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I. Introduction

A topological space (X,7) is said to be epiregular [4] if a coarser topology T on X exists such that
(X,T') is Ty, regular . A topological space (X, T) is said to be a -regular [10],[30] if for every closed subset F of
X and x € X such that x & F there exist disjoint open sets U and V such that x € U and V n F is dense in F. We
use these definitions to introduce another new topological property as a simultaneous generalization called epi a
-regularity. The intent of this article is to implement this property. We show the relationship between epi « -
regular space, a -normal, « -regular, epinormal, epiregular, semiregular and Almost a-normal (almost 3-normal)
spaces. Also we show that every epi a -regular space is Hausdorff. We prove that submetrizability or T;, a -
regularity imply epi a -regularity but the converse is not correct in general. We give some examples to show
that epi a -regularity, a -regularity and semiregularity are not necessarily related.

Il. Epi a-Regularity

Definition 1.1. A topological space (X, 7) is said to be epi a -regular if a coarser topology 7' on X exists such
that (X,7") is Ty, a -regular.

Note that if we necessarily let (X,7") to be just a -regular in the above definition, then any space will be epi
a -regular since the indiscrete topology will satisfy the property.

Observe that if for any topological space (X,7") which is T;, i € {0,1,2} then any larger topology T on X so is,
and since every «a -regular T; is Hausdorff [10],[30], then we can conclude the following.
Theorem 1.2. Every epi a -regular space is Hausdorff.m

We note that if X is not T;, where i € {0,1,2}, then X is not epi a regular. For example, Sierpinski space and
The closed extension topology see [9], are not Hausdorff, then they cannot be epi « -regular. Since every regular
space is a -regular, then the next theorem is true.
Theorem 1.3. Every epiregular space is epi « -regular.m

The opposite direction of the above statement is not always true, but we still have the following correct.
Theorem 1.4. If (X, 7) is an epi a -regular space, and the witnesses of epi a -regularity (X, 7’) is first countable,
then (X, 7) is epiregular.m

Before proofing the above theorem, we need the following proposition which is proved by a similar
argument found in [29].
Proposition 1.5. [30] Every first countable « -regular Hausdorff space is regular.
Proof. Using a contradiction, we suppose that X is a first countable, Hausdorff and non regular space. Then
there is an x € X and a closed subset A of X such that x & A where there are no disjoint open sets that separate
them.
Let {U,:n € w} be an open base in x such that U,,, c U, for all n € w. Let H = {x,,:x, € U, N 4,n € w}.
Note that x,, was chosen inductively and because the space X is Hausdorff, we can also suppose at each step of
the induction that x,, & U, ,, it follows that x,, € U, if and only if m < n.
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The set H is closed. Indeed, if y ¢ H°, then X \ (U, n A) is an open set containing y and not intersecting H°
which implies that X \ (U, n A) is a neighborhood open set containing y and not intersecting H. Therefore
y & H. Note that x & H. Since x and H can not be separated, so X is not an a-regular space. m
Proof of theorem (1.4): It is straightforward by proposition 1.5 and theorem 1.3.m
Theorem 1.6. If (X, 7) is an epi a-regular space, and the witnesses of epi « -regularity (X, t') is first countable,
then (X, 1) is completely Hausdorff.
Proof. Let (X, 7) be any epi a-regular space, and let x, y be any distinct points in X, then one can find a coarser
topology T on X such that (X,7") is Ty, a -regular, and then (X,7") is Hausdorff [10]. It follows that there exist
two disjoint open sets G, H € T such that x € G, y € H,. Now since (X, r') is first countable then by proposition
15(X 7) is regular, so there exist U, VE‘L’ such that xevuc U cG and y €€V V' € H, where
Ur ={xe€ X:wnU =@,V open W in 7, x € W} similarly V7. Since A A7, for any A € X, this implies
That U € U7 .As U* N V* = 0. Thus (X, 1) is completely Hansdorff. m

Thus any space (X, t) which is not completely Hausdorff, such that any coarser topology of it is T, first
countable, cannot be epi a -regular.

Since any S -normal or « -normal [26] satisfying T; axiom is a-regular [30], [10], then we end to the
following theorem
Theorem 1.7. Every epi 8 -normal (epi a -normal) space is epi a -regular. m

As every second countable T; space is metrizable, [[8],4.2.9], and since every second countable is first
countable then by proposition 1.5 we have the following corollary.
Corollary 1.8. If (X,T) is epi a -regular and the witness of epi a-regularity (X,7) is second countable, then
(X, ) is submetrizable. m

Note that corollary 1.8 is not correct in general. For example, the Tychonoft Plank ((w1 +1) X (wy + 1)) \
{{wy,wq)} is Tychonoff being Hausdorff locally compact, and hence it is epi a -regular, but it is not
submetrizable, because if it was, then (w; + 1) x {0} < ((wl + 1) X (wg + 1)) \ {{wq, wg)} is submetrizable,
because submetrizablity is hereditary, but (w; + 1) X {0} = w; + 1 and w; + 1 is not submetrizable.

It is well known that T, paracompact space is Ty, then we have the following result proved.
Corollary 1.9. If (X,7) is epi a-regular and the witness of epi a -regularity (X,7') is paracompact, then
X,7)is T,. n

Also, we remind that any T, compact space is T,, and we conclude.
Corollary 1.10. Any epi a-regular compact space is T,. m

A Hausdorff space X is said to be H-closed if X is a closed subspace of every Hausdorff space in which it is
contained [[8],3.12.5]. Since a regular space is H -closed if and only if it is compact [[8],3.12.5]. Then we can
prove a similar argument for epi a -regularity.
Corollary 1.11. If (X,7) is epi a -regular compact space, then the witness of epi a -regularity (X,7") is H-
closed. m
Theorem 1.12. If (X, T) is an epi a -regular space, then for every compact subset F of X and every x € X such
that x ¢ F, there exist disjoint open sets U, W suchthat FNU = F and x € W.
Proof. Let (X, 7) be an epi a -regular space, then a coarser topology " on X exists such that (X, 7") is « -
regular, T;. Let F be any compact set in (X,7) and let x ¢ F, hence F is closed in (X,7) and x ¢ F, by a-
regularity of (X,7), there exist U,W € 7' suchthat FNU =F,x e WandUNW =0@.m
Corollary 1.13. If F and E disjoint compact sets in an epi a-regular space X, then there exist disjoint open sets
Uand Wsuchthat FNU=F,ENW =E.
Proof. Let (X,7) be an epi a -regular space, then there exists a coarser topology t" on X such that (X,7") is « -
regular, T;. Let F, E be any disjoint compact subsets of (X, 1), hence they are disjoint compact subsets of (X, ")
and by theorem 1.12 for each a € F and compact set E, there exist open sets U,, W, suchthata € U,,E N W, =
E and U, n W, = @. Now consider F is an arbitrary compact set disjoint from E. For each a in F, by theorem
1.12 gives disjoint open sets U,, containing a and E N W,, = E and U,, N W,, = 0. The family {Ual.:i € I} isan
open cover of F, since F is compact, there is a finite subfamily {Ual,.. ,Uan} which covers F and the
corresponding {W—a1 . Wan} is a closed cover of E. So that U =U_,; U,, is an open set containing F and
disjoint from W = N}, W,, which is an open set. such that FNU = F,E n W = E. Indeed, it is obvious that
ENW < E. Onthe other hand, let x € E, and G is an open set containing x, we need to show G N E N W =+ 0.
Let GNENW =0, then there is 1 < j < n such that GNENW, =0, since G is open then x & E N,

which is a contradiction. Therefore G N E n W =+ 0 which implies that x € ENW. Hence ENW = E, and we
are done.l
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I11. Properties of Epi a-Regularity
Theorem 2.1. [10] Let X be an a-regular space, f: X — Y is an onto, continuous, open, and closed function.
ThenY is a-regular.
Proof. Let X be an a-regular space, A be a closed subset of Y and y € Y such that vy & A. Then f~1(4) is a
closed subset of X and there exists x € X such that f(x) =y and x & f~1(A4). Since X is an a-regular space,
there exist disjoint open subsets G and H of X such that x € H and f~1(4) N G = f~1(A), and so x & G. Since
x & G, then y & f(G). It is clear that £(G) is a closed set containing the open set £(G),f(G) S f(G). Thus
y & f(G) which implies y € f(H) and f(G) n f(H) = 0. Now it is sufficient to show that A n f(G) = A. Let
z€A and W is an open set containing z then fl(z)<fA)nfI(W). Since
fHANG =f1A),f1(A) NG n fF~L(W) = @. Hence by surjectivity of £, An f(G)nW = f(f~1(4)) n
fF@ONFEITW)H 2F(F 1A NG n FL(W)) # 0 as required.m
Corollary 2.2. Let (X, 7) be an epi a -regular space, f: (X,7) — (¥, §) is an onto, continuous, open, and closed
function. Then Y is epi « -reqular.
Proof. Let (X, 7) be any epi a -regular space, let 7" be a coarser topology on X such that (X, ") is a -regular, T;.
Since f:X — Y is an onto, continuous, open, and closed function then by theorem 2.13 (Y, S"), where §' =
{f{U}:U € 7'}, is a -regular, and it is obviously T;. Hence (Y, S) is epi « -regular.m
Corollary 2.3. Epi a -regularity is a topological property.m
The proof of the following theorem is due to Murtinova.
Theorem 2.4. [30], [10] Every subspace of an « -regular space is « -regular.m
Proof. Let X be an a -regular space and A is a subspace X,y € Aand y € F c A,F n A = F where F refers to
the closure of F in X. Then y ¢ F and X is a -regular, hence there are disjoint open sets U,V in X such that
yeUand FNV =F. The sets UNn A and V N A are the sets witnessing « -regularity of A. Indeed, they are
disjoint, open in 4, y € U n A. It remains to show that F n V(N A) is dense in F in the space A. The A-closure
of FNVisFNVNAcFnA=F.Onthe other hand, let x € F, W is an open subset in X,x € W. We have to
prove that W n F NV = @. Suppose for contradictionthat W N F NV = @. Since W NV isopen, WNFNV =
@ as well. And since W isopen, =W NnF NV =W nF.Butx € W n F which is a contradiction.m
Corollary 2.5. Epi a-regularity is a hereditary property.
Proof. Let (X, 7) be an epi a -regular space and let (4, 7,) be a subspace of (X, 7). Let 7 be a coarser topology
on X such that (X,7) is a -regular, T;. The subspace (4, 1,) is a -regular, T; as a -regular [30],[10],T; is
hereditary 2.5, and 7, < 7,4, therefore (4,74) is epi a -regular.m
Theorem 2.6. a-regularity are additive properties.
Proof. Let {X,},c4 be a family of a -regular spaces, and A be a closed subset of the sum @,c4 Xy, X € B gen Xo
such that x ¢ A. By proposition 2.2.1 in[8] the intersections A n X, is closed in X, for every « € A and
x € An X, From a -regularity of X, it follows that there are two open sets U, and V, in X, and such that
ANX, NU,=ANX,x€V,

and

UNnA=9

Let U =Ugep U, and V =U,¢p V,, then clearly

ANU=Uue (AU U,) =Upep A=A=Ax€EV

UNV =VUger Uy NUgeq V; =VUgep (Ua n Va) =0
Since U and V are open in @,¢4 X, the sum @, X, IS a -regular.m
Theorem 2.7. Epi a-regularity is an additive property.
Proof. Let (X,, 7,) be an epi a -regular space for each a € A For each a € A, let 7,, be a topology on X, coarser
than 7, such that (X,,t,) is a -regular, T;. since T is additive see [[8],2.2.7] and a -regularity is also additive
by theorem 2.6. Then @®,e, (X,,7,) is a -regular, T;, and its topology is coarser than the topology on
GBaEA (Xa'Ta)-.
Theorem 2.8. Let {(X,,7,): @ € A} be a family of epi-regular spaces, and let X = [[,ea X,. Then (X, 1) is epi a
-regular, where t is the Tychonoff product topology, if only if (X,,7,) is epi a -regular for each a € A.
Proof. Let (X, ) be an epi « -regular space, and let 8 € A, by Theorem 2.5, every subspace of (X,7) is epi « -
regular. By [[31],2.39], there is a subspace of (X,7) that is homeomorphic to Xj. since epi a-regularity is a
topological property then (X;, 74 ) is epi a -regular.
Now let (X,,t,) be epiregular, epi a -regular space for each @ € A. For each a € A, let 7, be a topology on X,,
coarser than t,, such that (X,, t,) is Ts. since T5 is multiplicative [[8],2.3.11]. Then [[yea X, is T3 with respect
of the product topology of 7, s, which implies that [],ex X, is @ -regular T; with respect of the product topology
of 7, s and its topology is coarser than the topology on [T,ep (Xy) 7,).®
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Let R be the real line. Let P be the set of all irrational numbers and @ be the rational numbers. Let U be the
usual topology of the real line R. The real line with the topology generated by B = {(x —&,x + €):x € Q} U
{{x}: x € P} is called the Michael line and is denoted by M. And M x P, where IP has the usual topology, is
called the Michael product [8]. As the Michael line is a -regular, T, hence we have the following corollary.
Corollary 2.9. The Michael line is epi « -regular space.m

The space M X IP is « -regular, T; space being product of two (regular) «a regular, T; spaces, so we have the
following theorem.

Theorem 2.10. The Michael product is an epi a -regular space. m

Note that epiregularity is invariant under products, however, this is not the case for a -regularity as
Murtinova in [30] proved that a -regularity is not preserved under products. Regarding Murtinova result in
[30], the following theorem proves that epi a -regularity is not preserved by products and at the same time we
construct a non epi « -regular space from a non epiregular space.

Theorem 2.11. Let A(x) is the one-point compactification of a discrete set of cardinality x. Then for every non-
epiregular T; space X there is k < y(X) such that X x A(k) is not epi a -regular.
Proof. By a similar argument used in theorem [7] in [30].m

It follows that product of an epi a -regular space and a compact zero dimensional space may fail to be epi a-
regular. In particular it means that epi a-regularity is not preserved by products.

There are many ways of producing a new topological space from an old one. In 1929 , Alexandroff
introduced his method by constructing the Double Circumference Space [1]. In 1968, R. Engelking generalized
this construction to an arbitrary space as follows: Let X be any topological space. Let X' = X x {1}. Note that
XNnX =@.Let A(X) =X U X . For simplicity, for an element x € X, we will denote the element (x,1) in X’
by x" and for a subset B < X let B ={x:x € B} = Bx {1} € X . For each x' € X, let B(x") = {{x'}} For
each x € X, let B(x) = {U U (U'\{x'}: U is open in X with x € U}. Let  denote the unique topology on A(X)
which has {B(x):x € X} U {B(x):x € X'} as its neighborhood system. A(X) with this topology is called the
Alexandroff Duplicate of X [9]. The following is easy to prove.

Lemma 2.12. If X is Ty then its Alexandroff Duplicate A(X) is also T;.m

Theorem 2.13. [10] If X is a-regular satisfying T; axiom, then its Alexandroff Duplicate A(X) is also a-regular.
Proof. Let E be aclosed set in A(X) and x € A(X) suchthat x ¢ E. Write E = E; U E;, where E; = ENX,E, =
EnX.Sox g E,inXandx = (x,1) & E,. By a -regularity of X, there exist two disjoint open sets U and V of
X such that E; N U is dense in E; and x € V. Since X is T; we can choose W; = (UU U UE,) \ {x} and
W, =(V UV u{x})\E. Then W, and W,are disjoint open sets in A(X), and x € W,. Now, we prove W; n E
is dense in E. Notethat Wy NE=W, NnE)UW, NE,)=UNE)UE,,so W;NE)=UNE;)VE, =
(UNE;) U (E,) 2 E; UE, o E. Therefore, W; N E is dense in E. Then A(X) is a-regular. Hence a-regular is
preserved by the Alexandroff Duplicate space.m

Theorem 2.14. If (X, X)) is epi a-regular, then so is its Alexandroff Duplicate (A(X), 7).

Proof. Let (X, K) be an epi a -regualr space, then a coarser topology & on X exists such that (X, %) is Ty, « -
regular. Let (A(X),7) be the Alexandroff Duplicate of (X,%). Since by theorem 2.13 a-regularity is
preserved by the Alexandroff Duplicate space and also T, then (A(X),7") is also Ty, a -regular, and it is
obviously coarser than (A(X), ) by the topology of the Alexandroff Duplicate. Hence, A(X) is epi a -regualr.m

In 1951, Bing [5] and Hanner [14] introduced a new topological space by generating it from an old

topological space. This new space is called discrete extension.
Definition 2.15. Let M be a non-empty proper subset of a topological space (X,7). Define a new topology
Ty ={UUK:U €tand K € X\ M}. The space (X, 7)) is called discrete extension, and donated by X,, see
[8],[21]. In [21], properties such as countable tightness, Fréchet, and weaker types of normality were
investigated for discrete extension. Here we study the relationship between a space X and a discrete extension
Xy of X according to epi a -regularity.

For any epi a -regular space (X,7) we have 7" € 7 € 1), where 7" is Tychonoff, so we have the following

proved.

Theorem 2.16. If (X, 7) is an epi a -regular space, then also is X,,;.m

Since any Hausdorff locally compact is Tychonoff and hence epi « -regular, then by theorem 2.16 the following
is easy to prove

Corollary 2.17. If (X, 7) is a Hausdorff locally compact space, then X, is epi a -regular.m

IV. Epi a -Regularity And Some Other Separation Axioms
A topological space (X, t) is called submetrizable if there exists a metric d on X such that the topology
T4 On X generated by d is coarser than 7, i.e., 7, € T, see [13], since, by definitions, any submetrizable space is
epi a-regular. The converse of the last statement is not true in general. For example, w; + 1 is epi a-regular
being T, compact, hence a-regular T; and therefore epi a-regular. But it is not submetrizable, because if w; + 1
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was submetrizable, then there would be a metric d on w; + 1 such that the topology 7, on w; + 1 generated by
d is coarser than the usual ordered topology. This means that (w; + 1,7,) is perfectly normal. So, the closed set
{wi}is a Gs —setin (wy + 1,74). i.e., {w1} =N,en Uy, Where U, € 1,4, hence U, is open in the usual ordered
topology on w; + 1, which is a contradiction.

Obviously, any a-regular, T, space is epi a-regular, just by taking T = 7. However epi a -regularity
and « -regularity do not imply each other. For example, the Half-Disc space [33] is epi a-regular which is not
a-regular by proposition 1.5, since the space is Hausdorrf first countable not regular. Similarly, Deleted
Diameter topology [32] is epi a -regular being submetrizable, but it is not a -regular. Any indiscrete space
which has more than one element is an example of an « -regular space which is not epi « -regular.

Semiregularization topologies were studied in [27], a Semiregular space is T, space in which the
regular open sets form a basis for the topology [33]. Epi a -regularity and semiregularity are independent, for
example the Half-Disc space [33], is epi a-regular but not semiregular, It is epi a -regular because it is
submetrizable. and any indiscrete space which has more than one element is an example of a semiregular space
which is not epi a-regular.

Recall that a topological space (X, ) is called extremally disconnected if it is T; and the closure of any open
set is open [18]. Since every a -regular, extremely disconnected space is regular [10], then we have the
following correct.

Corollary 3.1. If X is an epi a-regular space and the attested of epi a-regularity is extremely disconnected, then
X is epiregular.m

Recall that a topological space (X, t) is called Zero-dimensional if it is a non-empty T; space and has a base
consisting of open-and-closed sets [8].

Clearly, every zero-dimensional space is Tychonoff space, and hence T3, so we conclude.

Corollary 3.2. Any zero-dimensional space is epi a-regular.m

The converse of the above result is not always correct. For example, The Euclidean topology on the set of
real numbers is epi a -regular since it is T5 but not zero dimensional. The following example [22] is a modified
example of Mysior’s example from [28].

Example 3.3. Let A € R be such that the intersection A, = A n [k, k + 1) is uncountable for every integer
k € Z. Let A = {(a,a): a € A} be the diagonal of X = A% and define the following sets
U, ={(a,b) € X:a > k}

fork € Z

I[,={(a+ea)eX:c€[0,3]}U{(a,a—¢) € X:c€[03]}
for a € A. Consider a topology T on X = A? generated by a basis consisting of all singletons {x} with x € X \ A
and all sets T, \ F, where a € A and F is finite. Clearly X is Hausdorff and zero-dimensional, and so is epi a-
regular.

The following example is constructed by Murtinova in [28] as she showed that it is an example of an « -
normal Hausdorff, hence « -regular, non regular space.

Example 3.4.[29] Let X = w; + 1 and define a topology t such that: w; with the ordinal topology is an open
subspace and a base in the point w; will be the collection:

Ues ={w}u{a+1:a €}
where C is a closed unbounded subset of w; (Club).
The topology t is Hausdorff since it is stronger than the onder topology on w; + 1. This space is epi a -regular
since it is a -regular Hausdorff and it is epinegular since it is stronger that the order topology on w; + 1 but it is
not regular nor first countable.

Note that the right order topology defined on the set of real numbers R[33] is an example of 8 -normal, a-
normal since there are no disjoint closed sets on it and it is not epi a-regular since it is not Hansdorff.

Recall that a topological space (X, ) is called epicompletely regular [12] if there is a coarser topology 7" on
X such that (X,7") is Tychonoff. Note that if a topological space X is epicompletely regular, then the space is
epi a-regular. But the converse of the above statement is not always true. however, the following theorem is
correct since epiregularity implies epicompletely regularity.

Corollary 3.5. If (X, 7) is an epi a-regular space, and the witnesses of epi a-regularity (X,7") is first countable,
then (X, 1) is epicompletely regular.m

It is well known that every compact second countable topological space satisfying T, axiom is metrizable,
[[8],4.2.8] and this induces another result.

Corollary 3.6. If a topological space X is epi a-regular, compact, and the attested of epi a-regular is second
countable then the space is submetrizable.m

Remind that a topological space (X, 1) is C,-paracompact if there is a T,, paracompact space (Y, ) and a
bijective map f: (X,7) — (Y, §) such that the restriction fi4: A — f(A) is a homeomorphism for every
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compact subspace A € X. For more details see [15]. A space X is called Fréchet if for every A € X and every

x € A there exists a sequence (x,),ey Of points of A

such that x,, — x, see [8].

Theorem 3.7. Let (X, T) be a C, -paracompact and Fréchet, then (X, 7) is epi a-regular.

Proof. Let (X, t) be a C, -paracompact and Fréchet, then (X, 7) is epinormal by theorem 2.16 in [15], then it is
epi a -normal. Hence (X, 7) is epi a regular.m

Theorem 3.8. If (X,7) is Lindeloff epi a-regular space and the attasted of epi a-regularity (X,z’) is first
countable, then (X, 7) is C, -paracompact.

Proof. Let (X, T) be a Lindeléff epi a-regular space, then there exists a coarser topological space (X,7") that is
T,, a-regular first countable, and hence is regular by propostion 1.5. since (X, t) is a Lindeloff space, then
(X,7) is also Lindeloff and regular which implies that (X, 7") is T, and paracompact, and therefore the identity
map id : (X,7) — (X,7) is the required map to have our space (X, ) to be C, -paracompact.m

Since any regular Lindel6ff space is normal, then this is not hard to show
Corollary 3.9. Let (X,t) be an epi a-regular Lindeloff space, and the attested of epi a-regularity is first
countable, then (X, T) is epinormal.m

Remind that a topological space (X, 1) is called nearly compact [23] if every open cover of X has a finite
subfamily the interiors of the closures of whose members covers X.

Theorem 3.10. If (X, 7) is a Hausdorff nearly compact space, then (X, 7) is epi a-regular.
Proof. Let (X, 7) be a Hausdorff nearly compact space, and let t, be the semi regularization of t, then z, is a
Hausdorff nearly compact space. Therefore t, is Ty, and hence T,, a-regular. Therefore (X, t) is epi a-regular.m

Remind that a topological space (X, 1) is called partially normal [18] if for any two disjoint subsets A and B
of X, where A is regularly closed and B is m-closed, there exist two disjoint open subsets U and V of X
containing A and B respectively.

Theorem 3.11. If (X, 7) is a semi regular partial normal space and t, is Ty, then (X, 7) is epi a-regular.

Proof. It is enough to show that (X,t) is a-regular. Let U be any open set containing x in (X, ). By
semiregularity, there is an open set W such that x € W < inti{W) < U. Since int (W) is regularly open and
using the same idea of theorem 2.11 in [2] there exists an open set V in (X,t,) such thatx SV cV c
intifW) € U. Therefore ANV € V C inti{l/) € B. Hence (X,t,) is a-regular, and then (X,7) is epi a-
regular.m

Epi a-regularity and a-normality do not imply each other. For example, the Dieudonné topology and The
deleted Tychonoff Plank, see [26] and [33], are not normal space nor a -normal, but they are epi a-regular
because they are zero dimensional.

Remind that a space (X, 7) is called almost a-normal [11] if for any two disjoint closed subsets A and B of X
one of which is regularly closed there exist disjoint open subsets U and V of X such that A n U is dense in A
and B N Visdensein B. Thatis, AN U=Aand B n V = B. and aspace (X,7) is called almost 8-normal
[11] if for any two disjoint closed subsets A and B of X one of which is regularly closed there exist disjoint open
subsets U and V of X suchthat A n U isdensein Aand B n Visdense in B. Thatis, AN U=A,BNV=
BandU NV = 0.

Note that almost a-normality (almost B-normality) and epi a-regularity are not related to each other. For
example, R with the particular point topology 7, see [8], [33], where the particular point is p € R, is not
normal nor B-normal nor a-normal. But the space is almost S-normal and almost a-normal since the only
regularly closed sets are R and @. However this space is not Hausdorff and then it is epi a-regular. Conversely,
Any indiscrete space which has more than one element is an example of an almost a-normal (almost $-normal)
space which is not epi a-regular. However, every almost a. normal extremely disconnected space is epi a-
regular.

A B-normal epi « -regular non normal space example found in [29] which as follows:

Example 3.12. Let § ={a < wy:cf(a) = wy}, and consider the set X ={(a,B):f < a < w,, (a,B) #*
w2,w?2 and its partition into

A={(a,a)a< w}
B = {(w2,B): B < wy}
D={(a,B):B<a<wy}
Topologize X as follow: Let each (a, 8) € D be isolated, and let an open base in (@, @) € A consists of all sets
of type
{y,)iag <y <a}u U{{y} XCray<y<ayE S}

where a, < a and every C, is a closed and unbounded (club) subset of y, and let an open base in (w,, ) € B
consists of all sets

{(@y):Bo<y <P a, <y < w}
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where By < B,8 < a, < w,.
All above defined basic open neighborhoods are closed. That is, X is zero dimensional hence it is epi a -regular.
Murtinova in [29] proved that this space is 8 -normal non normal.

Remind that a toplogical space (X, 7) is called epi-mildly normal [17] if there exists a coarser topology T on
X such that (X,7) is Hausdorff, mildly normal.

The following theorem induced by theorem 2.4 in [26] shows a relationship between epi-mildly normality, 8
-normal and epi a -regular.
Theorem 3.13. If a topological space is epi-mildly normal and the witness of epi-mildly normality is S-normal
then (X, 1) is epi a-regular.
Proof. Let (X, t) be a topological epi-mildly normal space and the attested of epi-mildly normal epinormal is S -
normal, then there is a coarser topological space (X,7") that is Hausdorff, mildly normal and 8-normal, so by
theorem (2.4) in [26] then (X,7") is Hausdorrf and normal, and therefore it is Hansdorff a -normal, and so
(X,7") is Ty, a -regular [10]. Hence (X, 7) is epi a -regular.m

Epi a -regularity does not imply mildly normality.
Example 3.14. [3] Let P denote the irrationals and Q denote the rationals. For each p € P and n € N, let

Pp = p,l € R2. For each p € P, choose a sequence (p;),en OF rationals such that p, = (p;,0) = (p,0
n

where the convergence is taken in R? with its usual topology U. For each p € P and n € N, let 4,,((p,0)) =
{pr:k=n} and B,((p,0)) = {pr:k =n}. Now,(for each peP and n €N, let U,((p,0)) = {(p,0)} U
A, ((,0)) U B, ((0,0)). Let X = {(x;0) € R%x € R}U {p, = (p,-) € R%p € P and n € N}. For each q €
Q, let B((q,0)) = {{(q,0)}}. For each p € P, let B((p,0)) = {U, ((p,0)):n € N}. For each p € P and each
n € N, let B(p,) = {{p,}}. Denote by  the unique topology on X that has {B((x, 0)), B(p,):x € R, p € Pandn
€ N} as its neighbomood system. Let Z = {(x,0):x € R}. That is, Z is the x -axis. Then (Z,7) = (R,RS),
where RS is the Rational Sequence Topology, see [33]. Since Z is closed in X and (R, RS) is not normal, then
X is not normal, but, since any basic open set is closed-and-open and X is Ty, then X is zero-dimensional, hence
epi a-regular. Now, Let A € IP and B < IP be closed disjoint subsets that cannot be separated in (R, RS). Let
G =U{B,((p,0)):p € A} and H =U {B,((p,0)):p € B}. Then G and Hare both open in (X, ) and G and H are
disjoint closed domains that cannot be separated, hence X is not mildly normal.
Epi a-regularity does not imply epinormality, and here is an example.

Example 3.15. Let G = D®1 where D = {1,2} with the discrete topology. Let H be the subspace of G consisting
of all points of G with at most countabl many zero coondinates. Put X = G X H. Raushan Buzyakova proved
that X cannot be mapped onto a normal space Y be a bijective continuous function [7]. Using Buzyakova’s and
the fact that X is k -space [[8],3.3.27], then this implies that X is Tychonoff and so is epi a -regular and it
cannot be C-normal see 3], and since epinormality implies C-normailty, then X cannot be epinormal.

References

[1]. Alexandroff, P.S. and Urysohn, P.S. Mmoire sur les espaces topologiques compacts, Verh. Akad. Wetensch, Amsterdam. vol.
14.(1929).

[2]. Alshammari, I. Epi-Almost Normality, Journal of Mathematical Analysis VVolume 11 Issue 2(2020),52 — 57.

[3]. ALZahrani, S. and Kalantan, L. C-Normal Topological Property, Filomat 31: 2(2017),407 — 411.

[4]. Alzahrani, S. Epiregular Topological Spaces, Afrika Matematika 29 (2018),803808.

[5]- Bing, R. H. Metrization of Topological Spaces. Canad J. Math, 3(1951)175 — 186.

[6]. Blair, R. L. Spaces In Which Special Sets Are Z-Embedded. Canad. J. Math 28: 4(1976),673690.

[7]. Buzyakova, R. Z. An Example of Two Normal Groups That Cannot be Condensed Onto A Normal Space. Moscow Univ. Math.
Bull. 52,3 page 42. Russion Original in: Vestink Moskov. Univ. Ser. | Mat. Makh. 3. paye 59 .

[8]. Engelking, R. General Topology. PWN, Warszawa. (1977).

[9]. Engelking, R. On The Double Circumference of Alexandroff. Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys. 16, no
8(1968),629634.

[10].  Gheith, N. On a-Regularity. Gharyan University Journal, Libya 17 (2019) 233 — 256.

[11].  Gheith, N.and Ahmed, S. On Almost a-Normal and Almost 3-Normal Spaces. Rewaq Almarefa Journal, University of Tripoli-
Faculty of Education. Volume (9-10), December 2018.

[12].  Alzaharani, S. and Gheith, N. On Epicompletely Regularity. Nanoscience and Nanotechnology Letters.\Volume 12, Number 2,
February 2020, pp. 263 — 269(7)

[13].  Gruenhage, G. Generalized metric spaces. In: Handbook of Set Theoretic Topology. North Holland, Amesterda-m. pp.
428434.(1984).

[14].  Hannar, O. Solid Spaces and Absolute Retracts. Ark.For.Mat. 1(1951)375 — 382.

[15]. Kalantan, L. and Saeed, M. M. and Alzumi H. C-Paracompactness and C, Paracompactness. Turk. J. Math.43 (2019), 920.

[16]. Kalanatan, L. and AlZahrani S. Epinormality. J. Nonlinear Sci. Appl. 9 (2016)5398 — 5402.

[17]. Kalantan L, and Alshammari I. Epi Mildly-Normality. Open Math. 16: (2018),11701175

[18].  Kalantan, L. and Allahabi, F. On Almost Normality. Demonstratio Mathematica XLI, no. 4(2008),961968.

[19].  Alshammari, I. and Kalantan, L. and Thabit, S. Partial Normality. Journal of Mathematical Analysis. Volume 10 Issue 6(2019),
Pages 1 — 8.

[20].  Almontashery, K. and Kalantan L. Results About Alexandroff Duplicate Space. Appl. Gen. Topol. 17, no. 2(2016),117 — 122.

DOI: 10.9790/5728-1703024148 www.iosrjournals.org 47 | Page



On Epi a -Regular Spaces

[21].
[22].

[23].
[24].
[25].
[26].

[27].

[28].
[29].
[30].
[31].
[32].

[33].

Kalantan, L. and Alawadi, A. and Saeed, M. On The Discrete Extension Spaces. Journal Of Mathematical Analysis. 9, no.
2(2018)150 — 157.

Kraysztof, C. C. and Wajciechowski, J. Cardinality of Regular Spaces Admitting Only Constant Continuous functions. Topology
Proceedings. 47(2016)33 — 329.

Lambrinos, P. On almost compact and nearly compact spaces. Rendiconti del Circolo Matematico di Palermo, 1975,24,14 — 18.
Ludwig, L. D. and Nyikos, P. and Porter, J. Dowker Spaces Revisted. Tsukuba Journal of Mathematics 34(1)(2010).

Ludwig, L. and Burke D. Hereditarily @ -Normal Sspaces and Infinte Products. Topology Proceeding 25(2000) 291-299.
Arhangel’skii, A. and Ludwig L. D. On a -Normal and 8 -Normal Spaces. Comment. Math. Univ. Carolinae. 42.3(2001)507 —
519.

Mrsevic, M. and Reilly, I.L. and Vamanamurthy, M.K. On semi-regularization topologies. J. Austral. Math. Soc.(Ser.) 38,4054
(1985).

Mysior, A. A Regular Space Which is Not Completely Regular. Proc. Amer. Math. Soc. 81, no. 4(1981)652 — 653.

Murtinov4, E. A B-Normal Tychonoff Space Which is Not Normal. Comment. Math. Univ. Carolinae. 43.1(2002)159 — 164.
Murtinov4, E. On a-Regularity. Topology Proceeding. (2001).

Patty, C.W. Foundations of topology. Jones and Bartlett, Sudbury. (2008).

Seepin, E.V. On Topological Products, Groups, And a New Class Of Spaces More General Than Metric Spaces. Soviet Math. Dokl.
17:1(1976), 152155.

Steen, L. and Seebach, J. A. Countrexample in Topology. Dover Publications, INC. New York (1995).

NADIA GHEITH, et. al. "On Epi a -Regular Spaces." I0SR Journal of Mathematics (IOSR-JM),
17(3), (2021): pp. 41-48.

DOI: 10.9790/5728-1703024148 www.iosrjournals.org 48 | Page



