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Abstract: This paper aims to analyse the dynamical behaviour of eco-epidemiological prey predator 

population model (SI) giving stage structure for the predator and categorizing the prey as susceptible and 

infectious entity. The adult predator follows Michaelis Menten Holling type II response function while the prey 

takes refuge. The disease is transmitted following linear incidence rate. Existence, uniqueness and boundedness 

of the solution for the model are investigated. The equilibrium points are found out and the local stability 
analysis is carried out using Routh-Hurwitz criterion. The analytical results are verified through numerical 

simulation with help of MATLAB. 
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I. Introduction 
In all ecological systems numerous living genera rely on one another for their continual subsistence. 

The reliance is for food, protection, locomotion, reproduction, etc. The interdependency among them has been 

explored in the past from the period of Volterra (1920) to interpret their dynamical behaviors. The researchers 

and mathematicians considered differential and difference equations conducive in modeling the interrelationship 

and interactions amidst various species.    

The interrelationship among lives has a significant role in the food web. The prey-predator model 

associated with the food web expresses one such interdependency of the predator for food. In the recent past, 

this type of interrelationship is being studied by considering many key factors like stage structure for prey and 

for predator, different types of predation adopted by the predator and time delay due to gestation. The factors 

also included camouflage provided by nature to the prey, group defense adopted by the prey and anti-predator 
attributes of the prey to predation. The species might move from one place to another in search of forage, water, 

shelter leading to diffusion which also has been incorporated in studying these models. Incorporating all the 

dependency components simultaneously in the model systems developed have increased the complexity in 

acquiring solution to a particular problem.  Hence the components are introduced and studied in a sequential 

manner by the researchers to arrive at the most appropriate solution. 

The extinction of certain species has been caused by factors like environmental pollution, spread of 

deadly disease, over predation, over population and harvesting.  Therefore, it is equally important to study the 

eco-epidemiological model to analyse and observe the effect of various diseases on the densities of these 

population model. The different disease models include SI, SIS, SEIR… and the disease transmission rate could 

be linear, bilinear, non-linear, Beddington DeAngelis model. 

Chauhan and Misra in 2012, considered single species population model and showed that the pollution 

could cause adverse effect on the species leading to extinction whereas under the pollution free environment the 
susceptible population can never vanish [3]. Lotka-Volterra model with infected prey and stage structured 

predator was studied by Wuhaib and Abu-Hassan. Routh Hurwitz criterion was employed to study the local 

stability behavior. It was concluded through numerical simulation that stage structure affected the spread of 

disease and the disease did not become epidemic [16]. Dai et el. in 2015 observed Hopf bifurcation and global 

periodic solution including two unequal delays in the prey predator population model. Normal form method and 

Center Manifold theory had been used to show the occurrence of Hopf bifurcation [4]. 

An eco-epidemiological population model with infected prey and Lotka Volterra functional response 

was researched for its global stability through Lyapunov function. Here it was also assumed that a constant 

proportion of virus was also released into the environment [13]. The predator was stage structured and followed 

Holling Type II functional response. The predator fed on healthy prey only. It was shown that there was a 

possibility of occurrence of Hopf bifurcation when the intraspecific competition among the species crossed a 



Local Stability Analysis of Epidemiological Stage Structured Predator-Prey Model with .. 

DOI: 10.9790/5728-1703020111                                www.iosrjournals.org                                             2 | Page 

threshold value [11]. The stability analysis was investigated and local bifurcations were studied at each 

equilibrium point for a refuge stage structure prey density [14].   

SIcIR model with Beddington DeAngelis type of incidence rate and saturated treatment rate were 

considered simultaneously. The Beddington DeAngelis type incidence rate took into consideration both the 

saturation factor and the influence of infectious individuals crowding. Global stability analysis was studied with 

the help of Lyapunov method. Bifurcation analysis have been carried out using Sotomayor’s theorem [12]. 

Banerjee et al. had made a detailed and elaborated analysis of the effect of predator feeding on healthy and 
infected prey simultaneously [2].    

Persistence and dynamical stabilities were examined by Abdulghafour et al. for the population model 

where the interaction was between the refuging prey that were susceptible & infected and the predator [1]. Local 

bifurcations were established for the epidemic population model with prey refuging. Conditions for the 

existence of Hopf bifurcation at a parameter value a13 was studied [5]. Majeed considered the model where both 

healthy and infected prey were consumed by the predator following Holling Type II predation. Existence, 

uniqueness, local and global stability qualities were discussed at all the equilibrium points. The transmission of 

disease followed linear incidence rate. The effect of various parameters was thoroughly studied by varying the 

parameters and thus conclusions were drawn [8]. It has been shown that refuging factor had a major impact on 

each population and there arose a periodic oscillation when the refuge factor lies within a range [9]. Xiao et al. 

proposed and studied a model considering gestation delay in the predator. Persistence of the model had been 
investigated along with local and global stability analysis [17]. Conditions were derived for the system to be 

stable both locally and globally with prey refuging and infected which were consumed by the mature predators 

[6].  Predator prey model with stage structure on both prey and predator with two different types of functional 

responses Holling Type II and IV was analysed for its local stability and Hopf bifurcation [10].  

Sambath and Balachandran introduced and explored the impact of cross diffusion with prey refuge and 

Michaelis Menten type predation [7]. Stage structure has been introduced for the predator there in and the 

stability analysis has been done [15]. The goal of this paper is to study the local stability analysis of the predator 

prey model where the prey has been infected following [15]. 

This article is structured as follows. In section 2 the model system is presented and rescaled. In section 

2 boundedness has been verified. In section 3 various equilibrium points are determined and the conditions for 

their existence are arrived. In section 4 local dynamical behaviour at all the equilibrium points are analysed. In 

section 5 numerical simulations using matlab are performed to demonstrate the behaviour of the system at the 
equilibrium points. 

 

II. Model Formulation 
The epidemiological prey-predator model system considered for study is as follows: 
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The system includes prey species U , predator species V , involving a prey refuge [0 ,1)   . The 

epidemic divides the prey population as susceptible prey 
s

U and infected prey 
I

U  with a disease transmission 

rate  within the prey species. Only the susceptible prey population is capable of producing offspring and 

contributes to the growth of the prey population with a growth rate R with environmental carrying capacity K , 

but still the infected prey competes for food and habitat with the vulnerable prey. The predator population is 

stage structured as juvenile predator 
1

V  and adult predator 
2

V . Here 
1 2 3
,  ,  d d d represents the mortality rate of 

infected prey, juvenile predator and mature predator respectively. Also, it is assumed that only adult predator 

attacks the healthy prey with Michaelis Menten Holling type II predation and the juvenile predator depends on 

adults for their nourishment. 
1

A is the attack rate of the predator, 
1

e is the conversion coefficiency of the prey 

biomass and 
1

[0 ,1)n  ,  the portion of food uptaken and 
1

K  is predators benefit from cofeeding.  

After rescaling the system gets the new form as 
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where  
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with 
1 2

(0 ) 0 ,  (0 ) 0 ,  (0 ) 0 ,  (0 ) 0
s i

u u v v    . The functions defined in (2.2) are continuous and have 

continuous partial derivatives on the following four dimensional space  
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Therefore, these functions are Lipschitzian on 4
R  and hence the solutions exist for the system (2.2) and is 

unique.  

 

III. Boundedness 

Theorem 3.1: The solutions 
1 2

( , , , )
s I

u u v v  of the system (2.2) are uniformly bounded. 

Proof: Assume 
1 2

( ( ), ( ), ( ), ( ))
s I

u t u t v t v t  be any solution of the system (2.2) with non-negative initial values 

4
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
  Then from the first equation of the system (2.2) we have, (1 )

s s s
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utilizing comparison theorem from differential inequality, we get  
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s

t
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From the biological perspective, the conversion rate constant of prey biomass into predator population cannot 

exceed the maximum predation rate constant we have 
4 7 2

b b b  . So  

 3 6 8
( ) 2  w h ere  M m in 1, , ,G t M G b b b   . 

Solving the above differential inequality with the initial value 
0

(0 )G G , we arrive 

0
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 As 
2

,  0 ( ) .t G t
M

     As a consequence, all the solutions of the system (2.2) are 

uniformly bounded. 

  

IV. Existence Of Equilibrium Points 
 It is found that the system has at most five equilibrium points. 

1. The trivial equilibrium point 
0

(0 , 0 , 0 , 0 )E always exist. 

2. The axial equilibrium point
1
(1, 0 , 0 , 0 )E  also exists. 

3. The predator free equilibrium point 
2

( , , 0 , 0 )
s I

E u u  exists under the condition 

 
1 3

b b  (4.1) 

where 
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4. The infection free equilibrium point 
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S as defined in (4.4). 

 

V. Local Stability Analysis 
In this section, the Variational matrix is computed and local stability analysis is accomplished at each of the 

equilibrium points by determining the eigen values at these points. 

The Variational matrix at any point 
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5.1 Local stability analysis at the zero-equilibrium point. 

Theorem 5.1: The equilibrium point 
0

(0 , 0 , 0 , 0 )E  is unstable. 

Proof: Evaluating the Variational matrix at the point 
0

(0 , 0 , 0 , 0 )E we have 
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The eigen values are 
1 2

3 5 6 8
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Since one of the eigen values is positive the equilibrium point 
0

(0 , 0 , 0 , 0 )E is unstable. Hence the theorem. 
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5.2 Local stability analysis at 
1
(1, 0 , 0 , 0 )E . 

Theorem 5.2: The equilibrium point 
1
(1, 0 , 0 , 0 )E is locally asymptotically stable provided the following 

conditions are satisfied.  
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Proof: The Variational matrix at the point 
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The characteristic equation at 
1

E is given by 
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It is obvious, by Routh Hurwitz criterion all the eigen values have negative real parts if it satisfies (5.3), (5.4) 

and (5.5). Hence the theorem. 

 

5.3 Local stability analysis at 
2

( , , 0 , 0 )
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Theorem 5.3: The equilibrium point 
2
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E u u  is locally asymptotically stable provided it satisfies 

condition (5.4) and (5.5) in addition to the condition (4.1). 
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By Routh Hurwitz criterion all the eigen values have negative real parts when (5.4), (5.5) and (4.1) is true. 

Hence the theorem 

 

5.4 Local stability analysis at 
3 1 2

( , 0 , , )
s

E u v v . 

Theorem 5.4: The equilibrium point 
3 1 2

( , 0 , , )
s

E u v v is locally asymptotically stable provided the following 

conditions are satisfied.  

3

1

s

b
u

b
  ;           

2

1 1 2

2

1 2

2 1

(1 )
s

s

b K v
u

u K v

 

  
 

  ;     
2

7

8 2

1 2

(1 )

(1 )

s

s

b u
b

u K v




  
 

    ;   
3 3 4 4 4 3 3 4

a a a a  

 1 4 4 1 1 1 4 4 3 1 4 3
0a a a a a a      

Proof: The Variational matrix at the point 
3 1 2

( , 0 , , )
s

E u v v  is given by 

22

21 1 2

12 2

1 2 1 2

1 3

22

44 1 2

5 62 2

1 2 1 2

2

7 1 2

2

1 2

(1 )
1 2 (1 ) 0

(1 ) (1 )

0 0 0

(1 )
0 ( )

(1 ) (1 )

(1 )

s

s S

s s

s

s

s s

s

b ub K v
u b u

u K v u K v

b u b

b ub K vJ
b b

u K v u K v

b K v

u K v


    

      
   




 

      
   

  
 

2

7

5 82

1 2

(1 )
0

(1 )

s

s

b u
b b

u K v

 

 

 

 

 

 

 

 

 

 


 
   

  

 (5.10) 

 

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

=

a a a a

a a a a

a a a a

a a a a

 

 

 

 

 

 

 (5.11) 

The characteristic equation at 
3 1 2

( , 0 , , )
s

E u v v  is given by 

   
3 2

2 2 1 2 3
0a R R R          (5.12) 

 where 

 1 1 1 2 2 3 3 4 4
R a a a a      

2 11 33 44 33 44 34 43 41 14
( )R a a a a a a a a a      

3 1 1 3 3 4 4 3 4 4 3 1 4 3 1 4 3 3 3 4 1
( ) ( )R a a a a a a a a a a      

From (5.12)  2 2
0a   and 

 
3 2

1 2 3
0R R R        (5.13) 

 2 2
0a    gives 

2 2
I

u
a   < 0 when 3

1

s

b
u

b
 . 

However, for the equation  
3 2

1 2 3
0R R R      by Routh Hurwitz Criterion all the eigen values have 

negative real parts if and only if 
1 3 1 2 3

0,  0  an d  0R R R R R       
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1
0R   provided that  

2

1 1 2

2

1 2

2 1

(1 )
s

s

b K v
u

u K v

 

  
 

  (5.14) 

 and  
2

7

8 2

1 2

(1 )

(1 )

s

s

b u
b

u K v




  
 

  (5.15) 

3
0R   provided that 

3 3 4 4 4 3 3 4
a a a a . 

In addition to the above condition if  1 4 4 1 1 1 4 4 3 1 4 3
0a a a a a a      holds, then all the eigen values of (5.12) 

have negative real parts. Hence 
3 1 2

( , 0 , , )
s

E u v v is locally asymptotically stable. 

 

5.5 Local stability analysis at 
4 1 2

( , , , )
s I

E u u v v . 

Theorem 5.5: The equilibrium point is 
4 1 2

( , , , )
s I

E u u v v is locally asymptotically stable  provided the following 

conditions are satisfied.  

 
   

 

2 2

1 1 2 2 1 2

2

1 2

1 (1 ) (1 )

2 (1 )

I s

s

s

b u u K v b K v
u

u K v

    


 

 (5.16) 

 
 

2

7

8 2

1 2

(1 )

(1 )

s

s

b u
b

u K v




 

 (5.17) 

 
   

2 2

7 4 5

5 6 8 2 2

1 2 1 2

(1 ) (1 )
( )

(1 ) (1 )

s s

s s

b u b b u
b b b

u K v u K v

  
   
    
 

 (5.18) 

and  

 
1 2

q q  (5.19) 

where 
1 2
,  q q  are defined as in (5.21) and (5.22). 

Proof: The Variational matrix at the point 
4 1 2

( , , , )
s I

E u u v v is given by 

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

( )

c c c c

c c c c
J E

c c c c

c c c c

 

 

 
 

 

 

 

where 

   

 

22

21 1 2

1 1 1 1 2 1 1 3 1 42 2

1 2 1 2

2 1 1 2 2 2 3 2 4

2

4 1 2

3 1 3 2 3 3 52

1 2

(1 )
1 2 (1 ) ;     (1 ) 0 ;  0 ;     0

(1 ) (1 )

;     0 ;     0 ;     0

;     0 ;     (

(1 )

s

s I S

s s

I

s

b ub K v
c u b u c b u c c

u K v u K v

c b u c c c

b K v
c c c b

u K v


            

   

   

    

   

   

2

4

6 3 4 2

1 2

2 2

7 1 2 7

4 1 4 2 4 3 5 4 4 82 2

1 2 1 2

(1 )
) 0 ;     

(1 )

(1 )
;     0 ;     ;     

(1 ) (1 )

s

s

s

s s

b u
b c

u K v

b K v b u
c c c b c b

u K v u K v


 

 


    

   

 

The characteristic equation at 
4 1 2

( , , , )
s I

E u u v v  is given by 

  
4 3 2

1 2 3 4
0H H H H         (5.20) 

where  

 

 

 

   

 

1 0 1

2 0 1 2 3 4 5

3 0 2 3 1 4 1 4 7 6

4 2 3 4

H

H

H m

H

 

     

      

  

  

    

        

  

 

and 
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0 11 22 1 33 44 2 33 44 3 34 43 4 12 21 5 14 41 6 31 43 7 33 41
 ;  ;  ;  ;  ;  ;   ;  c c c c c c c c c c c c c c c c                  

By Routh Hurwitz criterion if  
2

1 3 4 1 2 3 3 1 4
0 ,  0 ,  0  an d  0H H H H H H H H H        , then all the eigen 

values of (5.20) have negative real parts. 0,  i= 1 ,3 ,4  p ro vid ed  th at
i

H   

 

 

 

 

and 

1 2
q q    where 

 

     

     

 

1 0 1 0 1 2 3 4 5 0 2 3 1 4 1 4 7 6

1 4 7 6 2 3 0 1 1 4 4 7 6 0 1

2 2

0 1 2 3 0 1 4

( ) ( )

      ( ) ( )

       +

q c

c c

              

          

      

               

      

 

 

 (5.21) 

     
2 2

2 0 2 3 1 4 14 7 6 0 1 2 3 4
( )q c                    

 

 (5.22) 

  will be positive if  
1 2

q q in addition to the above conditions. 

 

VI. Numerical Simulation 
Example 1: In (2.2) let

1 1 2 3 4 5 6 7 8
0 .3,  0 .1 7 5,  0 .0 6 2 5,  0 .2 5,   0 .0 0 9 3 8,  0 .1,  0 .0 7 5,  0 .0 0 9 3 8,  0 .0 5  an d  = 0 .5K b b b b b b b b        

. For the equilibrium point 
1
(1, 0 , 0 , 0 )E , the conditions (5.3), (5.4) and (5.5) (0.175 < 0.25, 0.01875 < 0.225 and 

0.00875 > 0.00516) are satisfied. Hence by theorem (5.2),  
1
(1, 0 , 0 , 0 )E is locally asymptotically stable (see 

Figure(1)). 

 

 
Figure(1) 

 

Example 2: In (2.2) let 

1 1 2 3 4 5 6 7 8
0 .3,  0 .5 2 5,  0 .0 6 2 5,  0 .2 5,   0 .0 0 9 3 8,  0 .1,  0 .0 7 5,  0 .0 0 9 3 8,  0 .0 5  an d  = 0 .5K b b b b b b b b        

. For the equilibrium point 
2

(0 .4 7 6 1 9, 0 .3 4 3 4 8, 0 , 0 )E , the conditions (4.1), (5.4) and (5.5) (0.525 > 0.25, 

0.01875 < 0.225 and 0.00875 > 0.00516) are satisfied. Hence by theorem (5.3),  
2

(0 .4 7 6 1 9, 0 .3 4 3 4 8, 0 , 0 )E is 

locally asymptotically stable (see Figure(2)). 

 

      

   

   

   
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1 (1 ) (1 ) (1 )
;  ;   

2 (1 ) (1 )

(1 ) (1 )
( )

(1 ) (1 )

I s s

s

s s

s s

s s

b u u K v b K v b u
u b

u K v u K v

b u b b u
b b b

u K v u K v

     
 

   

  
   
    
 



Local Stability Analysis of Epidemiological Stage Structured Predator-Prey Model with .. 

DOI: 10.9790/5728-1703020111                                www.iosrjournals.org                                             9 | Page 

 
Figure(2) 

 

Example 3: In (2.2) let 

1 1 2 3 4 5 6 7 8
0 .3,  0 .375,  0 .0525,  0 .45,   0 .01103,  0 .12 ,  0 .65,   0 .00735, 0 .025  and  = 0 .7K b b b b b b b b        

. For the equilibrium point 
3

(1, 0 , 0 .0 0 8 2 5, 0 .2 0 9 0 9 )E , all the conditions stated in the theorem (5.4) (1 < 1.2, 

2.03738 > 1, 0.025 > 0.01676, 0.00635 > 0.00302, 2.92E-06>0 ) are satisfied. Hence 

3
(.9 6 9 7 4, 0 , 0 .0 0 8 2 5, 0 .2 0 2 8 6 )E  locally asymptotically stable (see Figure(3)). 

 

 
Figure(3) 

 

Example 4: In (2.2) let 

1 1 2 3 4 5 6 7 8
0 .3,  0 .5 2 5,  0 .0 6 2 5,  0 .2 5,   0 .0 1 2 5,  0 .1 2 5,  0 .0 7 5,   0 .0 1 2 5,  .0 2 5,  an d  = 0 .5K b b b b b b b b        

For the equilibrium point 
4

(0 .4 7 6 1 9, 0 .2 9 0 9 4 1, 0 .0 3 8 1 6, 0 .4 9 6 0 3)E , the conditions (4.2), (4.5), (5.16), (5.17), 

(5.18) and (5.19) (0.02031 > 0.0125, 1> 0.55632, 0.47619 > 0.26275, 0.025 > 0.00947, 0.00311 > 0.00118, 

0.00391 > .00051) are satisfied. Hence by theorem (5.5), 
4

(0 .4 7 6 1 9, 0 .2 9 0 9 4 1, 0 .0 3 8 1 6, 0 .4 9 6 0 3)E  is locally 

asymptotically stable (see Figure(4 )). 

 

 
Figure(4) 

 

VII. Conclusion 
 The considered prey-predator model with Michaelis Menten Holling Type II predation exhibits five 

equilibrium points. The trivial equilibrium point is unstable. All the other equilibrium points maintains the local 

stability property when necessary conditions are met as mentioned in the respective theorems. 
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