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Module-valuations and quasi-valuations

Shai Sarussi

Abstract

Let F be a field with valuation v and valuation domain O,. In
[Sal] we showed that for any algebra R over O, there exists a quasi-
valuation on R that is induced from R and v. Let A" be an O,-module.
In this paper we discuss module-valuations on N. We construct the
filter module-valuation on N and present some connections between
filter module-valuations and filter quasi-valuations.
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1 Introduction and some previous results

The study of valuations and their corresponding valuation rings in the scope
of commutative algebra has long been an interesting and productive topic.
Studying valuations on division rings has also been fruitful, and has been
a key ingredient in the construction of various counterexamples, such as
Amitsur’s construction of noncrossed products division algebras.

Recall that a valuation on a field F is a function v : F — " U {oc},
where I' is a totally ordered abelian group and where v satisfies the following
conditions:

(Al) v(z) # oo iff £ # 0, for all x € F;

(A2) v(zy) =v(x) + v(y) for all =,y € F;

(A3) v(x + y) = min{v(z),v(y)} for all z,y € F.

Throughout the last few decades researchers have generalized the no-
tion of valuation, resulting in some applicable tools. Some notable such
generalizations are: the Manis-valuations studied by Knebusch and Zhang
(cf. [KZ]), pseudo-valuations studied by Cohn (cf. [Co]) and Huckaba (cf.
[Hu]), the value functions associated with Dubrovin valuation rings that
were studied by Morandi (cf. [Mor]), and the gauges that were studied by
Tignol and Wadsworth (cf. [TW]). Another approach was initiated in 2012
by the author in developing the notion of a quasi-valuation.

Recall (cf. [Sal, Introduction]) that a quasi-valuation on a ring R is a
function w : R — M U {oc}, where M is a totally ordered abelian monoid,
to which we adjoin an element oo, which is greater than all elements of M,
and where w satisfies the following properties:

(B1) w(0) = oo
(B2) w(xy) > w(x) +w(y) for all x,y € R;
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(B3) w(z +vy) > min{w(x),w(y)} for all z,y € R.
Let v be a valuation on a field F'; the corresponding valuation domain
of v is the integral domain whose field of fractions is F', defined by

Oy ={z € F | v(x) >0}

We denote by I';, the value group of the valuation v. Likewise, let w be
a quasi-valuation on a ring R; the gquasi-valuation ring is the subring of R
defined by

Ow={z € R | w(x) > 0}.

We denote by M, the value monoid of the quasi-valuation w, i.e., the sub-
monoid of M generated by w(R\ {0}).

In [Sal] the theory of quasi-valuations that extend a given valuation
was developed. Namely, for a given valuation v on a field F, the corre-
sponding valuation domain O, and a finite field extension E/F, we studied
quasi-valuations on F extending v on F'. We showed that every such quasi-
valuation is dominated by some valunation extending v. The most important
result presented in [Sal] was the construction of the filter quasi-valuation,
for any algebra over a valuation domain. We showed that if A is an F-
algebra and R is an O,-subalgebra of A lying over O, then there exists a
quasi-valuation on R@g, F (called the filter quasi-valuation) extending v on
F' such that the quasi-valuation ring is equal to R (under the identification
of R with R ®p, 1). In particular, if R is an O,-subalgebra of A lying over
O, such that RF = A then there exists a quasi-valuation on A extending
v on F. It was also shown that there exists a tight connection between the

prime spectra of O, and R.

In this paper the symbol € means proper inclusion and the symbol C
means inclusion or equality.

We recall now some basic definitions and the main steps in constructing
the filter quasi-valuation introduced in [Sal]. For further details and proofs,
see [Sal, Section 9.

The first step is to construct a value monoid. constructed from the value
group of the valuation. We call this value monoid the cut monoid. We start
by reviewing some of the basic notions of Dedekind cuts of ordered sets. For
further information on Dedekind cuts see, for example, [FKK] or [Weh].

Definition 1.1. Let T be a totally ordered set. A subset S of T is called
initial if for every vy € Sanda € T, if o < ythena € S. A cut A = (AL, Af)
of T is a partition of T into two subsets A" and AF, such that, for every
ac Al and B e AR, o < 8.

The set of all cuts A = (A", A%) of the ordered set T contains the
two cuts (0, T) and (T,0); these are commonly denoted by —oc and oo,
respectively. However, we do not use the symbols —oc and 0o to denote the
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above cuts since we define a “different” oo. So, as usual, we adjoin to an
element co greater than all cuts.
Given a € T, we denote

(—o0,a] ={yeT |y < a}
and

(,00)={y €T |y>a}
One defines similarly the sets (—oc,a) and [a, c0).

To define a cut we often write A = S, meaning that A is defined as
(S,T\.5) when S is an initial subset of T'. The ordering on the set of all cuts
of T is defined by A < B iff A¥ C B (or equivalently A% O BR). Given
S C T, ST is the smallest cut A such that S C AL, In particular, for o € T
we have {a}T = ((—o0, a, (o, x)).

Now, let I' be a totally ordered abelian group; we denote by M(I") the
set of all cuts of I'. For subsets S, 5" CT" and n € N, we define

S+S5 ={a+8|aecS 38}

nS={s1+s2+..+sp|s1,52,....,5, €5}
For A, B € M(T'), their (left) sum is the cut defined by
(A+B)E = Al + B,
The zero in M(T) is the cut ((—oo, 0], (0, 00)).
For A € M(I") and n € N, the cut n.A4 is defined by
(nA)E = nAL.

It is well known (see for example [FKK] or [Weh]) that (M(T'),+, <) is
a totally ordered abelian monoid. M(I") is called the cut monoid of I".

Note that there is a natural monomorphism of monoids ¢ : I' = M(I')
defined in the following way: for every a € T,

¢(a) = ((—o0,a], (a, 00))

For o € I' and B € M(I'), we denote B—a for the cut B+ (—a) (viewing
—a as an element of M(I)).

The following theorem is of utmost importance to the study of quasi-
valuations.

Theorem 1.2. (¢f. [Sal, Theorem 9.19]) Let v be a valuation on a field F
with value group I'y,. Let O, be the valuation domain of v and let R be an
algebra over O,. Let M(I'y) denote the cut monoid of I',. Then there exists
a quasi-valuation w : R — M(L,) U{oco} induced by (R,v).

The quasi-valuation discussed in Theorem 1.2 is called the filter quasi-
valuation induced by (R, v).
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2 Module-Valuations

In this section we present a value function on modules over valuation rings,
to which we call a module-valuation. We shall present a construction of
a module-valuation - the filter module-valuation - constructed in a simi-
lar way as the filter quasi-valuation. Then. we present an interesting and
quite surprising connection between filter module-valuations and filter quasi-
valuations. All modules are assumed to be left modules.

Definition 2.1. Let F' be a field with valuation v and valuation ring O,.
Let N be an O,-module. A module-valuation on N (with respect to v) is a
function w : N' — M U {00} where M is a totally ordered abelian monoid
such that:

w(xq + x2) > min{w(xi), w(za)} for all 1,29 € N (1)

w(ar) =v(a) + w(x) for all e € O, and = € N. (2)
For w a module-valuation on N (with respect to v), we define
Np ={k e N |w(k) > 0}.

It is easy to see that N, is an O,-submodule of N'. We denote by M,, the
submonoid of M generated by w(N \ {0}).

We shall now present the construction of the filter module-valuation.
Let v be a valuation on a field F' with value group I',. Let O, be the

corresponding valuation domain, and let N' be an O,-module. For every
x € N, the Oy-support of © in N is the set

SNIOw = {a € O] € aN'}.

We suppress \N'/O, when it is understood.

Note that A" need not be a ring; thus r € a\ is not equivalent to
N C aN, as in the construction of the filter quasi-valuation (since A\~
may not be defined).

Recall that for every A C O, we denote (v(A))Z" = {v(a) | a € A}: in
particular,

(v(5:))%° = {v(a)la € S;};

The same proof (see [Sa, Lemma 9.16]) as in the construction of the filter
quasi-valuation holds here to show that (v(S;))2" is an initial subset of
()2,

So, we define

v(Sz) = (v(Sz)) =" U (T) <%

and note that v(S;) is an initial subset of I';.
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Definition 2.2. Let v be a valuation on a field F' with value group I';,. Let
O, be the corresponding valuation domain and let A" be an O,-module. Let
M(T',) denote the cut monoid of I',. We say that the function w : N' —
M(Ty) U {oo} is induced by (N, v) if w satisfies the following:

1. w(x) = (v(Sz), Ty \ v(Sg)) for all 0 # = € N. Le., w(z)* = v(Sz);

2. w(0) = oc.

Remark 2.3. Notation as in the previous Definition and let 0 # = € N.
We note that it is possible to have v(S,) = ', and thus w(z) = ([, 0);
for example, take N' = F; in this case for every 0 # r € N, we have
w(x) = ([y,0). On the other hand, by definition, v(S;) 2 (I'y)<Y and
0 € v(S;); therefore v(S;) 2 (—oco,0]; i.e., w(x) > 0. Thus, for w a function
induced by (N,v) and = € N, we have w(x) > 0 (recall that by definition
w(0) = 00). In particular, w cannot satisfy w(x)* = 0, i.e., (0,T,) ¢ im(w).

Lemma 2.4. Let N be an Oy-module, let = be a non-zero element of N,
and let a,b € O, such that v(b) = v(a). Then a € S; iff b€ S;.

Proof. Assume that a € S;. By assumption = # 0 and thus b # 0; hence,
a = bb~'a. Since v(b) = v(a), we get b~ 'a € O,. Therefore, x = az for some
z € N implies = = b(b~'a)z € bN.

O

Lemma 2.5. Let N be an O,-module, and let =,y be non-zero elements of
N. Then Sy C Sy iff v(Sz) C v(Sy).

Proof. The right to left implication is obvious. For the other direction,
assume to the contrary that there exists a € S, \ S,. By assumption = # 0
and thus a # 0. Thus, By Lemma 2.4, for every b € O, satisfying v(b) =
v(a), one has b & S,. Hence, v(a) € v(S5,), a contradiction. O

The following proposition holds for arbitrary O,-modules.

Proposition 2.6. Let v be a valuation on a field F with value group ['y,.
Let O, be the corresponding valuation domain and let N be an O,-module.
Let M(T',) denote the cut monoid of I',. Then, the function w : N —
M(T,) U {oc} induced by (N,v) satisfies w(x + y) > min{w(zx), w(y)} for
all o,y e N.

Proof. By definition, for every 0 # = € N, w(x)F = v(S,) and w(0) = oo,
We prove that w satisfies w(z + y) > min{w(z),w(y)} for all z,y € N.
First note that if at least one of them is zero then it is easily seen that
w(z+y) > min{w(z), w(y)}. Also, if £+ y = 0 then the required inequality
is trivial. So, we may assume that x,y and r + y are non-zero. Assume that
w(z) < w(y), i.e, v(Sz) C v(Sy). Thus, by Lemma 2.5, S, C 5,. Now, let
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a € Sy; then r = az for some z € N, and thus y = a2’ for some 2/ € N.
Hence,

r+y=az+az =alz+2")€aN;
ie., a € Syiy. Therefore 5, C S;4, and by Lemma 2.5, v(S52) C v(Sziy):
ie., w(z+y)* 2 w(x)r. Thus,

w(z +y) 2 w(z) = minfw(z), w(y)}.
O

Remark 2.7. Let N be a torsion free module over an integral domain C. Let
0#¢eC,be C satisfying ¢ 'b € C; let 2,y € N and assume cx = by.
Since

by = c(c'b)y,
we may cancel ¢ and conclude that = = (r:_'1 b)y. Of course, if N is not
torsion free. then this fact is not valid.

Theorem 2.8. Notation as in Proposition 2.6, and assume in addition that
N is torsion free over Oy; then

w(er) = v(e) + w(zx)
for every ¢ € Oy, x € N. In other words, w is a module-valuation.
Proof. First note that if ¢ = 0 or z = 0 then w(cz) = v(c) + w(x) is clear.
Now, let v(a) € (—oo, v(c)] and v(b) € v(S;) for a,b € O,. We have ¢ € a0,
and x € bN; thus cx € abVN, i.e., v(a) + v(b) € v(Se). Namely,
w(cx) = v(c) + w(x).

Note that we may assume above that a,b € O, since if one of them (or
both) is in F'\ O, then one can take a',b’ € O, satisfying v(a) < v(a’) €
(—oo,v(e)] and v(b) < v(b') € v(Sz). Thus, by the proof above, v(a’) +
v(b) € v(Se). Now, v(a) + v(b) < v(a') + v(b) and v(S,.,) is an initial
subset of I'y; therefore v(a) + v(b) € v(Se).

For the other direction we need to show that if v(b) € v(S.;) for b € O,
then

v(b) € (—oo,v(e)] + v(Sz).
Note that if v(b) < v(c) then clearly v(b) € (—o0,v(c)] +v(Sz). (Indeed, 0 €
v(Sz) and (—oc, v(c)| is an initial subset of T, and thus v(b) € (—oc, v(c)]).
Thus, we may assume that v(b) > v(c), i.e., ¢ b € O,. Therefore, by the
definition of S,, and Remark 2.7, we have

be S, = cx € bN = x € ¢ bN.
So we have ¢ b € S,. and writing b = ¢(c™'b), we conclude that

v(b) = v(c) + v(c™'b) € (o0, v(c)] + v(Sy).

DOI: 10.9790/5728-1703025768 www.iosrjournals.org 62 | Page



Module-valuations and quasi-valuations

In light of the previous results, we define the filter module-valuation.

Definition 2.9. Let A be a torsion free O,-module. The function w : N —
M(T,)U{oo} induced by (N, v) is called the filter module-valuation induced
by (N, v).

In fact, when considering the function induced by an O,-module and
v, the second property of the module-valuation distinguishes between the
torsion free O,-modules and the non-torsion free O,-modules; more precisely,
we have the following proposition.

Proposition 2.10. Let N be an O,-module and let w denote the function
induced by (N',v); Then the following conditions are equivalent:

(1) N is torsion free over O,;

(2) w is a module-valuation;

(3) w satisfies the second axiom of the module-valuation.

Proof. The implication (1) = (2) is by Theorem 2.8. The implication (2) =
(3) is trivial. We prove that (3) implies (1). Assume that A is not torsion
free over (J,; then there exist 0 # ¢ € O, and 0 # = € N such that ex = 0.
Hence

oo = w(0) = w(ex) > v(c) + w(x)

since v(c), w(xr) < oo.

We note that even in the case in which zy is defined for x,y € A" and even
in the case in which xy € NV, one does not necessarily have w(zry) > w(z) +
w(y), where w is the filter module-valuation induced by (A, v), as opposed
to a quasi-valuation. The following example demonstrates this situation.

Erample 2.11. Let p be a prime number and let & be a positive integer. Let
v denote the p-adic valuation on () with corresponding valuation domain
0y, and let N’ = EIJC—OU. Let w denote the filter module-valuation induced

by (N,v); then for any a € O,, we have w(p—lk -a) = v(a). In particular,
w(:) =0, w(p) = 2k and w(1) = k. So,
1

b= w(l) = wir 1) # wip) + w(ph) = 2.

The following remark can be easily deduced by [Sal, Remark 9.29] (let-
ting the algebra R be a module).

Remark 2.12. Let C be an integral domain, S a multiplicative closed subset
of C with 0 ¢ S, and N a module over C. Then every z € N ®c CS~! is of
the form n (\’{)% forne N and 3 € 5.

DOI: 10.9790/5728-1703025768 www.iosrjournals.org 63 | Page



Module-valuations and quasi-valuations

We now consider the tensor product N"@p, F where N is a torsion free
algebra over O,. Our goal is to construct a module-valuation on N @¢, F
using the filter module-valuation induced by (N, v) that was constructed
earlier.

Remark 2.13. Note that if A is a torsion free module over O,, then there
is an embedding N" — N ®¢, F; we shall see that in this case the module-
valuation on N' ®@¢, F extends the module-valuation on N.

Lemma 2.14. Let v, F,I'y and O, be as in Proposition 2.6. Let N be a
torsion free module over O,, S a multiplicative closed subset of O, with
0¢ S, and let w: R — M U {cc} be any module-valuation where M is any
totally ordered abelian monoid containing I',. Then there erists a module-
valuation W on N @0, 0,571, extending w on N (under the identification
of N with N @0, 1), with value monoid M U {oc}.

Proof. In view of Remark 2.12, let = ® % eN ®q, 0,51 and define
_ 1
W(e @ ) = w(e) — o(8) (= wm) + (~v(d)) )

Note that W is well defined since if ¢ @ % =y® % then there exists a non-
zero a € O, such that a(dr — fy) = 0 and thus, since N is torsion free,
é6x = [y. Therefore, by our assumption that w is a module-valuation (and
thus w(ez) = v(e) + w(z) for every ¢ € O, and z € N'), we have

v(9) +w(r) = v(B) + w(y);

ie., Wz %) =W(y® %)

We prove now that W satisfies the axioms of a module-valuation. First
note that W (0 ® 1) = w(0) — v(1) = oco. Next, note that for every two
elements ¢ ® %,y & % e N @0, 0,51, assuming that v(3) < v(d). we have
4 = aff for some a € O, and thus

— ﬂl
I@I—:I'?C—:C"I@_"

A " af 5

Therefore. we may assume that we have elements 1‘@%; Y @% e N@op,0,S -1
then

W(r® % +y® %) =W((z+1y) @ %)
= w(x +y) — v(d) = min{w(x),w(y)} — v(J)
= min{W(z ® %} Wy %)}.
Finally, note that A" embeds in N ®¢, 0,5~ ! and for all x € N, we have
W(r®l)=w()—vl)=w().
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Theorem 2.15. Let v, F\T',, O, and M(I',) be as in Proposition 2.6. Let
N be a torsion free Oy-module and let w denote the filter module-valuation
induced by (N,v); then there exists a module-valuation W on N @o, F,
extending w on N, with value monoid M(I'y) U {oc} and Nw =N @0, 1.

Proof. Apply the previous Lemma by taking S = O, \ {0}, and thus F =
0,51 to get a module-valuation W on N ®¢, F, extending w on N, with
value monoid M(I',) U {cc}. Note that by Remark 2.12, by taking C' = O,
and S = O, \ {0}, every element of N ®g, F is of the form = :R:% forre N
and 3 € O,. So, W is given hy

Wiz ® %) =w(z) —v(B5)

for every = ® % eN ®gp, F.

Finally, note that for every element © € N, we have, by Remark 2.3,
that w(x) > 0 and thus W(r ® 1) = w(x) > 0. On the other hand, let
T ?'C% €N ®¢, F with W(z ® %) > 0; then w(x) > v(B); ie., B € 5, and
thus one can write = = Sy for some y € N'. Hence,

1
T® Z_Syi?)g:y@l.

™| =

Consequently, Ny = N @ 1.

Note: W as described in the previous Theorem will also be called the
filter module-valuation induced by (N, v)

Remark 2.16. Let N be an O,-module and let 0 # = € /. By Remark 2.3,
v(Sz) 2 (—oc,0]. Thus, for every = ® % e N @0, F where = # 0,

W(ze %)JL = v(8z) + (=00, —v(B)] 2 (=00, —v(B)),

ie, (W(r® 1))~ #0. Note that (W(0® 3)) = oo — v(8) = co. Hence,
(0,T,) ¢ im(W).

Lemma 2.17. Let N7 C Ny be two O,-modules. Let wy;, and wyy, de-
note the filter module-valuations induced by (Ni,v) and (Na,v), respec-
tively. Then for every © € N1, wy,(x) < wp,(x). Consequently, for any
Y@ % €N1®o, F, one has Wa, (y @ §) < W, (y @ 5).

Proof. Let a € SN1; then = € aN; C aNs. Thus, a € S¥2. So, M C §A2
and hence v(SM1) C v(SN2); ie., wy, (v) < wps, (2).
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Ezxample 2.18. Notation as in Example 2.11. Note that for any a € O,,, we
have w(pik -a) = v(a). It is also easy to see that N @p, Q = @ and by the
definition of the filter module-valuation we have W(xz) = k + v(z) for all
e Q.

From now on we let A denote an F-central simple algebra, where F is a
field with valuation v and a corresponding valuation domain O,. By Wed-
derburn’s Theorem A = M, (D) where D is a division ring finite dimensional
over F'. Let R denote an O,-subalgebra of A such that FR = A and R is
lying over O,. Such R is called an O,-nice subalgebra of A; see [Sa2|, [Sa3|
and [sa4] for more information on such algebras. By [Sal, Theorem 9.34],
there exists the filter quasi-valuation on RF extending v on F'; we denote it
by w. We also denote by e;; the matrix units and for = € A we denote by
(x);; the element in the i’th row and j'th column of .

We define, for every 1 <i,7 < n,

Tij = {(z)ij | x € R}; and

Rij = {(x);; | * € R and (x)3; = 0 whenever k # i or [ # j}.

It is not difficult to see that, for every 1 < 1,5 < n, Tj; and R;; are
O,-submodules of D); Moreover, R;; C T;;. Thus there exist filter module-
valuations wR,, on R;j @0, F and wr,, on Ti; @0, F induced by (R;;,v) and
(T35, v), respectively. By Lemma 2.17, wg,, < wr,,.

Note that M, ﬁ-fwT” and M'wnw are contained in M(I',).

Lemma 2.19. Notation as above and let ©x € R. Then for all 1 <1i,j < n,
'w((l’)zﬁjeij) = ‘wRU((l’)z‘j)-

Proof. We prove that a € S{i)ueu iff a € Sgc‘)’ . Now, a !(z)ijeij € R

5 e Qo ing s 0 : R, ‘ § A
iff a=*(x);; € R;; which is equivalent to a € S(I)JU. So, w((z)ijeij)” =

wR,, ((I),-j)[’ and the lemma is proved.

Lemma 2.20. Notation as above and let = € R. Then

T) > i ) )5 ) E
w@) > min (un, ((05)

Proof. We write x = ), i<, (2)ijei; and recall that w is a quasi-valuation.
Thus,
w(r) = w( Z (z)ijes;) = min {w((z)i5eq:5)}-

— 1<i,j<n
1<4,j<n

By the previous Lemma, w((x)ije;;) = wr,,((x)ij) and we are done.

|
Lemma 2.21. Let x € R. Then, for all1 < 1,7 <n,

w(z) < wr,, ((2)i5):
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Proof. By the definition of the Tj;’s, a~lz € R implies a._l(-.,r)ij € T;; for all
1 <4,j <n. Thus, a € SF implies a € S(TI‘; and w(r)l < wg;g((;r)ij)L for
all1<4e,7<n.

O
Lemma 2.22. Let x € R. Then
w(z) £ min {uwr, ((£)i)}-
Proof. Follows at once from the previous Lemma.
1
Proposition 2.23. Let x € R. Then
min {w;”((2);y)} € w(x) < min {w;’((2)iy)}-
1<ij<n 1<ij=n
Proof. By Lemma 2.20 and Lemma 2.22.
O

We shall now see that if R is of a certain type then one can obtain
the filter quasi-valuation w induced by (R,v) in terms of appropriate filter
module-valuations.

Theorem 2.24. If R is of the form R = &;;S;je;; where each Si; is an
Oy -submodule of D. Then

o - : p ,S_%J Y. .Y
w(x) = 1513}.1%“{% ()i}
Proof. By assumption, for every 1 < 7,7 < n, R;; = 5;; = T;;. Therefore,

the theorem is easily deduced by Proposition 2.23.
O

The surprising thing is that although the w;;’s need not be quasi-valuations
(namely, the multiplication property is not necessarily satisfied) their mini-
mum is actually a guasi-valuation.
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