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The concept of commutativity degree for finite groups is an aspect of abstract algebra that places the 

subject  on a numerical scale. Cody, C (2010) has determined the maximum size of the centre of finite 

groups while Anna, C (2010) obtained the equivalent in terms of commutativity degree. In this paper 

we obtained the commutativity degrees of finite groups of order less that one hundred where the 

groups have orders of the form 
ba

qpG  , ba   using the conjugacy classes via the class equation 

as instruments where p is an even prime while q is an odd prime such that 10q , 62  a and 

20  b ..  
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I. Introduction 

1.1 Definition  
A group is a non-empty set G on which is defined a rule for combining two elements a,b  G such that the 

following axioms are satisfied for all a,b   G: 

1. ab  G   

2. a (b c) = (ab) c 

3. these exists an element e   G called the identity element in G such that ae = a = ea   

4. there exists an element a-1   G called the inverse element of G such that: 

                 aa-1 =e = a-1 a. 

 A set G which satisfies axiom 1 only is called a groupoid. If G satisfies axiom  2 it is called a semi group. A 

semi group which satisfies 3 is said to be a monoid. 

1.2 Definition 
A group G with the property that ab = ba for some pair of elements a,b  G is said to be a commutative group. 

A group in which there exist a pair of elements a, b   G endowed with the property that  ab ≠ ba  is called a 

non - commutative group. 

 

1.3 Definition  
Let G be a group and H < G.  For q   G the subset Hq = {hq:h   H} of G is called a right coset of H in G. 

Distinct right cosets of H in G form a partition of G. That is every element of G is precisely in one of them. Left 

coset is similarly defined. If G is commutative we just talk of coset of H. The number of distinct right cosets of 

H in G is called the index of H in G denoted by   | : |G H  If G is finite so is H and G is partitioned into |G:H| 

cosets each of order |H| and we write: 

                                   HHGG :  

and note that |H| and |G:H| divide |G|.  

The next definition, decomposes a group into smaller groups and we give an analogous definition of subsets in 

groups.  

1.4 Definition 
A non - empty subset N of a group G is said to be a subgroup of G written N ≤ G, if N is a group under the 

operation inherited from G. If N ≠ G, then N is said to be a proper subgroup of G.  

A subgroup N of G such that every left coset is a right coset and vice versa is called a normal subgroup of G. 

That is Nx = xN or x-1Nx ≤ N and we write N G. A normal subgroup is  characterized by the fact that it does 
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not possess any conjugate subgroup apart from itself. That is aH = Ha or a-1Ha = H for all a in G. If G is 

commutative then every subgroup of G is commutative 

Next we count the number of element in groups 

1.5 Definition 
The number of elements in a group G denoted by |G| is called the order of the group. If G is finite of order n we 

have |G|  = n otherwise |G|  =   if G has infinite order.   

The least number n if it exists such that an = 1for a in G is called the order of a and we write o(a) = n. That is 

o(a) = min{a > 0:an = 1 }. If no such n exists then o(a) = ∞. In the latter we say that powers of a are distinct 

but not all are distinct in the former.. 

  

1.6 Lemma  
Any group of even order contains an element of order 2. That is for g   G with g ≠ 1 then        g2 = 1. In fact 

there is an odd number of such elements which are called involutions. 

 

A consequence of the decomposition, in 1.3 naturally leads to an important theorem in this paper: The 

Lagrange’s Theorem which is next.  

 

1.7 Theorem  
If G is a finite group and H is a subgroup of G then the order of H divides the order of G.  

Proof 

By 1.2 we have that the right cosets of H form a partition of G. Thus each element of G belongs to at least one 

right coset of H in G and no element can belong to two distinct right cosets of H in G. Therefore every element 

of G belongs to exactly one right coset of H. Moreover each right coset of H in G contains |H| elements. 

Therefore if the number of right cosets of H in G is n, then |G| = n|H|. Hence the order of H divides the order of 

G. 

 

1.8 Remark  
Lagrange’s Theorem greatly simplifies the problem of determining all the subgroups of a finite group. The 
converse of theorem 1.6 is not true in general except for groups of prime order  power.  

 

1.9 Definition  
Let a, q  G. Then a is conjugate to q in G if there exist an element g G  such that q=g-1ag. The set of all 

elements of G that are conjugate to a in G is called the conjugacy class of a in G which we denote by C(a). And 

as such: 

                                      C(a) ={g-1 ag:g G} 

 Its to be noted that C(a) is a subgroup of G and by 1.6 its order divides that of G. Subgroups  belonging to the 

same conjugacy class are conjugates. Such subgroups are isomorphic. The reverse does not hold in general as 
we have in the case of abelian groups where two isomorphic subgroups may not be conjugates. However 

conjugate elements lie in the same conjugacy class and have the same order.  

1.10  Definition  
The centre Z(G) of a group G is the set of all elements z in G that commute with every element q in G. We 

write: 

                           Z(G)={z G:zq=qz,  for all q G} 

Z(G) is a commutative normal subgroup of G  and  G modulo its centre Z(G) is isomorphic to the inner 

automorphism,  inn(G) of G. If Z(G) = {1} where 1 is the identity element of G, then G is said to have a trivial 

centre .  The centre of a group G is its subgroup of largest order that commute with every element in the group. 
The divisors of |G| reveal a lot about the order of Z(G) and the conjugacy classes of G. If N is a normal 

subgroup of G such that |N|=2, then N Z(G). 

We have the properties of the subgroups of the centre of the group G from Louis  (1975) as follows . 

1.11 Proposition  
If H is a subgroup of Z(G), the centre  of the group G, then H is a normal subgroup of G. In particular Z(G) is 
normal in G. 

 

Next we define an important concept and relate it to the conjugacy class. 

1.12 Definition  
The centralizer CG(q) of an element q in G is the set of all elements g  G that commute with q. That is: 

                                     CG(q) ={g G:gq=qg, for some q G}. 
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 This is a subgroup of G but not a normal subgroup in general. However,  the index of CG(q) in G is the size of 

the conjugacy class C(q) of q in G. That is 

           |C(q)|=|G:CG(q)|. 
Consequently the quotient of G by CG(q) is not a group In particular |C(q)| divides |G|. If               q Z(G) then 

|C(q)|=1 and q-1 gq=q. in this case CG(q) = G.   

What follows  is a corollary from James and Martin (2001) 

1.13 Corollary  
If G is a finite group, then: 

(i) every group is a union of its conjugacy classes and distinct conjugacy classes are disjoint; 

(ii) conjugacy class is an equivalence relation where the equivalence classes are the conjugacy classes. 

The next lemma relates the centre of G to the centralizer of the elements of G is: 

1.14 Lemma  
The centre Z(G) of a group G is the intersection of the centralizers CG(a) of elements a in G. 

 

Herstein (1964) has it that if G is a finite group then the number of elements conjugate to a in G is the index of 

the normalizer of a in G.  

1.15 Remark  
 Let G be a group and h, g be elements of G. If the conjugacy classes of g and h overlap then the conjugacy 

classes are equal. The number of distinct or non-equivalent conjugacy classes is called the class number of the 
group G. In the symmetric group on n objects, each conjugacy class belongs to exactly one partition  of n. The 

number of such conjugacy classes is equal to the number of integer partitions of n. The conjugacy classes of a 

group are disjoint and hence we recover G from their union, from 1.13. 

The next theorem presents the class equation for finite groups whose proof follows readily from 1.12 

 

1.16 Theorem  
Let G be a finite group then 

                                  |G| = ∑|G: CG(qi)|        (i), 

 where the sum runs over the elements from each conjugacy class of G.  
We note that from 1.13, equation (i) becomes  

                          |G|= |Z(G)| + ∑|G: CG(qi)|        (ii)  

Here the sum in (ii) runs over qi from each conjugacy class such that qi is not an element of Z(G). equation (ii) 

above we have:  

      |G|=|Z(G)| + ∑|C(qi)|                    (iii)  

1.17 Remark  
  In the abelian environment, the sum in equation (iii) of 1.18 is zero. Consequently, the class equation is 

relevant only when we are in the non abelian environment. The fact that each element of Z(G) forms a 

conjugacy class containing just itself gives rise to the class equation.  
 

Just as there are only n finite number of groups up to isomorphism with a given size, we also have that there is a 

finite number of groups up to isomorphism with a given number of conjgacy classes. Hence we have:  

1.18 Lemma  
Let G be a group of order pn, with n ≥ 1 then: If {1} ≠ H G, we have that H Z(G) ≠{1}. In particular Z(G) 

≠{1}; 

 

 

 

Proof  

Since |G| = pn , H G. From 1.6  we have that |H| divides the order of G. This implies that |H| is a power of p. 

Furthermore, Z(G) ≤ G and given that Z(G) ≠ {1}, we have that p divides the order of G. Now p also divides the 

orders of H and Z(G).  Therefore H Z(G) ≠ {1} and Z(G) ≠{1}. 

 James and Martin (2001) proved the next Lemma. 

1.19 Lemma  
 Let G be a group of order pn with 1 ≤ i ≤ 4. Then G contains an abelian subgroup of index p. 

 

Mark (2011) proves the next theorem.  

1.20 Theorem  
If a finite group G has a centre Z(G) and G/Z(G) is cyclic then G is abelian. 

From  1.7 we have: 
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1.21 Corollary  
The order of an element a in G divides the order of G since <a> is a subgroup of G generated by a. 

 

Houshang and Hamid (2009)  hence the proposition that follows which is a consequence of 1.16 

 

1.22 Proposition  
If the order of a finite group G is a power of a prime p then G has a non trivial centre. Equivalently the centre of 

a p - group contain more than one element.  

 

Proof  

Let G be the union between its centre and the conjugacy classes say Ji  of size greater than 1. 

Then from equation (iii) of 1.18 

                     |G|=|Z(G)|+∑|C(Ji)| 

 Each conjugacy class Ji has size of a power w say of prime p such that w ≥ 1. In this case          w = 0 for the 

conjugacy classes whose elements are central elements. Since each conjugacy class Ji has size a power of p then 

|Ji| is divisible by p. Furthermore as p divides |G|, it follows that p also divides |Z(G)|. Accordingly Z(G) is non- 

trivial. 

Observe that from 1.22 there are elements of G other than the identity that commute with every element of G. 

What follow is an important theorem as in Cody (2010) and Jelten and Momoh (2014) 

1.23 Theorem  
 If G is a finite non abelian group, then the maximum possible order of the centre of G is ¼|G|.That is, |Z(G)| ≤ 

1/4|G|. 

 

Proof 

    Let z Z(G). Since G is non abelian, Z(G) ≠ G. Thus there exist an element q G such that q is not in the 

centre. This imply that CG(q) ≠ G and CG(q) ≠ Z(G). Since z Z(G) every element in G commute with z, so qz = 

zq. It follows that z   CG(q). As q   CG(q), we have that Z(G)  is a proper subset of CG(q).  Since a group that 

is a subset of a subgroup under the same operation is itself a subgroup of the subgroup, we find that Z(G) is  a 

proper subgroup of CG(q). By 1.6 and Jelten, N. B (2015), it follows that: 

                                |Z(G)| ≤  1/2|CG(q)|. 
Now, since we assumed CG(q) ≠ G, then CG(q) is a proper subset of G. Therefore by 1.6 and the fact that the 

centralizer of any group element is a subgroup of G, we find that  |CG(q)| ≤ 1/2|G|.That is:  

 |Z(G)| ≤  1/2|CG(q)| 

            ≤  1/2(1/2|G|) 

            =  1/4|G|. 

We relate the centralizer of an element to the size of a finite non abelian group G proved by Cody, C.  (2010) 

 

1.24 Lemma  

Let G be a finite non abelian group and t G  such that ( )t Z G , then: 

    ( ) | | 2
G

C t G . 

 

1.25 Remark  

In a commutative group, Z(G) = G, ( )
G

C t G  for all t in G. But, ( )
G

C t G  if G is non abelian. In which 

case ( )Z G G . The number of the centralizers that are equal to G is |Z(G)| .  

From Jelten, N and Apine, E (2015) we have the next two theorems 

 1.26 Theorem  

 Let G be a finite nonabelian group whose order is 
r

p with centre of order 
n

p . Let the order of the centralizer 

of an element x be 
m

p  where m, n and r are positive integers such that n m n r  and m r , then 

1
| | ( 2 )

4

w r
C p p  , where |C| the number of conjugacy classes. 

 

Proof  

From the class equation we have  
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| | | ( ) |

1 | ( ) |

| | | ( ) | | : ( ) |

C Z G

G i

i Z G

G Z G G C x



 

   , ( )x Z G   with  |C(x)| ≥ 2. 

So that | | | ( ) | 2 (| | | ( ) |)G Z G C Z G    

1
| | ( ) 2 | | 2 | ( ) |

2
G

G C x C Z G    

1
| | ( ) 2 | | | ( ) |

2
G G

G C x C C x     

2 | | ( ) 4 | | 2 | ( ) |
G G

G C x C C x    

 2 4 | |
w r

p p C   

 
2

| |
4

w r
p p

C


  

1
( 2 ) | |

4

w r
p p C   as required 

 

1.27 Theorem 
  Given that a finite group G is of prime power order with centre Z(G), then we count the number of conjugacy 

classes from the centralizer as follows: 
1

| | (3 | | | ( ) |)
4

G
C G C x  . 

 

| | | ( ) |

1 | ( ) |

| | | ( ) | | : ( ) |

C Z G

G i

i Z G

G Z G G C x



 

   , ( )x Z G   with  |C(x)| ≥ 2, from 1.24 

So that | | | ( ) | 2 (| | | ( ) |)G Z G C Z G    

 
1

| | ( ) 2 | | 2 | ( ) |
2

G
G C x C Z G    

 
1 1

| | ( ) 2 | | | |
2 2

G
G C x C G    

2 | | ( ) 4 | | | |
G

G C x C G    

3 | | ( ) 4 | |
G

G C x C   

3 | | | ( ) |
| |

4

G
G C x

C


  

1
(3 | | | ( ) |) | |

4
G

G C x C   

That is 
1

| | (3 | | | ( ) |)
4

G
C G C x   

Anna, C (2010) has the next definition. 

1.28 Definition 
The commutativity degree of a finite group G is the probability p(G) that two elements of G chosen randomly 

commute.  

The commutativity degree of a finite group G is the probability p(G) that two elements of G selected at random 

(with replacement) commute. That is: 

 p(G)={(x,y):xy=yx, for any x and y in G} and p(G)=|C|/|G|.  

 So commutativity is the outcome (x,y) for which xy = yx. 

1.29 Remark 
When two element x and y are randomly selected from a group G, the outcome (x, y) is called a commutativity 

and (x, y) = (y, x) 
The set of all commutativities is the event ‘randomly chosen x and y commute’. We denote this by c(G) defined 

as c(G)= {(x, y): xy = yx} with total outcome as G × G. 

Commutativity degree of a group measures the extent to which the group is commutative. 



The Commutativity Degree Of Finite Groups Via Class Equation 

DOI: 10.9790/5728-1704025359                            www.iosrjournals.org                                                 58 | Page 

The next theorem is credited to Anna, C, (2010) where commutativity degree is defined in terms of the size of 

the conjugacy class of the group followed by the proof. 

1.30 Theorem  
Let G be a finite group. Then the degree of commutativity p(G) of G is p(G) = |C|/|G|.  

Proof  

Let {C(hi), 1 ≤ i ≤ |C| } be the set of distinct conjugacy classes of G. As G is the union of disjoint conjugacy 

classes, then from remark*: 

                                     C(G) = {(x,y)   G X G : xy = yx}. 

 Where C(G) is the set of the commuting elements of G. So that for 

 x   G, (x,y)   Com(G) if and only if y   CG(x) and we have : 

                     |C(G)| = ∑|CG(x)|, x   G 

                                 = ∑|C(xi)||CG(xi)|,from definition 1≤i≤|C|,  
                                 = ∑|G:CG(xi)|| CG(xi)|, definition 1.16 (ii) 

                                 = ∑|G| 

                                 = |C||G|, since 1 ≤ i ≤ |C| 

  Therefore: 

                        P(G) = |C(G)|/|GXG| 

                                = |C||G|/|GXG| = |C|/|G|. 

    Consequently, the commutativity degree of a finite group is the same as counting the number of conjugacy 

classes of G. 

 In the next theorem we obtain the maximum commutativity degree for a non abelian groups as in Anna, C  

(2010). 

1.31 Theorem  
    Let G be a finite non abelian group. Then P(G) ≤ 5/8. 

Proof  

From theorem 1.16  

                          |G|=|Z(G)|+∑|C(xi)|, |Z(G)| + 1 ≤ i ≤ |C|; xi  Z(G). 

                         |G| ≥ |Z(G)| + 2(|C| - |Z(G)|),  

since for each i,   |C(xi)|≥2, from 1.24 

Solving for |C| gives:  

                          |C| ≤ 1/2(|G|+|Z(G)|).  

From theorem 3.1.6, |Z(G)| ≤ |G|/4 , therefore: 

                         |C| ≤ 1/2(|G|+|G|/4) = 5/8|G|. 

And we have P(G) = |C|/|G| ≤ 5/8.   

OUR RESULTS 

2.1 Theorem 

Let G be a finite group of order 
ba

qpG  , ba  , with Gyx , , yxxy  . Then the commutativity 

degree of g is
G

Gz
Gp

2

2)(
)(


 , for min )(Gz    where )(Gz denotes the centre of G . 

Proof  

First we count the count the conjugacy classes c in terms of the centre using the class equation. 









)(

1)(

)(:)(

Gzc

Gz

G
tCGGzG ,  )( tC

G
 is the centralizer of t  such that Gt   but, from 1.16 )(Gzt   

and  

2)( tC
G

, then, ))((2)( GzCGzG    

)(22)( GzCGzG   

)(2 GzCG     

C
GzG




2

)(
, min 2)( Gz  



The Commutativity Degree Of Finite Groups Via Class Equation 

DOI: 10.9790/5728-1704025359                            www.iosrjournals.org                                                 59 | Page 

That is 
2

2


G
C . Hence the commutativity degree is )(Gp  is 

G

Gz
Gp

2

2)(
)(


  

2.2 Theorem  

 Let G be a finite group of order
ba

qpG  , ba  , with Gyx , , yxxy  . Then the commutativity 

degree of g is 
G

Gz
Gp

2

)(5
)(    , for max )(Gz    where )(Gz denotes the centre of G . 

Proof 

First we count the count the conjugacy classes c in terms of the centre using the class equation. 









)(

1)(

)(:)(

Gzc

Gz

G
tCGGzG ,  )( tC

G
 is the centralizer of t  such that Gt   but )(Gzt   and  

2)( tC
G

, then, ))((2)( GzCGzG    

)(22)( GzCGzG   

)(2 GzCG     

 from 1.23 this becomes  )(2)(4 GzCGz  . That is CGz 2)(5   and we have: 

2

)(5 Gz
C  . Consequently the commutativity degree is 

G

Gz
Gp

2

)(5
)(   for max )(Gz  

DISCUSSION 

We use our results to determine the commutativity of groups of order 100G , with the property that for 

Gyx , , yxxy  . When the centre is at its minimum, we obtained the minimum commutativity of two 

groups with 0,30  qp . When the centre is fixed at its maximum our results show that for 62  a , 

0b , four groups satisfy the conditions while for 62  a  with 20  b , seven groups satisfy the 

conditions. So given the schemes in our results with max )(Gz , we determine the maximum commutativity 

degrees of eleven groups in the range under consideration. We first count the conjugacy classes using the centre 

via the class equation and from there obtain the commutativity degrees. 

 

II. Conclusion 
Our results are simplified reduced to a single variable, the centre unlike in Anna (2010), Cody C (2010) 

and Jelten et al (2014). All that is required is the group cardinality, from which the centre cardinality can be 

determined and the commutativity using our results. The scheme we obtained work for large groups and the 

numerical results agree with those of Cody C (2010) and Anna C (2010). 
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