ℝ+ → 𝐵. Hence 𝜋0
𝐶𝑟𝑠(𝐵) can 

not be defined. 

Theorem 1.11. For any coarse space 𝑋, 𝜋0
Crd (𝑋) is always the one point set. 

Proof. Let 𝑓:ℝ+ → 𝑋 be a controlled map (not necessarily coarse). Let 𝑝: ℝ+ → ℝ+ be the map 𝑝(𝑥) = 𝑥 for all 

𝑥 ∈ ℝ+. Define a map 𝐻: 𝐼𝑝ℝ+ → 𝑋 by 

𝐻(𝑥, 𝑡) =  
𝑓(𝑡) 𝑡 ≤ 𝑥
𝑓(𝑥) 𝑡 ≥ 𝑥

  

for all 𝑥, 𝑡 ∈ ℝ+, 0 ≤ 𝑡 ≤ 𝑝{𝑥) + 1. Then 𝐻 is a controlled map since 𝑓 is so, and 𝐻(𝑥, 0) = 𝑓(0) for all 

𝑥 ∈ ℝ+ which clearly shows that 𝑓 is controlledly homotopic to a constant map. By proposition 1.1 .11 in [12] 

then any constant maps are close, and so by example (0.18) they are controlledly homotopic. ■ 

The above theorem tells us that the set of controlled path components of any space 𝑋 has one element. 

The following proposition is induced from proposition (4.9) in [10] , and it resembles its classical analogue. 

Proposition 1.12. Let 𝑓: 𝑋 → 𝑌 be coarse map. Then there is a functorially induced homomorphism 

𝑓∗: 𝜋0
Crs 

(𝑋) → 𝜋0
Crs 

(𝑌) defined by 𝑓0[𝑕] = [𝑓 ∘ 𝑕] where 𝑕: 𝑅 → 𝑋 is a coarse map. Furthermore, if 𝑓, 𝑔 = 𝑋 →

𝑌 are coarsely homotopic maps. Then the functorial induced maps 𝑓∗, 𝑔∗: 𝜋0
Crs 

(𝑋) → 𝜋0
Crs 

(𝑌) are equal. 

Proof. Suppose that 𝑓, 𝑔: 𝑋 → 𝑌 are coarsely homotopic maps, then there is a coarse map 𝐻: 𝐼𝑝𝑋 → 𝑌 such that 

𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 𝑝(𝑥) + 1) = 𝑔(𝑥) for some controlled map 𝑝:𝑋 → 𝑅. Define maps 𝑓∗, 𝑔∗: 𝜋0
Crs 

(𝑋) →

𝜋0
Crs 

(𝑌) by 𝑓∗[𝑕] = |𝑓 ∘ 𝑕| and 𝑔∗[𝑕] = [𝑔 ∘ 𝑕] where 𝑕:𝑅 → 𝑋 is a coarse map, then 𝑓 ∘ 𝑕 and 𝑔 ∘ 𝑕 are coarse 

maps. Define a map 𝐹: 𝐼𝑝∘𝑕𝑅 → 𝑌 by 𝐹(𝑠, 𝑡) = 𝐻(𝑕(𝑠), 𝑡) then 𝐹 is a coarse map and 

𝐹(𝑠, 0) = 𝑓(𝑕(𝑠)), and 𝐹(𝑠, 𝑝(𝑕(𝑠)) + 1) = 𝑔(𝑕(𝑠)) 

Hence 𝑓 ∘ 𝑕 is coarsely homotopic to 𝑔 ∘ 𝑕 as required. ■ 

Corollary 1.13. Let 𝑓: 𝑋 → 𝑌 be a coarse homotopy equivalence, then 

 𝜋0
Crs (𝑋) =  𝜋0

Crs (𝑌)  
Proof. It is straightforward from the above proposition. ■ 

 

2. CONTROLLED AND COARAE HOMOTOPY GROUPS 

Here we define coarse homotopy groups, and in order to do that we need a notion of basepoint. The purpose of 

this article is to develop some notions of homotopy theory in the coarse category. These homotopies have to end 

eventually, but the end time will be allowed to depend on the given point in the coarse space (and to go to 

infinity as one goes to infinity). This will be measured by coarse maps 𝑝:𝑋 → 𝑅, which we call basepoint 

projection, and which will be a part of the structure for us. 

Definition 2.1. Let 𝑋 be a coarse space in the category of coarse maps, 𝑅 a generalised ray. A besepoint for 𝑋 is 

a coarse map 𝑖𝑋 : 𝑅 → 𝑋 such that 𝑝𝑋 ∘ 𝑖𝑋 = 𝑖𝑑𝑅 where 𝑝𝑋 : 𝑋 → 𝑅 is a controlled map. A coarse space equipped 

with a basepoint is termed pointed coarse space. 

If  𝑌 is another coarse space with basepoint in the category Crs, then a coarse map 𝑓: 𝑋 → 𝑌 is termed pointed 

coarse map if 𝑓 ∘ 𝑖𝑋 = 𝑖𝑌 

We term the category of pointed coarse spaces and pointed coarse maps the category of pointed coarse maps. It 

has an initial object, namely the space 𝑅, and we denote this category by PCrs. 

Similarly we define the category of pointed controlled maps, and we denote it by PCrd. 

Example 2.2. Let 𝐵 be a bounded coarse space, Then there are no coarse maps 𝑖𝐵 : 𝑅 → 𝐵, so 𝐵 has no coarse 

basepoint. 

Definition 2.3. Let 𝑋 and 𝑌 be coarse pointed spaces. Then we write [𝑋, 𝑌]𝑅
𝐶𝑟𝑠  to denote the set of coarse 

homotopy classes of pointed coarse maps from 𝑋 to 𝑌 relative to 𝑅. That is, all coarse homotopies are pointed. 

The set is equipped with a base element that is defined to be the relative coarse homotopy class of the map 

𝑋 ⟶
𝑝𝑥

𝑅 ⟶
𝑖𝛾

𝑌 

And similarly [𝑋, 𝑌]𝐴
Crd 

 is the set of controlled homotopy classes of pointed 𝑐𝑜𝑛trolled maps from 𝑋 to 𝑌 

relative to 𝑅. 

The following definition is directly inspired by the classical definition of homotopy groups, See [10]. 
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Definition 2.4. Let 𝑋 be a coarse pointed space. Let 𝑛 > 0. Then we define the 𝑛 − 𝑡𝑕 coarse homotopy group 

with respect to 𝑅 ⊔ 𝑅 to be the set of coarse homotopy classes of pointed coarse maps 

𝜋𝑛
PCrs (𝑋, 𝑅) =  (𝑅 ⊔ 𝑅)𝑛+1 , 𝑋 𝐴

Crs  

where (𝑅 ∪ 𝑅)𝑛+1 the cone of the n-sphere 𝑆𝑛  (see [4], [13]). 

And for controlled case, we have the following definition as the evident candidate of the above definition. 

Definition 2.5. Let 𝑋 be a coarse pointed space. Let 𝑛 > 0. Then we define the 𝑛 − 𝑡𝑕 controlled homotopy 

group with respect to 𝑅 ⊔ 𝑅 to be the set of controlled homotopy classes of pointed controlled mapes 

𝜋𝑛
PCrd (𝑋, 𝑅) =  (𝑅 ⊔ 𝑅)𝑛+1, 𝑋 𝐴

Crd  

Example 2.6. Let 𝐵 be a bounded coarse space. There are no coarse maps (𝑅 ⊔ 𝑅]𝑛 → 𝐵 so 𝜋𝑛
PCrd (𝐵) is not 

defined for any 𝑛 > 0.  

Proposition 2.7. Let 𝑛 ≥ 1. Then the set 𝜋𝑛
PCrd (𝑋, 𝑅) is a group. For 𝑛 ≥ 2 then the set 𝜋𝑛

PCrd  
(𝑋, 𝑅) is an 

abelain group. 

Proof. Straightforward by the statement of proposition (4.8) in [10] . ■ 

Similarly, we prove the following proposition. 

Proposition 2.8. Let 𝑛 ≥ 1. Then the set 𝜋𝑛
PCrs 

(𝑋, 𝑅) is a group. For 𝑛 ≥ 2 the set 𝜋𝑛
PCrs (𝑋, 𝑅) is an abelain 

group. ■ 

The following result is proved in [10] . 

Theorem 2.9. The coarse homotopy groups 𝜋𝑘
 PCrs ℝ𝑛+1  is isomorphic to the basic homotopy groups 𝜋𝑘 𝑆

𝑛 . ■ 

Example 2.10. 𝜋1
PCrs 

(ℝ) is isomorphic to 𝜋1 𝑆
0 , but 𝜋1 𝑆

0 = {0} so 𝜋1
PCrs (ℝ) is isomorphic to ℤ. 

Proposition 2.11. Let 𝑓; 𝑋 → 𝑌 be a coarse homotopy equivalence map. Then the functorial induced map 

𝑓∗: 𝜋𝑛
PCrs(𝑋) → 𝜋𝑛

PCrs(𝑌) is a bijection when 𝑛 = 0 and isomorphism when 𝑛 > 0. 

Proof. A direct consequence to proposition (1.12). ■ 

Theorem 2.12. For any coarse space 𝑋, 𝜋𝑛
PCrd 

(𝑋), the set of homotopy controlled classes of pointed controlled 

maps has one element. 

Proof. Similar argument to theorem (1.11). ■ 

The above theorem tells us that the controlled category is trivial from a homotopy point of view and this puts an 

end to this idea since there is no evident way to have interesting homotopy groups based on controlled maps. 

 

3. RELATIVE COARSE HOMOTOPY 

Cofibration categories carry an abstract notion of relative homotopy. There is a more intuitive version of relative 

homotopy in the quotient coarse category. In this section we define and compare these two notions.  

The following definition generalized from [1].  

Recall that 𝑄𝑐𝑟𝑠 the quotient coarse cofibration category defined and proved in [12],[13] to be The category of 

non-unital coarse spaces and closeness equivalence classes of coarse maps (between non-unital coarse spaces), 

and we denote this category by 𝑄𝑐𝑟𝑠. Denote such classes by [𝑓]: 𝑋 → 𝑌 where 𝑓 is a representative coarse 

map. A coarse map 𝑓: 𝑋 → 𝑌 is a coarse equivalence in the category of coarse maps if and only if the closeness 

equivalence class is an isomorphism in the category 𝑄𝑐𝑟𝑠. 

Definition 3.1. Let 𝑄𝑐𝑟𝑠 be the quotient coarse cofibration category. Then we define 𝑃𝑎𝑖𝑟⁡ 𝑄𝑐𝑟𝑠  to be the 

category in which objects are morphisms  𝑕𝑋 :𝑌 → 𝑋 in 𝑄crs, the morphisms are the pairs  [𝑓],  𝑓 ′  : 𝑕𝐴 → 𝑕𝑋  

such that the diagram  

 

 

 

 

 

 

 

commutes in 𝑄𝑐𝑟𝑠.  

The morphism  [𝑓],  𝑓 ′   is a coarse homotopy equivalence class if [𝑓],  𝑓 ′  are coarse homotopy equivalence 

classes, and  [𝑓],  𝑓 ′   is a coarse cofibration class if  𝑓 ′  and    𝑓 , [𝑕𝑋  : 𝐴 ∨𝐵 𝑌 → 𝑋 are coarse cofibration 

classes in 𝑄𝑐𝑟𝑠. 
We call  (𝑓],  𝑓 ′   a push out if the diagram is a pushout diagram with  𝑕𝐴 ∣: 𝐵 ↦ 𝐴 a coarse cofibration class. 

The proof of the following theorem is found in lemma ( (1.5) , chapter (II), [1] ). 

Theorem 3.2. The category Pair(Qcrs) with coarse cofibration classes and coarse homotopy equivalence classes 

as in the previous definition is a Baues cofibration category.  

An object  𝑕𝐴 : 𝐵 → 𝐴 is fibrant in 𝑃𝑎𝑖𝑟⁡(𝑄𝑐𝑟𝑠) if and only if 𝐵 and 𝐴 are fibrant in 𝑄𝑐𝑟𝑠. ■ 

The following definition comes from [1] , and [2] . 

 𝑓 ′   
𝐵 

𝐴 

 𝑕𝐴  
 𝑓  

[𝑕𝑋]   

𝑌 

𝑋 
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Definition 3.3. A based object in a cofibration category 𝐶 is a cofibrant object 𝑋 (that is, ∗→ 𝑋 is a cofibration) 

with a map 𝑝: 𝑋 →∗ from 𝑋 to the initial object ∗ termed the trivial map. This defines the trivial map 𝑖𝑈 ⋄ 𝑝: 𝑋 →
∗→ 𝑈 for all objects 𝑈 in 𝐶 representing 𝑖𝑈 ∘ 𝑝 ∈ [𝑋,𝑈] the set of maps from 𝑋 to 𝑈 relative to ∗. 
 
A map 𝑓: 𝐴 → 𝐵 between based objects is based if 𝑝𝑓 = 𝑝. 

 

Definition 3.4. We term the category of non-unital pointed coarse spaces and closeness equivalence classes of 

pointed coarse maps the pointed quotient coarse category. It has an initial object, namely the space 𝑅, and we 

denote this category by 𝑃𝑄𝑐𝑟𝑠. 

In this category for later requirement, we need to know that our basepoint inclusion in a space we consider is a 

coarse cofibration, that is, all objects are cofibrant. For this point to be  true for spaces of interest, we need to 

check at least we have the following result. 

Lemma 3.5. The inclusion 𝑖: 𝑅 ↪ 𝑅𝑛  is a coarse cofibration. 

Proof. The inclusion 𝑖 is a coarse homotopy equivalence by example (3.9) in [10]. Now by lemma 

9(2.2.13)(2)) and a similar argument to that used in proposition (3.8.2) in [12] shows that 𝑖 is a coarse 

cofibration. 

Proposition 3.6. The category 𝑃𝑄𝑐𝑟𝑠 is a Baues cofibration category. The weak equivalences are coarse 

homotopy equivalence classes relative to 𝑅, and cofibrations are pointed coarse cofibration classes. 

Proof. By definition (1.4) of chapter III in [2], the category 𝑃𝑄𝑐𝑟𝑠 is a subcategory of the category 𝑃𝑎𝑖𝑟(𝑄𝑐𝑟𝑠). 
Objects are the non-unital pointed coarse spaces, and the maps are the pointed coarse classes. Weak 

equivalences and cofibrations in the category 𝑄𝑐𝑟𝑠 yield the structure of Baues cofibration category for the 

category 𝑃𝑄𝑐𝑟𝑠. ■ 

So we have the category 𝑃𝑄𝑐𝑟𝑠 is a Baues cofibration category which has weak equivalences to be coarse 

homotopy equivalence classes relative to 𝑅 in 𝑄𝑐𝑟𝑠 and cofibrations are defined to be the pointed coarse 

cofibration classes. The cofibrant objects 𝑋 in 𝑃𝑄𝑐𝑟𝑠 are the coarse cofibration classes 𝑅 ↪ 𝑋. 

Definition 3.7. Let [𝑖]: 𝐴 → 𝑋 be a coarse cofibration class. The folding class [𝜑]: 𝑋 ∨𝐴 𝑋 → 𝑋 defined in 𝑄𝑐𝑟𝑠 

by the commutative diagram 

 

 

 

 

 

 

 

 

 

where the maps in the left square all are coarse cofibration classes. 

In our pointed quotient coarse cofibration category, the folding class [𝜑] is defined by writing [𝜑 ∘ 𝜃] = [𝑖𝑑], 
where 𝜃: 𝑋 ⊔∞ 𝑋 → 𝑋 ∨𝐴 𝑋 is the coequalizer map as defined in 4.4 in [13] . 

In general, since the folding map⁡[𝜑] is a morphism in a cofibration category 𝐶, it can be written as a 

composite: 

X ⋁A X
[i′]
  IAX

[r]
→ X 

 

where  𝑖 ′  is a coarse cofibration class, [𝑟] a coarse homotopy equivalence class. The space 𝐼𝐴𝑋 is called a 

relative cylinder for the pair (𝑋, 𝐴). 

 

Definition 3.8. Let  𝑓0 ,  𝑓1 : 𝑋 → 𝑌 be morphisms in the quotient coarse cofibration category Qcrs. Suppose we 

have a coarse cofibration class [𝑖]: 𝐴 → 𝑋 such that  𝑓0 ∘ 𝑖 =  𝑓1 ∘ 𝑖 . Then we say that the maps  𝑓0 ,  𝑓1  are 

strongly coarse homotopic relative to 𝐴 on the relative cylinder 𝐼𝐴𝑋 if there is a commutative diagram 

  

 

 

 

 

 

such that  𝐻 ∘ 𝑖0 =  𝑓0 , and  𝐻 ∘ 𝑖1 =  𝑓1  
  By proposition (2.2), chapter (II) in [1], the notion of strong coarse homotopy is independent of the choice of 

relative cylinders. The following definition found in [13]. 

𝑋  

𝐴  

𝑋  

𝑋  𝑋 ⋁𝐴 𝑋   [𝜑]  

[ f0, f1 ]   

 

H   

X ⋁A X IAX  

Y   
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Definition 3.9. Let [𝑓]: 𝑋 → 𝑌 be the closeness equivalence class of a coarse map, and 𝑝: 𝑋 → 𝑅 be a controlled 

map. Then we define the mapping cylinder of [𝑓], 𝐶𝑓  to be the push out 𝐼𝑝𝑋 ∨𝑋 𝑌 which is defined to be  

Coe𝑞([[𝑓 ], [𝑖 ]) where 𝑓  : 𝑋 → 𝐼𝑝X ⊔∞ 𝑌 and  𝑖 : 𝑋 → 𝐼𝑝X ⊔∞ 𝑌 are coarse maps. 

Thus for the quotient coarse category, by definition 3.9 and our work in [13] we have the mapping cylinder 

𝐼𝑝 𝑋 ∨𝐴 𝑋 ∨𝑋 𝑋 (defined by the coequalizer) where 𝑝:𝑋 ∨𝐴 𝑋 → 𝑅 is some controlled map. 

By definition of mapping cylinder we can choose this mapping cylinder to be our relative cylinder. We consider 

the disjoint union 𝑅 ⊔ 𝑅 to be the line (−∞, ∞) equipped with the metric coarse structure. Initially, we can not 

view the above space 𝐼𝐴𝑋 explicitly in abstract general picture, but the following example will give a picture of 

what the space look like. 

The space 𝐼𝑅(𝑅 ⊔ 𝑅). First the space (𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ⊔ 𝑅) can be viewed as follows: 

 

 

 

 

 

 

 

 

where the distance in the left hand side is infinite and in the hand right side is finite. 

Since this space is pointed, the easy way of showing a picture of the space 𝐼𝑅(𝑅 ⊔ 𝑅) is to define a coarse 

equivalence between the space (𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ⊔ 𝑅) equipped with the coequalizer coarse structure and the 

glued coarse space (we use the notation “glued” to not be confused with the quotient space defined in the 

previous section)  (𝑅 ⊔ 𝑅) ⊔∞ (𝑅 ⊔ 𝑅) /𝑅, with the later space pictured as: 

 

 

 

 

 

 

If we consider the disjoint union 𝑅 ⊔ 𝑅 to be the line (−∞, ∞) = ℝ+ ∪ ℝ - equipped with the metric coarse 

structure, where ℝ+ = {𝑥: 𝑥 ≥ 0} and ℝ+ = {𝑥: 𝑥 ≤ 0} and the ray 𝑅 to be the line ℝ+. So the glued space has 

two apart different copies of ℝ− and one copy of ℝ+ while the other space still have two apart different copies 

of ℝ - and two copies of ℝ+ within finite distance as explained in the above pictures. 

Lemma 3.10. There is a coarse equivalence between the spaces (𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ⊔ 𝑅) and the coarse space 
 (𝑅 ∪ 𝑅) ⊔∞ (𝑅 ⊔ 𝑅) /𝑅. 

Proof. : Define a map 𝑓:  (𝑅 ⊔ 𝑅) ∪∞ (𝑅 ∪ 𝑅) /𝑅 → (𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ∪ 𝑅) by writing 

𝑓 𝑥1 = 𝑥1 and 𝑓 𝑥2 = 𝑥2 

If 𝑥1 and 𝑥2 are in different copies of ℝ−, and 

𝑓(𝑥) = 𝑥 

where 𝑥 ∈ ℝ+. That is, the map 𝑓 defines the inclusion for any ∈ ℝ+ . It is clear that this map is a coarse map. 

Now define another map 𝑔: (𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ⊔ 𝑅) →  (𝑅 ⊔ 𝑅) ⊔∞ (𝑅 ⊔ 𝑅) /𝑅 by 

writing 

𝑔 𝑥1 = 𝑥1 and  𝑔 𝑥2 = 𝑥2 

if 𝑥1 and 𝑥2 are in different copies of ℝ−, and 

𝑔 𝑥1 = 𝑔 𝑥2 = 𝑥1 

If 𝑥1 and 𝑥2 are from different coples of ℝ+. This is also a coarse map which clearly sends entourages to 

entourages and the inverse image of a bounded set under the map 𝑔 restricted to any unital coarse subspace of 

(𝑅 ⊔ 𝑅) ∨𝑅 (𝑅 ⊔ 𝑅) is a bounded set. 

The composite 𝑔 ∘ 𝑓 = 𝑖𝑑 (𝑅⊔𝑅)⊔∞(𝑅⊔𝑅) /𝑅  and the composite 𝑓 ∘ 𝑔 is close to the identity 𝑖𝑑(𝑅⊔𝑅)∨𝑅(𝑅⊔𝑅) as 

follows. 𝑓 ∘ 𝑔 𝑥1 = 𝑥1 and 𝑓 ∘ 𝑔 𝑥2 = 𝑥2 if 𝑥1 and 𝑥2 are in different copies of ℝ−, so   𝑓 ∘ 𝑔 =
𝑖𝑑(𝑅⊔𝑅)∨𝑅(𝑅⊔𝑅) in this case. 𝑓 ∘ 𝑔 𝑥1 = 𝑓 𝑥2 = 𝑥2 where 𝑥1 and 𝑥2 are in different copies of ℝ+ . 

By definition of the coequalizer coarse structure, the two copies of ℝ+, which are apart, are within finite 

distance as in the picture. This implies that 𝑑 𝑓 ∘ 𝑔 𝑥1 , 𝑥1 = 𝑑 𝑥2, 𝑥1 < 𝑐 for some 𝑐 > 0, so the composite 

is close to the identity. Hence the above spaces are coarsely equivalent. The above implies that the space 

𝐼𝑅(𝑅 ⊔ 𝑅) is coarsely equivalent to the space  𝐼𝑅(𝑅 ⊔ 𝑅) GIue  (We use “Glue” for the glued coarse structure) 

which can be viewed as follows: 
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 (𝑥, 𝑡) ∈ (𝑅 ⊔ 𝑅)2: −|𝑥| − 1 ≤ 𝑡 ≤ |𝑥| + 1 /∼ such that (𝑠, 𝑡) ∼ (𝑠, −𝑡) for all 𝑠 ∈ 𝑅, −|𝑥| − 1 ≤ 𝑡 ≤ |𝑥| + 1 

which is equivalent to the following picture: 

 
Figure 1.  𝐼𝑅(𝑅 ⊔ 𝑅) GIue  

Definition 3.11. Suppose we have a closeness equivalence class [𝑖] = 𝐴 → 𝑋. A relative coarse hemotopy is a 

coarse homotopy 𝐹: 𝐼𝑝𝑋 → 𝑌 such that the map 𝑡 → 𝐹(𝑥, 𝑡) is constant if 𝑥 = 𝑔(𝑎) for any 𝑔 ∈ [𝑖] and some 

point 𝑎 ∈ 𝐴. 

If 𝐹: 𝐼𝑝𝑋 → 𝑌 is a relative coarse homotopy, the closeness equivalence classes  𝑓0 ∣: 𝑋 → 𝑌  and  𝑓1 : 𝑋 → 𝑌 are 

said to be coarsely homotopic relative to 𝐴 if representative maps 𝑓0 and 𝑓1 are defined by the formulae 

𝑓0 𝑥 = 𝐹 𝑥, 0 , 𝑓1(𝑥) = 𝐹(𝑥, 𝑝(𝑥) + 1) 

respectively. 

 

Lemma 3.12. The notion of relative coarse homotopy between closeness equivalence classes of coarse maps is 

an equivalence relation. 

Proof. : By the same method used in proof of theorem 3.2 in [13]. 

 

Lemma 3.13. Let 𝑋 be a non-unital warse space, and 𝑝:𝑋 → 𝑅 be some controlled map. Let [𝑖]: 𝐴 ↪ 𝑋 be a 

coarse cofibration class. Then the induced cless  𝑖∗ : 𝐼𝑝○𝑖𝐴 ↪ 𝐼𝑝𝑋 defined by the formula 𝑖∗(𝑎, 𝑡) = (𝑖(𝑎), 𝑡) is a 

coarse cofibration class. 

Proof. : It is enough to show that the representative map 𝑖∗ is a coarse cofibration. Let 𝑞: 𝐼𝑝𝑋 → 𝑅 be the 

controlled map defined by the formula 𝑞(𝑥, 𝑡) = 𝑝(𝑥) + 𝑡. By lemma (3.5) in [13], it suffices to show that the 

inclusion class  𝑗∗ : 𝐼𝑞∘𝑖∗ 𝐼𝑝∘𝑖𝐴 ∪  𝐼𝑝𝑋 × {0} ↪ 𝐼𝑞 𝐼𝑝𝑋  has a retraction, that is, there exists a coarse 

homotopy  𝑟∗ : 𝐼𝑞 𝐼𝑝𝑋 → 𝐼𝑞∘𝑖∗ 𝐼𝑝∘𝑖𝐴 ∪  𝐼𝑝𝑋 × {0}  such that 𝑟∗ ∘ 𝑗∗ = 𝑖𝑑𝐼𝑝 ○ 𝑖𝐴
 

Since [𝑖]: 𝐴 → 𝑋 is a coarse cofibration class, then using lemma (3.5) in [13], there is a coarse class [𝑟]: 𝐼𝑝𝑋 →

 𝐼𝑝∘𝑖𝐴 ∪ (𝑋 × {0}) such that 𝑟 ∘ 𝑗 = 𝑖𝑑
 𝐼

p o i 𝐴 ∪(𝑋×{0})
. 

We define the class  𝑟∗  by writing 𝑟∗(𝑥, 𝑡) = (𝑟(𝑥), 𝑡), then 𝑟∗ is a representative coarse map, and 𝑟∗ ∘ 𝑗∗(𝑥, 𝑡) =

𝑟∗(𝑗(𝑥), 𝑡) = (𝑟(𝑗(𝑥)), 𝑡) = (𝑥, 𝑡) for all 𝑥 ∈ 𝐼𝑞∘𝑖∗ 𝐼𝑝∘𝑖𝐴 ∪  𝐼𝑝𝑋 × {0}  as required. 

Lemma 3.14. Suppose that we have a commutative diagram 

 

 

 

 

 

 

 

 

such that the inclusions [𝑖], [𝑗] are coarse cofibration classes. Then we have a canonical coarse cofibration class 

[𝑘]: 𝐼𝑝∘𝑖𝐴 ∨𝐴 𝐵 → 𝐼𝑝𝑋 ∨𝑋 𝑌 such that the following diagram 

 

 

 

 

 𝐴 

 𝑖  

 

[𝑘]   

𝐼𝑝𝑋⋁𝑋𝑌  

𝐼𝑝∘𝑖  𝐴⋁𝐴𝐵 

Y 

B 

[𝑗]   

𝑋 

 g   

A 

 i  
 f  

[j]   

Y 

B 

X 
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commutes. 

 

 

 

Proof. : First we have the diagram 

 

 

 

 

 

 

by the factorization axiom in the quotient coarse cofibration category. Similar to the argument in the last lemma 

we need to find a retraction, that is; to show that there exists a coarse homotopy class 

 𝑕∗ : 𝐼𝑞1
 𝐼𝑝𝑋 ∨𝑋 𝑌 → 𝐼𝑞1∘𝑖

 𝐼𝑝∘𝑖𝐴 ∨𝐴 𝐵  ∪   𝐼𝑝𝑋 ∪𝑋 𝑌 ×  0   

Let 𝑞1: 𝐼𝑝𝑋 ∨𝑋 𝑌 → 𝑅 is some controlled map. By the above lemma since [𝑗] is a coarse cofibration class, we 

have the induced class  𝑖∗ : 𝐼𝑝∘𝑖𝐴 ↪ 𝐼𝑝𝑋 a coarse cofibration class. So the induced classes 

 𝑗∗
1 :  𝐼𝑞1∘𝑓

′ ∘𝑗𝐵 ∪ (𝑌 × {0}) → 𝐼𝑞1∘𝑓
′𝑌 and  𝑗∗

2 : 𝐼𝑞1∘𝑖
′ o𝑖∗

 𝐼𝑝∘𝑖𝐴 ∪  𝐼𝑝𝑋 × {0} → 𝐼𝑞1○ 𝑖 ′ 𝐼𝑝𝑋  

have retractions 

 𝑟∗
1 : 𝐼𝑞1∘𝑓

′𝑌 →  𝐼𝑞1∘𝑓
′ ∘𝑗𝐵 ∪ (𝑌 × {0}) and  𝑟∗

2 : 𝐼𝑞1○ 𝑖 ′ 𝐼𝑝𝑋 → 𝐼𝑞1∘𝑖
′ o𝑖∗

 𝐼𝑝∘𝑖𝐴 ∪  𝐼𝑝𝑋 × {0}  

where 𝑓 ′: 𝐼𝑝𝑋 → 𝐼𝑝𝑋 ∨𝑋 𝑌 and 𝑖 ′: 𝑌 → 𝐼𝑝𝑋 ∨𝑋 𝑌 are coarse maps defined by 

𝑓 ′(𝑥, 𝑡) = 𝜃(𝑥, 𝑡) for any 𝑥 ∈ 𝑋, and 𝑖 ′(𝑦) = 𝜃(𝑦) for 𝑦 ∈ 𝑌 (the map 𝜃 is the coequalizer map). 

Define the class  𝑕∗  by the formula: 

𝑕∗ 𝜃 𝑦 , 𝑡 = 𝑟∗
1 𝜃 𝑦 , 𝑡 , 𝑦 ∈ 𝑌

𝑕∗ 𝜃 𝑥, 𝑠 , 𝑡 = 𝑟∗
2 𝜃 𝑥, 𝑠 , 𝑡 , (𝑥, 𝑠) ∈ 𝐼𝑝𝑋

 

Then[h∗]is the required retraction, and we are done.■ 

 

Theorem 3.15. Let [𝑖]: 𝐴 ↪ 𝑋 be a coarse cofibration class, and suppose that we have coarse classes 
 𝑓0 ,  𝑓1 : 𝑋 → 𝑌 such that   𝑓0 ⋄ 𝑖 =∣ 𝑓1 ⋄ 𝑖 . 
Suppose that the classes  𝑓0 ,  𝑓1  are strongly coorse homotopic relative to 𝐴. then  𝑓0 ,  𝑓1  are also relatively 

coarse homotopic. 

Proof. Suppose we have a commutative diagram of the form 

 

 

 

 

 

 

 

Let 𝐼𝐴𝑋
′ be the quotient space 𝐼𝐴𝑋/∼, where the equivalence relation ∼ is defined by writing 

(𝑖(𝑎), 𝑠) ∼ (𝑖(𝑎), 𝑡) whenever −𝑝(𝑖(𝑎)) − 1 ≤ 𝑠, 𝑡 ≤ 𝑝((𝑎)) + 1 

We need to prove that the spaces 𝐼𝐴𝑋 and 𝐼𝐴𝑋
′ are coarsely homotopy equivalent.  

First, note that by the following push out diagram 

 

 

 

 

 

 

 

The obvious class 𝑋 → 𝑋 ∨𝐴 𝑋 is a coarse cofibration class. Hence the composite class 𝐴 → 𝑋 → 𝑋 ∨𝐴 𝑋 is also 

a coarse cofibration class, so by lemma 3.14 and 3.13 we have a commutative diagram 

 

 

 

 

 

𝐴 

𝑖 

 

𝑘  

𝐼𝑝𝑋⋁𝑋𝑌  Y 

B 

𝑗   

𝑋 

𝐼𝑝∘𝑖  𝐴⋁𝐴𝐵 

[ 𝑓0 , 𝑓1 ]   

 

[𝐻]   

   𝑌   

[𝑖′ ]   

   

𝐼𝐴𝑋  𝑋⋁𝐴𝑌  

𝐴 

 𝑖  
𝑖 

𝑋 

𝑋 𝑋⋁𝐴𝑌  

𝐴 

𝐼𝐴𝑋  X X 

𝐼𝑝∘𝑖𝐴  𝐴 
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where the vertical arrows are all coarse cofibration class. Now the space 𝐼𝐴𝑋
′ is obtained by a push out diagram 

 

 

 

 

 

 

 

 

 

The class 𝐼poi 𝐴 → 𝐴 is certainly a coarse homotopy equivalence class, so by proposition (3.22) in [13] the class 

𝐼𝐴𝑋 → 𝐼𝐴𝑋
′ is also a coarse homotopy equivalence class, and we are done. 
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