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Abstract: In this paper, the discrete–time periodic static output feedback control design problem is considered. A 

hybrid conjugate gradient methods are analyzed and studied to tackle an equivalent optimization problem of this 

optimal control problem. Finally, the proposed algorithms are tested numerically through several test problems 

from the benchmark collection.  
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I. Introduction 
The static output feedback design problem for discrete or continuous–time control systems is one of the 

most studied problems, where wide area of applications in engineering and in finance are represented by this 

problem; see the two surveys [19, 27] and the references therein. Particularly, many special purpose methods are 

designed by the engineers for solving this problem; see e.g. [19, 27]. Various gradient–based methods are 

available for solving the SOF problem among them is the descent Anderson–Moore method [19] that solves the 

SOF problem by minimizing particular quadratic approximation of the objective function combined with 

step–size rule. Mäkilä and Toivonen [19] solved the discrete problem by Newton's method with line search 
globalization. Rautert and Sachs [26] suggested quasi–Newton method with line search for solving the 

continuous–time SOF problem. Mostafa [21] introduced trust region method for solving the discrete–time SOF 

problem. All these methods are based on reformulating the discrete or continuous–time SOF problems into 

unconstrained matrix optimization problems. The formulation of the SOF problem as a constrained optimization 

problem allows utilizing numerous available constrained optimization techniques; see e.g [18, 17, 13, 22, 23]. In 

this paper hybrid conjugate gradient (HCG) methods are analyzed for tackling the SOF design problem. The 

proposed algorithm is extended for solving the design problem for periodic–time systems. The considered 

approach is based on reformulating the optimal control problem into an optimization problem. This approach is 

classical and we consider it for the sack of completeness. 

Notations: Throughout the paper     denotes the Frobenius norm given by            where       
is the inner product defined by              

      for        
    and       is the trace operator.    

denotes the     identity matrix. 
 

II. The discrete–time periodic SOF design problem 
        Periodic–time control systems have been studied recently in several research articles in particular for the 

stabilization of systems of walking and hopping robots, see e.g, among others [1, 3, 4, 8, 29]. Consider the 

following problem of designing a stabilizing static output feedback controller of linear periodic discrete-time 

systems; see [1]:   

                  
      

        
             

                       (1) 

                                                                            (2) 

 where      is the expected value and          
   

       ,      ,       and     
  are the state, 

the control input, and the measured output vectors. Moreover,                 are given symmetric, 

periodic and positive semi–definite, positive definite weight matrices, respectively;             
    and 

        are given  –periodic matrices, i.e.,  

                                                                          
We consider the following control law to close the system (1) – (2) :   

                                                                         (3) 
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 where         for all   and    . This yields the recurrence relation:  

                            
where   

                                                  
 

We assume for simplicity that    , from Lemma       in the paper [24], the system  (2) is equivalently 

rewritten in the following closed form:  

                                         
 where   

                                                                                                   (4) 

From Lyapunov stability theory the matrix variables    and    must be chosen from the following set of 

stabilizing output feedback gains:   

                                                                               (5) 

 Such a restriction ensures that all state variables decay to zero state as   increases. 

Let us consider the sum of the first     terms of the following formula:   

              
     

       
 
           

     
                                           (6) 

 where   

                                 
 
                                                   (7) 

 Then from  (1) and  (6) we obtain  

              
    

             
               

       
                        

             
                                                                                          (8) 

 where       
     is the covariance matrix and  

             
            

                   
  

solves the discrete Lyapunov equation:   

                          
                                                        (9) 

 By the trace properties it holds that; see  Lemma  7.1    

                                                                                     (10) 

 where the matrix variable          solves the following discrete Lyapunov equation: 

                                 
     

Hence, the periodic discrete–time SOF problem (1) – (3) is stated as the following minimization problem:   

                                                                                      (11) 

 where          is as defined in (6) and the matrix variable          is the solution of the discrete Lyapunov 
equation:   

                                                
                                 (12) 

 and       must lie within the set    as defined in (5) . 

The problem (11) – (12) is an unconstrained optimization problem in the matrix variables      , where the 

eigenvalue condition         . 

Note, that the set    is open and in general unbounded. Therefor, it is convenient to define the following level 

set:   

                                                                                 (13) 

This level set is compact; see [[19], Appendix A]. For given          the theorem of Bolzano– Weierstrass 

ensures the existence of a unique solution to the optimization problem  (11) – (12) in the level set         ; see 

[19]. 

The CG method was proposed by Hestenes and Stiefel [10] early in      for solving linear systems of algebraic 

equations. Fletcher and Reeves [9] in      developed a CG method for solving unconstrained optimization 

problems. Moreover, many different CG methods have been proposed in recent years (see, e.g,. [2, 7, 6] and the 

references therein). Recently, many literature suggested a hybridization of conjugate gradient methods for solving 

unconstrained optimization problems see [11, 12, 16]. The attempt in this paper is to apply HCG methods in 

papers [11, 12] for solving (11) – (12) . Moreover, the convergence theorems given in [11, 12] is extended to the 

considered algorithm. 

 

2.1  Required derivatives of the objective function 

The next Lemma provides a discrete Lyapunov equation required for obtaining the gradient of objective function   

(11) ; see [20]. 
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Lemma 2.1  Let    and      . Then          defined by (12) is differentiable and directional derivatives 

         and          of          are given by the discrete Lyapunov equations:                  

        
            

    
   

   
 
                  

                    (14) 

                         
            

 
  
    

   
                   

                    (15) 

 where              .  

 Proof: The directional derivatives of  (12) with respect to   ,    respectively are given  

                   
    

   
   

 
                                 

  

                        
            

    
   

   
 
                  

   
  

                   
 
  
    

   
                                  

  

                        
            

 
  
    

   
                   

     

The next lemma gives the first–order directional derivative of the objective function         ; see [20]. 

 

Lemma 2.2  Consider the optimization problem  (11) - (12) , where    and      . The first–order 

directional derivatives of the objective function (11) in the directions of     and     are given by   

                 
                                

    
                          (16) 

                          
                         

 
  
    

                                  (17) 

 where               and               solve the discrete Lyapunov equations  (12) and (9) 
respectively.  

Proof:  By differentiating the objective function with respect to    in the direction of    ,  

                                            

                                                    
            

    
    

 From the Lyapunov equation  (9) and  (14) we have  

                                   
    

   
   

 
                            

    

               
   

 
              

    
    

 Hence, the directional derivative of the objective function in the direction of     is  

                  
         

 
                       

    
    

 By differentiating the objective function with respect to    in the direction of     we obtain,  

                                             

                                                 
 
   

    
    

 From the discrete Lyapunov equation  (9) and  (15) we get;  

                                   
 
  
    

   
                             

    

                
               

 
  
    

    

 we have,  

                           
                         

 
  
    

      

Let us write the directional derivative           as:  

                        
                     

This implies that   

                       
                               

                        (18) 

 Also  

                        
                     

This implies that   

                               
                         

 
  
                          (19) 
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The next Lemma yields the first-order necessary optimality condition for the optimization problem  (11) and   

(12) . 

 

Lemma 2.3  Let    and       be a local solution to the optimization problem  (11) and (12) Then   

       
                               

                                             (20) 

           
                         

 
  
                                               (21) 

 where   and   solve the discrete Lyapunov equation (12) and (9) , respectively. 
  

III. Hybrid CG methods for the SOF design problem 
 In this section two hybrid CG methods are considered to tackle the optimization problem (11) and   (12) . 

Moreover, these algorithms are extended to tackle the optimization problem originated from the SOF design 

problem for periodic discrete–time control systems. Global convergence is established for the proposed algorithm 

under a non–monotonic backtracking strategy. 

Given         
       

      , the nonlinear hybrid CG methods HCG1 and HCG2 generate a sequence of 

iterates    according to the recurrence relation:   

                                                                                (22) 

 the search direction           
        

    is a descent direction for   at    that satisfies the following descent 

condition:   

                     
                                                                 (23) 

 where                     
               

    is the gradient of the objective function  . Most of the HCG 

methods update the directions     by the following relation:   

                                                                                (24) 

 where    is a parameter that differs from one HCG method to the other. 

The following Wolfe conditions, see e.g. [25], are used for updating a suitable step–size    for the calculated new 

iterate (22)   

                                          
                                      (25) 

                            
                 

                                      (26) 

 where           Moreover, the strong Wolfe condition replaces (26) by the following condition   

                             
                   

                                   (27) 
 

3.1  The descent HCG1 method 

Consider the unconstrained optimization problem (11) and (12) . The new search direction       is obtained by 

using the following recurrence formula method [11]:   

                        
                                                          (28) 

 where   

           
  

          
        

          

        
            

         

            
        

     
                                   (29) 

 and                              . 
Note that   

  might be chosen as any of the following alternatives:   
   or   

   or   
    or   

    where  

   
   

          
 

      
    

           
   

          
 

        
   

   
    

          
  

          

        
            

        

        
  

   
    

          
  

          

        
            

        

      
    

  

Using the weak Wolfe line search rule (25) – (26) the HCG1 method  (28) – (29) generates a descent direction to 

the objective function     . This is proven in the next lemma. The parameter   
  is chosen such that the 

sufficient descent condition is satisfied every iteration, where the following conjugancy condition holds:  

      
           

Lemma 3.1  If       is evaluated by (28) and (29) such that         , then  

            
          

holds for each    .  

Proof: (See also[11]) For    , it is easy to have that  

          
               

     
Assume that          

        holds for   and    . To get  
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for   we divide the proof into the following four cases. If   
   , from (28) , one knows that  

            
                

     
Therefor, in the analysis below, we always suppose   

     
Case   : If            

           and       
             

 , then from (29) we have  

   
  

          
 

      
    

   
    

Noting that           
   , so       

       holds. Therefore from (29) , we have  

            
                   

            
       

                                    
  

          
 

      
    

            
      

                           
          

           
     

      
    

                               (30) 

 Case   : If            
           and       

             
 , then from (29) one has  

                                        
  

          
 

        
    

    

Therefore, in view of  

       
                   

           
       

and (29) as well as  (30) we obtain:  

            
                   

              
      

             
  

          
 

        
             

      

             
  

  
          

 

        
 
         

           
       

  
          

 

        
           

                                                       (31) 

 Case   : If            
           and       

             
 , then from (29) one has  

   
  

           
           

          

        
           

        

      
    

   
     

Noticing that   
    and            

          , we have            where    is the angle between 

         and       . Thus from  (28) – (29) one has  

            
                   

              
                  

  

  
           

           
          

        
        

      
    

            
      

             
  

  
          

            
                

                     

      
    

 

  
          

          
                

                 
     

      
    

 

  
          

          
                

               
     

      
    

 

  
          

          

      
    

         
                                               (32) 

 Case   : If            
           and       

             
 , then from (29) it holds that  

   
  

           
           

          

        
           

        

        
    

     

Similar to the analysis of the third case we have  
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                                               (33) 

 Therefore, for all    ,            
          always holds.   

From the proof of  Lemma  3.1  we can easily obtain the following important property about the formula  (29) 

. 

 

Lemma 3.2  For any    , the relation  

     
  

           
       

         
     

 

always holds.  

Proof:  (See also [11]) From equation (29) , we have   
     If   

    and 

           by  Lemma 3.1 we have  

 
           

       

         
     

     
   

Assume that   
   , we now prove  

   
  

           
       

         
     

 

by considering the following four cases: 

Case   : If            
           and       

             
 , then  

  
    

  . Furthermore, from  Lemma 3.1 and the formula  (30) we have  

   
  

          
 

      
    

 
           

       

         
     

  

Case   : If            
        and       

             
 , then   

    
  . Furthermore, form  

Lemma 3.1 and formula  (31) , we have  

   
  

          
 

        
  

           
       

         
     

  

Case   : If            
           and       

             
 , then   

  reduces to   
   . 

Furthermore, by  Lemma 3.1 and formula (32) one has  

           
  

           
           

          

        
           

        

      
    

 

              
        

          

      
    

 
                 

             
  

 Case   : If            
           and       

             
 , then   

    
   . Furthermore, by  

Lemma 3.1 and formula (33) it follow that  

           
  

           
           

          

        
           

        

        
  

             
        

          

        
  

                 

             
  

 Therefore  Lemma 3.2 holds.   

 

3.2  The descent HCG2 method 

In this section we consider the second alternative of hybrid CG methods HCG2 (see also [12]). It combines the 

Fletcher–Reeves and Polak–Ribière–Polyak CG methods. 

The new search direction       is generated by  (24) , where the updating parameter    is given by   

                   
               

          
                                             (34) 

                             
         

           
    

        
           

   
          

 

        
  

The hybridization parameter     is computed by 
  

               

  
                         

                         
        

                
                           

           

                
    

            (35) 

 where  

  
   

           
     

           
        

      
    

     
 
  

 

Lemma 3.3  If       is evaluated by (24) and (34) such that         , then  

           
          

holds for each    .  
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Proof:  For    , it is easy to have that  

          
               

     
Assume that          

        holds for   and    . To get  

            
           

for   we divide the proof into the following two cases. If   
       , from (24) , one knows that  

            
                

     
Therefor, in the analysis below, we always suppose   

         
Case(1): If            

       and   
    then      , from (34) has one  

   
      

          
 

        
    

    

Therefore, in view of  

       
                   

           
       

and (24) as well as (34) we obtain:  

            
                   

              
          

             
  

          
 

        
             

      

             
  

  
          

 

        
 
         

           
       

  
          

 

        
           

                                                       (36) 

Case(2): If            
       and            

           or   
    then      , from (34) has one  

   
      

           
    

        
    

    

from  (24) as well as  (34) we obtain:  

            
                   

              
          

             
  

           
    

        
             

      

             
  

  
           

    

        
 

         
           

       

             
             

     

  
           

    

        
          

      

              
         

  
           

    

        
          

      

  
           

    

        
           

                                                   (37) 

 Therefor, for all    ,            
          always holds.   

From the proof of  Lemma  3.3  we can easily obtain the following important property about the formula   (34) 
. 

 

Lemma 3.4  For any    , the relation  

     
      

           
       

         
     

 

always holds.  

Proof: From equation (34) , we have   
         If   

        and            by  Lemma 3.3 we have  

 
           

       

         
     

     
       

Assume that   
       , we now prove  

   
      

           
       

         
     

  

by considering the following two cases: 

Case(1): If            
       and   

    then      ,   
        

  .  

Furthermore, from  Lemma 3.3 and the formula (36) we have  

   
      

          
 

        
  

           
       

         
     

  

Case   : If            
       and            

           or   
    then       and   

      
  
  . Furthermore, form  Lemma 3.3 and formula (37) we have  
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Therefore  Lemma 3.4 holds.   

The overall algorithm for solving the minimization problem (11) – (12) is stated in the following lines, where any 

of the considered two updates of    can be used. 
 

Algorithm 3.1 (Nonlinear HCG methods for solving Problems (11) – (12) )   

1. Initialization: Let         
      

    where              be given and let            be the given 

tolerance. Choose          and calculate              and              solution of Lyapunov equations  

(12) and (9) , respectively. Calculate         ; Set              and    .  

2. While              , do   

(a) Calculate the first element    of a decreasing sequence, e.g.,          that satisfies the weak                      

Wolf conditions (25) – (26) and the stability condition (22) , i.e.,              
(b) Set                

(c) Given             
        

    solve the discrete Lyapunov equations (12) and (9) for             

                 and                 , respectively. Then calculate         ; Set                     
and            ; Calculate    by one of the formulas (29) or (34) 

(d) Calculate: 

                   

and choose the new direction as: 

       
                      

                        

                             
                   (38) 

(e) Set       and go to (a). 

 3. End (do)  

 

IV. Convergence analysis 
The convergence analysis of  Algorithm 3.1 is established in this section. Next, assume that          for all 

 ; otherwise a stationary point is found.  

 

Assumption 4.1  The following assumptions hold:  

1.  The objective function   is bounded from below.  

2.  The level set (13) is bounded.  

3.  In some neighborhood    of   ,   is continuously differentiable, and its gradient is Lipschitz continuous, 

namely, there exists a constant        such that   

                                                                                 (39) 

4.  At any iteration   there always exists an      such that            .  

The following Lemmas are used for proving the main global convergence theorem, see [5] for the proofs. 

  

Lemma 4.1  Consider the optimization problem  (11) – (12) , let         be generated by  Algorithm  3.1  

and assume that  Assumption  4.1  holds. then the Wolfe conditions  (25) – (26) is feasible.  

 

Lemma 4.2  Let     is given by (28) – (29) . Then we have  

          
       

 

 
        

   

holds for any    , i.e,     is descent direction for     .  

Lemma 4.3  Let      be generated by  Algorithm  3.1  and assume that     is a descent direction. 
Furthermore, let  Assumption  4.1  holds. Then  

    
   

          
      

 

     
      

Proof:  (See also [5]) From (25) , (26) , Lemma  4.2  and  Assumption  4.1  we obtain  

                
           

        
Then we have  

         
 

      
  

         
     

     
   

Squaring both sides of the above formula we obtain  

   
      

   
 

      
 
 

 
         

     

     
 
 

  

From  (25) we have  
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4.1  Convergence result for the method HCG1 
The following theorem presents the global convergence result of  Algorithm 3.1 , see [11, Theorem 6].  

 

Theorem 4.1  Let  Assumption  4.1  holds and       be generated by  Algorithm  3.1  . Then   

                          
   

                                                             (40) 

Proof: Suppose by contradiction that the stated conclusion is not true. Then in view of            there exists 

a constant     such that         
   . 

From  (28) it follows that                
    . This together with Lemma 3.2 implies  

        
     

        
              

                  
  

   
           

       

         
     

 
 

     
  

              
                  

                                            (41) 

 Dividing the both sides of (41) by             
        

  we obtain  

 
       

 

            
        

  
     

 

          
      

  

  
 

           
       

 
          

 

            
        

  

  
     

 

          
      

  

   
 

          
 

          

           
       

 
 

 

  
 

          
  

  
      

 

          
      

  
 

          
                                                      (42) 

 Combining with 

                   
     

 

          
      

  
 

        
   

by the recurrence relation  (42) and           
    we have  

 
       

 

            
        

  
     

 

          
      

  
 

          
  

  
       

 

            
        

  
 

        
  

 

          
  

       
   

 

        
  

 

 
                                                           (43) 

 Thus,  

 
            

        
 

       
  

 

 
  

This further shows that  

    
   

            
        

 

       
     

which contradicts  Lemma 4.3. Therefore, the desired result holds.   

 

4.2  Convergence result for the method HCG2 

The convergence result for the HCG2 method under Wolfe condition  (25) and the follow weakened version of  

(26) is given   

                                        
                 

                           (44) 

 where       . 
We need the following theorem which is established by Zoutendijk [30] under Wolfe conditions. 

 

Theorem 4.2  Assume that      the  Assumption  4.1  holds and         is a descent direction where 

the step length    satisfies Wolfe conditions (25) – (44) . Then   

                         
      

           
                                             (45) 

 where  
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Theorem 4.3  Suppose that  Assumption 4.1 holds, the step         is evaluated by (28) and  (34) with the 

following three properties   

1.    
                       

2.  The line search satisfies           and the sufficient descent condition  

          
               

                     
and the Zoutendijk condition (45)  

3.  Suppose that the following inequality holds   

                                                                                     (46) 

 if there exist constants      and      such that     ,   

                                 
                                                        (47) 

 and   

                                      
       

 

   
                                   (48) 

 Then   

                                   
   

                                                      (49)  

Theorem 4.4  Suppose that  Assumption 4.1 holds and the sequence      be generated by  Algorithm  3.1  

and there exist a positive constant    such that   

                                                                                           (50) 
 Then  (49) holds.  

Proof: By the Wolfe condition (25) the sequence         is subset of the level set   also from  Theorem  4.2  

, the Zoutendijk condition holds. Therefore, considering  Theorem  4.3  , to complete the proof it is enough to 

show that the formula (46) holds. Since          , from  (46) we have  

    
         

       
   

            
            

     

        
  

          
 

        
  

            
              

        
  

          
 

        
  

            
    

   
 

  

   
  

  

   
                                                       (51) 

 from  (39) and  (50)  

    
         

          
   

            
            

     

        
        

          
 

        
  

            
              

        
        

          
 

        
  

            
       

   
       

  

   
 

            
        

   
                                                               (52) 

 Therefore, from  (51) and  (52) if we let  

    
   

   
            

   

           
  
  

then  (47) and  (48) hold, Thus the formula  (46) holds. 

 

5  Numerical results of the SOF problem 

In this section an implementation of the two algorithms HCG1 and HCG2 are described. Two MATLAB codes 

were written corresponding to this implementation. The two methods are compared numerically with the classical 

PRP conjugate gradient method (see e.g. [25]). 

We compared performance of the HCG1, HCG2 and PRP methods with respect to number of iterations, CPU time 

and number of wins. In table 1  the first to the fourth columns are, respectively, the iteration counter  , the 

objective function            , the convergence criterion                and the spectral radius 

               as indicator of fulfilling the stability condition. For every iteration of the HCG1, HCG2 and PRP 

methods two discrete Lyapunov equations are solved using the MATLAB function           . The following 

values have been assigned to the parameters of  Algorithm  3.1  :  

                          
Instead of using the Wolfe conditions (25) – (26) we have also tried the simple sufficient decrease condition  (25) 

with       , where the initial step size is chosen as      in the backtracking rule. The methods have given 

satisfactory results using this alternative. 

The following examples quite show the performance of the HCG methods for finding a local solution to the 

problem (8) – (12) . A starting feasible point for the method might be obtained by executing the PSO method, see 



A Hybrid Conjugate Gradient Method for Discrete–Time Periodic Static Output .. 

DOI: 10.9790/5728-1703021226                  www.iosrjournals.org                              22 | Page 

[24]. In the following four examples are given for testing the proposed method on periodic systems, where in the 

first two examples the period is taken as     and in the second two    . 

 

Example 5.1  This test problem is borrowed from [15]. The discrete–time counterpart has the following data 

matrices  with period    :  

     

              
              
                   

      

              
              
                   

   

     

      
       
       

      

      
       
       

            

                                 
The uncontrolled system is not discrete–time Schur stable, where               . Starting with the following 

initial              the methods HCG1, HCG2 and PRP require   ,    and    iterations with CPU times 

    ,      and     , respectively, to reach the stationary point              . The starting and final feedback gain 

matrices are:  

       
                   

            
                    

   

                                                                

   

Example 5.2 This test problem is borrowed from [14]. The discrete–time counterpart has the following data 

matrices  with period    :  

        
            
                     

      
          

   
 
     

   
 
    

                                 
The uncontrolled system is not discrete–time Schur stable, where               . Starting with the following 

initial              the methods HCG1, HCG2 and PRP require   ,    and    iterations with CPU times 

    ,      and     , respectively, to reach the stationary point            . The starting and final feedback gain 

matrices are:  

                                    

                                        

 

Example 5.3   This test problem is borrowed from [28] having the following data matrices  with period    :  

     
            

             
            

             
       
               

     
   
       

      
            

 
            

 
       

 
       

 
    

                                       
The uncontrolled system is not discrete–time Schur stable, where                 . Starting with the 

following initial                   the methods HCG1, PRP require    and    iterations with CPU times 

     and     , respectively, while the method HCG2 failed to converge the stationary point                     . 

The starting and final feedback gain matrices are:  

                                                       

                                                           

  

Table  1:  Performance of the HCG1 method on Example 5.3 

 

                                            
0 3.1581e 002 3.7124e 002 9.07e 001 

1 1.6734e 002 7.6055e 001 5.79e 001 

2 1.6543e 002 1.3828e 002 8.23e 001 
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3 1.6285e 002 8.6228e 001 9.08e 001 

        
23 1.4220e 002 1.3181e 004 7.38e 001 

24 1.4220e 002 8.2648e 005 7.38e 001 

 

Table  1:  shows the convergence behavior of the method HCG1 to reach the stationary point of the optimization 

problem  (8) when    . 

 

Example 5.4  This test problem is borrowed from [8] having the following data matrices  with period    :  

     

                  
                  
                  

      

                  
                  
                  

   

  

    

                  
                  
                  

      

            
            
            

      

            
            
            

   

     

            
            
            

      

      
      
      

      

      
      
      

      

      
      
      

   

                                       
 The uncontrolled system is not discrete-time Schur stable, where                 . Starting with the 

following initial                   the methods HCG1, PRP require    and    iterations with CPU times 

     and     , respectively, while the method HCG2 failed to converge the stationary point                     . 

The starting and final feedback gain matrices are:  

       
      
                  

       
                   

        
         

         
       
                    

      
                     

       
          

 

V. Conclusion 
The main goal of this research work is to study the performance of some efficient numerical optimization 

methods for tackling optimal control problem, namely the static output feedback design problem. The related 

problem of the static output feedback design for periodic systems is one of the most important problems in modern 

control. For this problem two hybrid conjugate gradient methods are proposed to find its local solution of the 

corresponding optimization problem. Global convergence is established for the hybrid conjugate gradient method. 
It is important to point out that the numerical method for solving the SOF problem requires a starting feasible point 

with respect to an eigenvalue constraint. Such a feasible point can be easily obtained by any of the considered 

solvers of the eigenvalue assignment problem. All methods considered in the paper are tested on wide range of test 

problems from the literature. 
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Appendix 

 

Lemma 8.1  Let    and      . It holds that  

                                     
where the matrix variable               solves the following discrete Lyapunov equation:  

                          
     

Proof:  From the trace properties we can show that  

                                                    
    

                                                  
   

                                  
                   

                           
                    

                                                                                 

For the  Example 5.3 and  Example 5.4 we presented the next lemma follows, let     we obtained the 

objective function:   

           
           

                                                           (53) 

 where the matrix   

                                  
 
       

 
  
 
                            (54) 

 and the matrix                  is a solution of the discrete Lyapunov equation:   

                                                                                (55) 
 where  

             

gives the first–order directional derivative of the objective function            . 
The next Lemma provides a discrete Lyapunov equation required for obtaining the gradient of objective function  

(53) . 

 

Lemma 8.2  Consider the optimization problem (53) - (55) , where       and      . Then             
defined by (55) is differentiable and directional derivatives                   and          of 

            are given by the discrete Lyapunov equations:  

                          
            

    
   

   
 
  
 
                    

            (56) 
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            (57) 

                          
            

 
  
 
  
    

   
                     

            (58) 

 where                 .  

 

Proof: The directional derivatives of  (55) with respect to   ,    and    respectively are given  

                    
    

   
   

 
  
 
                                   

  

                  
            

    
   

   
 
  
 
                    

   
  

                             
 
  
    

   
                                      

  

                  
            

 
  
    

   
   

 
                    

   
  

                             
 
  
 
  
    

   
                                    

  

                  
            

 
  
 
  
    

   
                     

                                    

                                                                                                  

The next lemma gives the first–order directional derivative of the objective function            . 
 

Lemma 8.3  Let     and            . The gradient of the objective function (53)      is given by   

                         
               

 
   

 
  
 
       

    
    

                          
 
    

    
 
          

 
     

 
    

    
    

                             
 
  
 
   

      
 
  
 
   

    
    

                                                                                     (59) 

 where   and   solve the discrete Lyapunov equations  (55) and  (59) , respectively.  

 Proof:  By differentiating the objective function with respect to    in the direction of    ,  

                                            

                                 
        

         
 
    

    
   

 From the Lyapunov equation  (55) and  (56) we have  

                          
    

   
   

 
  
 
                              

    

                 
   

 
  
 
     

    
    

 Hence, the directional derivative of the objective function in the direction of     is  

                         
               

 
   

 
  
 
       

    
    

 By differentiating the objective function with respect to    in the direction of    ,  

                                            

                                            
 
   

   
 
          

    
    

 From the Lyapunov equation  (55) and  (56) we have  

                               
 
  
    

   
   

 
                         

   

                  
   

 
       

    
    

 Hence, the directional derivative of the objective function in the direction of     is  

                          
 
    

              
 
     

 
    

    
    

 By differentiating the objective function with respect to    in the direction of    ,  

                                             

                                               
 
  
 
  
    

    

 From the Lyapunov equation  (55) and  (56) we have  
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 Hence, the directional derivative of the objective function in the direction of     is  
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