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Abstract:  This work is about Group Divisible Designs (GDDs) of block size four on three groups of 

different sizes n1 = 4, n2 = n and n3 = n + 1 where n ≥ 4. We first establish necessary conditions for 

the existence of the GDD using relationships between the parameters of the GDD and then prove that 

these conditions are sufficient for several families of GDDs. 
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I. Introduction 
A group  divisible  design,  GDD  (n, m, k; λ

1 , λ2
),  is a collection  of k- element subsets,  called 

blocks, of an nm,  V -set where the elements  of V   are partitioned into  m groups  of size n each;  each 

point of V   appearing in r of the b blocks; each pair of symbols from the same group appearing  in exactly 

λ
1  blocks and each pair of symbols from different groups occurring in λ

2  blocks.  Group divisible designs 

have been studied for their usefulness in statistics, designs of experiments and their important 

applications in scheduling, group testing and  construction of other types of combinatorial designs such as 

pairwise balanced designs, packings and frames [1].  A GDD is called uniform if all its groups have the 

same size, otherwise it is called non uniform. 

When GDDs are used to construct other combinatorial designs, the groups are preferred to have 

different sizes, that is, non-uniform GDDs are used to fit in various situations that may arise [1].  

Unfortunately, comparing with uniform GDDs, much less is known on the construction of non-uniform 

on e s .  One major reason is that no ap- propriate algebraic or  geometric structures have been found for 

the construction.   Therefore, t h e  construction  of non-uniform G D D s  is still a challenging problem. 
Non-uniform GDDs of block size three have been studied in [2, 3, 4, 5, 6, 7] while those of 

block size four have been studied o n l y  for n
1 = 1 or 2 in [8] and n1 = 3 in [9]. It is therefore still 

reasonable to focus on group divisible designs of block size four, solving the problem when the design has 

three gr oups of different sizes, n
1   = 4, n

2 = n and n3 = n + 1 where n ≥ 4. 

 

Definition 1.1.  [10] A balanced incomplete  block design, (V, B) is a finite non empty  multiset, B  of b 

nonempty  subsets  (called  blocks) of size k of a V -set  such that each element (point) in V   appears  in 
exactly  r of the blocks, every pair of distinct  elements  of V  occurs in λ blocks and 2 ≤ k < v. 

 

Lemma 1.1.  [11] In a (v, b, r, k, λ)-BIBD, the parameters satisfy the necessary condi tions; 

 

(i)  vr = bk 

(ii)  λ (v − 1) = r (k − 1) 

 

Theorem 1.2.   [12] Let v be a positive integer.   Then the necessary and sufficient conditions for 

existence of a (v, 4, λ)-BIBD are as follows; 

(i) If λ ≡ 1, 5 (mod 6), then v = 1, 4 (mod 12) 

(ii) If λ ≡ 2, 4 (mod 6), then v = 1 (mod 3) 
( i i i )  If λ ≡ 3 (mod 6), then v = 0, 1 (mod 4)   

(iv) If λ ≡ 0 (mod 6), then v ≥ 4 

Definition 1.2.  [5] A group divisible design, GDD (v = n
1 +n

2 +· · ·+ nm , k; λ
1 , λ2

)  is a collection  of 

k-element  subsets  (called  blocks) of a V -set of symbols where the V -set is partitioned into m groups of 

sizes n
1 , n2

, ..., nm ; each  pair  of symbols  from  the  same  group  appearing in exactly  λ1   blocks and  
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each pair  of symbols  from different groups occurring in λ
2  blocks . 

 

Example 1.3.  A GDD (3, 3, 4, 4; 2, 2) with groups G1 = {1, 2, 3}, G2 = {4, 5, 6} and G3 = {7, 8, 9, 10} 

has r1 = r2 = r3 = 6 and b = 15.  Its blocks are; 

 

1 1 1 1 1 1 2 2 2 2 3 3 4 4 5 

2 2 3 3 4 6 3 3 4 4 5 6 5 5 6 

4 7 5 8 7 8 8 5 7 6 8 7 7 9 7 

6 9 6 10 9 9 9 9 10 10 10 8 10 10 8 

 

II. GDD (4, n, n + 1, 4; λ
1
, λ

2
) 

A group divisible design GDD (4, n, n+1, 4; λ1, λ2) is a GDD with three groups of different size n
1 

= 4, n
2 = n and n

3 = n + 1 where first associate pairs occur in λ
1 blocks, and second associate pairs 

occur in λ
2 blocks.  We establish necessary conditions and prove that they are sufficient for the existence 

of this GDD. 

Difficulties arise in the construction of GDDs when the number of groups is smaller than the 

block size [13]. A case in point is when the block size is four and the number of groups is three.  Earlier 

results on such constructions include those of Clatworthy [14] who in 1973 listed only 11 GDDs with 

three groups and block size four up to r = 10. 

Henson and Sarvate in [15] generalized one of these designs, namely; GDD (8, 3, 4; 2, 1) and 

proved that the necessary conditions are sufficient for the existence of the GDD. They consequently 

con struct ed  a new family of group divisible designs (6s + 2, 3, 4; 2, 1) using mutually orthogonal latin 

squares (MOLS) of order 3s+1 and (3s+1,4,2)-BIBDs for all positive integers, s. 
The problem of existence of group divisible designs of block size 4 on  three  groups  can  be  

answered  using  results  in  [16] where  the authors  show that the  necessary  conditions  are sufficient for 

the  existence  of odd  and  even  GDD  (n, 3, 4; λ
1 , λ2

)  for any  n,  and  for all mixed  designs except  for 

the  minimal  index  case  for group  size 5t where (t ≥ 1).  These GDDs were also studied by Zhu and 

Ge in [13] who completed the undetermined families of mixed GDDs using two constructions based on 

idempotent self-orthogonal l a t in  squares and skew room squares. 
In all these studies, the authors considered GDDs of block size four on three groups. However, 

they did not take care of the cases where the three groups are of different sizes. 

The existence problem of GDDs when the three groups have different sizes has been studied 

r ecent ly.  Hurd  and Sarvate  in [3] found all ordered  pairs  (n, λ)  of positive  integers  such  that a  

GDD  (v  =1 + 1 + n, 3; 1, λ)  exists  and  all ordered  triples  (n, λ
1 , λ2

)  of positive integers  with  λ
1  < λ

2  

such that a GDD (v = 1 + 2 + n, 3; λ
1
, λ

2
)  exists.  They  later  in [6] found all ordered  triples  (n, λ

1
, λ

2 ) 

of positive integers,  with  λ
1 > λ2 , such that a GDD  (v = 1 + 2 + n, 3; λ

1
, λ

2 
) exists and completely 

solved the problem when k = 3 on three  groups of sizes (n, 2, 1) for any two indices, λ
1  and  λ

2  with  λ
1  

> λ
2  for any n.  They show that the necessary conditions are sufficient for the existence of GDD (n, 2, 1; 

λ
1
, λ

2
) for which the indices are both even or else both odd and that if n is odd, the indices must be 

both even.  The same authors i n  [7] found all ordered pairs (n, λ) of positive integers such that a GDD (v 

= 1 + 1 + n, 3; λ, 1) exists. 

Chaiyasena, et al in [2] published a paper in the direction of solving the problem of determining 

the existence of a GDD (v = n
1 + n

2 + n
3
, 3, λ

1
, λ

2
) for small values of n

1
, n

2
, n

3
.  In particular, for each n 

= {2, 3, 4, 5, 6} they found all ordered pairs (λ1, λ2) of positive integers such that a GDD (v = 1 + 2 + n, 

3, 3, λ
1
, λ

2
) exists. 

Lapchinda, et al in [4] found all ordered triples  (n, λ
1
, λ

2  ) of positive integers,  with λ
1  < λ

2  , 

such that a GDD (v = 1 + n + n, 3; λ
1
, λ

2 ) exists  and  later  in [5] considered  the  problem  of determining 

all ordered triples  (n, λ
1
, λ

2
)  of positive  integers,  with λ

1  ≤ λ
2  , such that a GDD (v = 1 + n + n, 3; λ

1 , 

λ
2
) exists by using graph decomposition. They prove that a GDD (v = 1 + n + n, 3; λ

1
, λ

2
) exists if and 

only if a (2n + 1, 3, λ)-BIBD exists.  Whereas the authors in these studies worked on GDDs on three 

groups of different sizes, they only gave solutions for GDDs of block size three and did not consider the 
case of block size four. 

GDDs of block size four on three groups of different sizes have been studied in very few papers 

such as in [8] where necessary conditions are proved  to be sufficient for the  existence  of GDD(1, n, n + 1, 
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4; λ1, λ2 ) whenever  λ
1 ≥ λ

2   and GDD(2, n, n + 1, 4; λ
1 , λ2

)  while  in  [9], the authors   proved  that the  

necessary  conditions  are  sufficient for  the existence of GDD(3, n, n + 1, 4; λ
1 , λ2

).  Therefore, the next 

step is to study a GDD (n
1, n2

, n
3
, 4; λ

1, λ2
) where n

1 = 4, n
2 = n and n

3 = n+1 with n ≥ 4. 

 

III. Results on existence of GDD (4, n, n+1, 4; λ
1
, λ

2
) 

Modern design theory includes many existence as well as non-existence results. Thus, o n e  

fundamental question o n e  may ask  about G D D  (4, n, n + 1, 4; λ
1
, λ

2
) under  study i s : “Does such a 

GDD exist?”   In this section we establish r esults for the existence of the GDD. 

 

Parameters of GDD (4, n, n + 1, 4; λ
1
, λ

2
): For GDDs with block size four and three groups of 

different sizes,  4, n and n + 1, the replication numbers, r i = 1, 2, 3 are; from   =
            

 
     

               

 
 and    

           

 
.  The GDD has (n 2+6)λ1 first associate pairs and (n2+9n+4) λ2 

second associate pairs. 

 

The Necessary Conditions for GDD (4, n, n+1, 4; λ
1
, λ

2
): One of the main items while doing 

combinatorial design constructions is to find necessary conditions for a particular design.   In this 

subsection, we establish the necessary conditions for a GDD (4, n, n +1, 4; λ
1
, λ

2
) and prove that they are 

sufficient. 

 

Theorem 3.1.  If a GDD (4, n, n + 1, 4; λ
1
, λ

2) exists, then; 

i) 3λ
1 + (2n + 1) λ

2 ≡  0 (mod 3) and (2n + 1) λ
2 ≡  0 (mod 3). 

ii) (n − 1) λ
1 + (n + 5) λ

2 ≡  0 (mod 3). 

iii) nλ
1 + (n + 4) λ

2 ≡  0 (mod 3). 

iv) (n2+6) λ
1 
+ (n2+ 9n + 4) λ

2 ≡ 0 (mod 6). 

Proof.   By counting the replication n u m be r s  r i for elements of the i
th group, 

 

i) The replication number  for elements in G1 is obtained from   =
            

 
.  Since r

1 is an 

integer, then 3λ
1 + (2n + 1) λ

2 
≡ 0 (mod 3).  Again since 3|3λ1, it remains that 3| (2n + 1) λ2, that is (2n 

+ 1) λ
2 ≡  0 (mod 3). 

ii) The replication number  for elements in G
2 is obtained from    

               

 
.  Since r2 is an 

integer, then (n − 1) λ1 + (n +5) λ2 ≡ 0 (mod 3). 

iii) The replication number  for elements in G
3 is obtained from    

           

 
.  Since r

3 is an 

integer, t h e n  n λ
1 + (n + 4) λ

2   ≡ 0 (mod 3). 

iv) The number of blocks of the GDD is obtained from b = 
                    

 
. Therefore (n2 + 6) λ1 + 

(n2 + 9n + 4) λ2 ≡ 0 (mod 6). 

 

These necessary conditions on b and ri determine possibilities for the parameter n, and the indices λ
1 

and λ
2 which are summarized in Table 1 below where “None” means that the design does not exist for 

any value of n. 

 

Table 1: The restrictions on n for GDD (4, n, n + 1, 4; λ1, λ2) 

λ
1 /λ2 0 1 2 3 4 5 6 

0 None None None Any n None None Any n 

1 None n   ≡ 4 
(mod 6) 

None None None None none 

2 None None n   ≡ 1 
(mod 3) 

None None None None 

3 Even n None None Even 

N 

None None Even 

n 



Group Divisible Design (4, n, n + 1, 4; λ1, λ2), for n ≥ 4 

DOI: 10.9790/5728-1702035258                                www.iosrjournals.org                                             55 | Page 

4 None n   ≡ 1 
(mod 3) 

None None n   ≡ 1 
(mod 3) 

None None 

5 None None None None None n   ≡ 4 
(mod 6) 

None 

6 Any n None None Any n None None Any n 

 

Observations from this table show that there are other necessary conditions as shown below. 

 

1.  GDD (4, n, n + 1, 4; λ
1
, λ

2
) when λ

1
, λ

2 ≡ 0 (mod 6). 

Example 3.1.  A GDD (4, 5, 6, 4; 12, 6) exists with r
1 = 34, r

2 = 36, r
3 = 38 and b = 136.   The 

groups of the GDD are G
1 = {1, 2, 3, 4}, G2 = {5, 6, 7, 8, 9} and G3 = {a, b, c, d, e, f}.   The design can 

be constructed taking the 36 blocks of a BIBD (9, 4, 6) on G
1 ∪ G

2 add 45 blocks of a BIBD (10, 4, 6) on 

G
1 ∪ G

3 together with the 55 blocks of a BIBD (11, 4, 6) on G
2 ∪ G

3
. 

 

Theorem 3.2.  A GDD (4, n, n + 1, 4; 2λ, λ) exists if a BIBD (4 + n, 4, λ), a BIBD (5 + n, 4, λ) and a 

BIBD (2n + 1, 4, λ) exist.  It is well known that a BIBD (n, 4, 6) exists for n ≥ 4 and thus a GDD (4, n, 

n+1, 4; 12, 6) will always exist.  Hence a GDD (4, n, n+1, 4; 12s, 6s) always exists for all positive integers, 

s. 

 

In general, a GDD (4, 5t, 5t + 1, 4; 12t, 6t) exists with r
1 = 20t2 + 14t, r2 = 30t2 + 6t, r3 = 30t2 + 8t 

and b = 25t3 + 95t2 + 16t where t is a positive integer. 

 

2.  GDD (4, n, n + 1, 4; λ
1
, λ

2
) when λ

1 = λ
2
. 

A GDD (4, n, n + 1, 4; 0, λ
2
) does not exist.  This is because there are only three groups and the block size 

is four.  So, each block must contain at least a pair from the same group (λ1 ≥ 1) to complete the block 

size.   A GDD (4, n, n + 1, 4; λ
1
, 0) exists as a (2n + 5, 4, λ

1
)-BIBD for particular values of n and λ

1
.  

So, a GDD (4, n, n + 1, 4; 0, 0) does not exist. 

 

Theorem 3.3.  A GDD (4, n, n + 1, 4; λ, λ) exists if and only if a (2n + 5, 4, λ)-BIBD exists. 

 

Example 3.2.  A GDD (4,10,11,4;1,1) exists as a (25,4,1)-BIBD. 

The GDD exists with G1 = {1, 2, 3, 4}, G2 = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and G3 = {a, b, c, d, e, f, g, h, i, j, 

k}.  The respective replication numbers are r1 = r2 = r3 = 8 and the number of blocks is b = 50. The 

blocks of the GDD are those of the BIBD. They are: 

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 

2 4 5 6 7 8 9 10 4 5 6 7 8 9 11 4 5 6 

3 b 12 13 14 c e 11 14 C 10 f 13 b 12 11 a d 

k j g h a d f i i h e g a d j f j i 

 

3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 

7 8 9 10 5 7 8 10 13 7 8 11 14 7 9 12 a 

b e 13 12 6 12 9 a c 9 10 13 d 8 11 14 b 

c g 14 h k e h d g I f b e j g c f 

 

 

7 7 8 8 9 9 10 11 12 13 14 a b c d 

10 11 11 12 10 12 14 a 13 e f g e f g 

13 d 14 b c a b c d i h h h i j 

k h k i j k g e f j j i k k k 
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To generalize, (4, 10t, 10t+1, 4; t, t) exists for all positive integers, t except for t ≡ 2 (mod 3 ). 

3.  GDD (4, n, n + 1, 4; λ
1
, λ

2
) when λ

1 < λ
2
. 

 

Theorem 3.4.   A GDD (4, n, n + 1, 4; λ
1   < λ

2
, λ

2
) exists only when; 

i) λ
1 ≡ 0 (mod 3) and λ

2 ≡ 0 (mod 6). 

ii) λ
1 ≡ 2 (mod 3) and λ

2 ≡ 2 (mod 6). 

Example 3.3.  A GDD (4, 4, 5, 4; 3, 6) exists with r
1 = r

2 = 21, r
3 = 20 and 67 blocks. 

 

In general, GDD (4, 4t, 4t + 1, 4; 3t, 6t) exists for all positive integers, t. 

Example 3.4.  A GDD (4, 4, 5, 4; 2t, 8t) exists with r
1 = r

2 = 26, r
3 = 24 and b = 93 blocks.  

In fact, a GDD (4, 4t, 4t+1, 4; t, t) exists for all positive integral values of t except t ≡ 2 (mod 3 ). 

 

4. GDD (4, n, n + 1, 4; λ
1
, λ

2
) when λ

1 > λ
2
. 

 

Theorem 3.5.   A GDD (4, n, n + 1, 4; λ
1   > λ

2
, λ

2
) exists when λ1, λ2 ≡ 0, 1, 2 (mod 3). 

Example 3.5.   A GDD (4, 5, 6, 4; 6, 3) exists with r
1 = 17, r

2 = 18, r
3 = 19 and 68 blocks. 

 

 

Example 3.6.   A GDD (4, 4, 5, 4; 4, 1) exists.   The groups of the GDD are:  G
1 = {1, 2, 3, 4}, G

2 = {5, 

6, 7, 8} and G
3 = {a, b, c, d, e} with r1 = r2 = 7, r3 = 8 and 24 blocks. 

 

A GDD (4, 4t, 4t + 1, 4; 4t, t) exists for all positive integers, t except when t ≡ 2 (mod 3).    

 

Example 3.7.   A GDD (4, 7, 8, 4; 8, 2) exists with r
1 = 18, r

2 = 24, r
3 = 26 and 112 blocks. 

In fact, a GDD (4, 7t, 7t+1, 4; 8t, 2t) exists for all positive integral values of t except t ≡ 2 (mod 3 ). 

 

Theorem 3.6.  Let a GDD (4, n, n + 1, 4; λ
1
, λ

2
) be a design. 

i) If n is even, there is no restriction on the parity of λ
1 and λ

2
. 

ii) If n is odd, λ
1 must be even. 

Proof.  The number of blocks, b is given by b= 
                    

 
. 

 

i) Let n = 4t where t ≥ 1 is an integer. Then b =  
                         

 
 which implies that λ1 and 

λ2 can be of any parity. 

i) Let n = 4t+1 where t ≥ 1 is an integer. Then b =  
                             

 
 which implies that 

λ1 must be even. 
 

Example 3.8.   A GDD (4,4,5,4:1,1) exists with n-even, and both λ
1 

and λ2 odd.  The groups of the GDD 

are:  G1   = {1, 2, 3, 4}, G2   = {5, 6, 7, 8} and G
3 = {a, b, c, d, e} with r

1 = r
2 = r

3 = 4 and b = 13. The 

blocks are: 

 

1 1 1 1 2 2 2 3 3 4 4 5 6 

2 3 5 7 3 6 8 4 7 5 8 a b 

4 a 6 c 5 7 d 6 8 7 A b c 

b e 8 d C a e d B e C d e 

 

In general, a GDD (4,4t,4t+1,4;t,t) exists for all positive integers, t except t ≡ 2 (mod 3 ). 

 

Example 3.9.  A GDD(4, 6, 7, 4; 6, 3) with r
1 = 19, r

2 = 21, r
3 = 22 and b = 74, a GDD (4, 4, 5, 4; 12, 

6) with r
1 = 30, r

2 = 26, r
3 = 32 and b = 116, and  a GDD (4,  4, 5, 4; 3, 6) of Example  3.3 all exist 

with  n even and no restriction on the parity  of λ
1  and λ

2
. 

 

In fact for all positive integral values of t, a GDD (4, 6t, 6t+1, 4; 6t, 3t) with  r1  = 12t2 + 7t, r2  = 18t2 
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+ 3t, r3  = 18t2 + 4t and  b = 39t3 + 27t2 + 8t, and  a GDD (4, 4t, 4t + 1, 4; 12t, 6t) with  r1  = 

16t2 + 14t, r2 = 20t2 + 6t, r3 = 24t2 + 8t and b = 64t3 + 36t2 + 16t all exist. 

 

Example 3.10. A GDD (4, 5, 6, 4; 6, 3) of Example 3.5 exists with n odd and λ1 only even. 

 

Theorem 3.7.   If a GDD (4, n, n + 1, 4:  λ
1
, λ

2
) exists, then b ≥ max (2ri − λ1, 2ri − λ2). 

 

Proof.   Consider any first associate pair, say a and b from any group Gi where i = 1, 2, 3.   This pair must 

appear in the design coming together λ
1   times.   There are ri blocks containing each of a and b and ri − 

λ1 blocks containing only one of them.  Thus, the number of blocks must be at least 2r
i − λ1   to 

accommodate the pair ri times. Similarly, consider any second associate pair, say a and c from two 

different groups G
i .   As both of them come together λ

2   times, the number of blocks must be at least 2r
i 

− λ
2 to accommodate the pair r

i times in the design. 

 

Example 3.11. Consider a GDD (4,5,6,4;6,3) of Example 3.5. In this design, r
1 = 17, r

2 = 18, r
3 = 19 

and b = 68. 

Max [2r
1 −λ

1
, 2r

1 −λ
2
] = max [2(17) −6 = 28, 2(17) −3 = 31] = 31 < 68  

Max [2r
2 −λ

1, 2r
2 −λ

2
] = max [2(18) −6 = 30, 2(18) −3 = 33] = 33 < 68 

Max [2r3 −λ1, 2r3 −λ2] = max [2(19) −6 = 32, 2(19) −3 = 35] = 35 < 68 

 

Theorem 3.8.   If a GDD (4, n, n + 1, 4: λ1, λ2) exists, then λ
1   ≥ 

           

      
. 

 

Proof.   The design has three groups of size n
i ≥ 4, the block size. Therefore, each block must have at 

least one first associate pair.  This means that the total number of first associate pairs is at least equal to 

the number of blocks.  Since there are (n2 + 6) λ
1 first associate pairs and 

                    

 
 blocks,  

 

(n2+6) λ
1 ≥ 

                    

 
 

 

5(n2+6)λ
1 ≥ (n2+9n+4) ) λ2 

 

            λ
1 ≥ 

           

      
. 

 

2                          2 

Corollary 1.  If a GDD (4, n, n + 1, 4; λ
1
, λ

2
) exists, then b ≤ (n2 +6) λ1. 

 

Proof.   The design has b blocks and (n2 + 6) λ
1   first associate pairs. The total n um ber  of blocks cannot 

exceed the total number of first associate pairs.  Thus b ≤ (n2 + 6) λ
1
. 

 

 

Example 3.14. A GDD (4,5,6,4;12,6) of Example 3.1 exists with 372 first associates and 136 blocks. 
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