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Abstract 
In this paper, we present anew attack on RSA in the presence of three encryption and decryption exponents𝑒𝑖  

and𝑑𝑖 for𝑖 = 1, 2, 3  respectively with thesame modulus N.The attack is an extension of Guo’s attack on RSA 

using continued fraction method to find new weaknesses in RSA. In the new attackwe used prime power 

difference 𝑝2 − 𝑞2 < 𝑁1 2  to show that if
𝑘𝑖

𝑑𝑖
 is one of the convergences of the continued fraction expansion of 

𝑒𝑖

𝑁
and the private exponent𝑑𝑖used in the RSApublic-key cryptosystem is less than

1

4
𝑁2 3  for𝑖 = 1, 2, 3  then the 

system is more secureand stronger than the previous ones. 
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I. Introduction 
The theory of Diophantine approximations, named after Diophantus of Alexandria, deals withthe 

approximation of real numbers by rational numbers which can be achieved by continuedfractions. Continued 

fractions have many properties and applications in Number Theory andcryptographic problems. They are used 

to find good Diophantine approximations to rationaland irrational numbers, to solve Diophantine equations and 

to build attacks on some instancesof RSA, (Nitaj, 2013).It is well known that most successful attacks on RSA 

are not based on factoring the modulus𝑁,  ratherthey exploit the mathematical weaknesses of the RSA algorithm 

or the improper use of the RSA system, such as lower exponents, common modulus, and knowledge of parts of 

the private exponent (Nitaj and Rachidi, 2015). 

Takagi (2003) proposes a cryptosystem modulus𝑁 = 𝑝𝑟𝑞 based on theRSA cryptosystem. He chooses 

an appropriate modulus𝑁 = 𝑝𝑟𝑞 which resiststwo of the fastest factoring algorithms, namely the number field 

sieve and the elliptic curve method, (Shehu and Ariffin, 2017). 

May (2003) considered RSA-type schemes with modulus𝑁 = 𝑝𝑟𝑞for𝑟 ≥ 2, and presented two new 

attacks for small secret exponent𝑑. Both approachesare applications of Coppersmith's method for solving 

modular univariate polynomialequations. From these new attacks they directly derive partial keyexposure 

attack, which is attack when the secret exponent is not necessarily small but when a fraction of the secret key 

bits is known to the attacker, (Ariffin et al., 2018). 

Hinek (2007) showed that it is possible to factor the𝑘  modulus𝑁𝑖  if𝑑 < 𝑁𝛿  with𝛿 =
𝑘

2 𝑘+1 
−

𝜀 where𝜀 is a small constant depending on the size of𝑚𝑎𝑥𝑁𝑖 . 

In 2010, Sarkar and Maitra improved Howgrave-Graham and Seifert bound up to𝑑1 , 𝑑2 < 𝑁0.416 ,  (Nitaj, 

2016). 

Nitaj (2016) proposed that the bound𝑑𝑖 < 𝑁1 2  obtained by Sarkar and Maitra can be improved using 

continued fraction method and the approximation𝑃  of𝑝 such that 𝑝 − 𝑃  < 2𝑁1 4  as in Coppersmith theorem. 

Shehu and Ariffin, (2017) presented three new attacks on Prime Power modulus 𝑁 =  𝑝𝑟𝑞 using good 

approximation of 𝜑 𝑁 and continued fractions they showed that
𝑘

𝑑
can be recovered among the convergence ofthe 

continued fraction expansion of
𝑒

𝑁−2𝑁
𝑟

𝑟+1+ 𝑁
𝑟−1
𝑟+1

 and that one can factor the modulus𝑁 = 𝑝𝑟𝑞  in polynomial time. 

It is in view of this the study is going to present a new a attack to extend the Guo’s work using prime 

power moduli𝑁 = 𝑝2𝑞 with three encryption and decryption exponents. 
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Our Contribution: In this paper, we propose a new attack on RSA prime power moduli𝑁 = 𝑝2𝑞 using 

continued fraction method. In the attack we used𝑆 asan approximation of𝑝2 + 𝑞2such that 𝑝2 + 𝑞2 − 𝑆 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3  and if𝑡 <

 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 < 𝑁1 3  with

𝑘𝑖

𝑑𝑖
 among the convergent of

𝑒𝑖

𝑁
lead to discover𝑑𝑖 <

1

4
𝑁2 3 . 

The rest of this paper is structured as follows: In section 2, we give a brief review of basic facts about the 

continued fractions, Euclidean algorithm for computation of Greatest Common Divisor(gcd) and Euler Totient 

function as well as Guo’s method of attack on RSA. In section 3, we put forward the new attack. We conclude 

this paper in section 4. 

 

II. Preliminaries 
We start with definitions and important results concerning the continuedfractions,Euclidean algorithm for 

computation of Greatest Common Divisor(gcd) and Euler Totient function as well as some useful lemmas 

needed for the attack. 

2.1 Continued Fraction Expansion 

A continued fraction is an expression of the form: 

𝑎0 +   1   

     

𝑎1 +         1   

 ⋱ + 1 =  𝑎0, 𝑎1 , … , 𝑎𝑚 , …   
 

  𝑎𝑚 +   ⋱ 

where𝑎0 is an integer and𝑎𝑚  are positive integers for𝑚 ≥ 1. The𝑎𝑚  are called the partial quotients of the 

continued fraction, (Ariffin and Shehu, 2016). 

 That is, continued fraction expansion of a number is formed by subtracting away the integer part of it and 

inverting the remainder and then repeating this process till it terminates. 

Theorem 2.1 (Legendre): Let𝑥 ∈ ℝ and
p

q
be a rational fraction such thatgcd(𝑝, 𝑞) = 1 and 𝑞 <  𝑏 if𝑥 =

𝑎

𝑏
withgcd 𝑎, 𝑏 = 1. If 𝑥 −

𝑝

𝑞
 <

1

2𝑞2then
𝑝

𝑞
is a convergent of the continued fraction expansion of𝑥 (Nitaj, 2013). 

2.2 Euclidean Algorithm 

Suppose  𝑚 𝑎𝑛𝑑 𝑛 ∈ ℤ, with m> 0 there are unique integers𝑞 and𝑟 such that 𝑛 = 𝑚𝑞 + 𝑟 and0 ≤ 𝑟 < 𝑚, 𝑞 is 

called the quotient and𝑟 is the remainder when𝑛 is divided by𝑚. 

2.3 Greatest Common Divisor (GCD) 
If𝑚 and𝑛 are integers we say that a positive integer  𝑑 is the𝑔𝑐𝑑 of𝑚 𝑎𝑛𝑑 𝑛 if𝑑 divide both 𝑚 and𝑛,  and𝑑 is the 

multiple of all the other divisors of𝑚 𝑎𝑛𝑑 𝑛. 
2.4 The Euler Totient Function 
𝜙is the Euler’s function for which𝜙 𝑛  when𝑛 ≥ 2, 𝑛 ∈ ℤ is the number of integers in the set 1, 2, 3, … , 𝑛 − 1  
which are coprime to𝑛 (i.e.𝐺𝐶𝐷  𝑎𝑖 , 𝑛 = 1, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 = 1, 2, … , 𝑛 − 1).    

  - (Hoffstein, et. al., 2008) 

 

2.5 Guo’s attack on RSA 

Theorem: 

Let𝑁 =  𝑝𝑞 be an RSA modulus. Consider three instances of RSA with a common modulus𝑁 and public 

exponentse1 , e2 , e3 satisfying 

𝑒1𝑑1 ≡ 1(𝑚𝑜𝑑𝜙 𝑁 ), 𝑒2𝑑2 ≡ 1(𝑚𝑜𝑑𝜙 𝑁 ), 𝑒3𝑑3 ≡ 1(𝑚𝑜𝑑𝜙 𝑁 ), 

If all the𝑘𝑖  and𝑑𝑖  are pairwise relatively prime and𝑑𝑖 < 𝑁
1

3
−𝜖

 for𝑖 = 1, 2, 3,with𝜖 > 0, then factor𝑁 can be 

factored in polynomial time (Graham, 1997). 

Proof: 

Transforming the three congruence𝑒𝑖𝑑𝑖 ≡ 1  𝑚𝑜𝑑 𝜑 𝑁  , 𝑖 = 1, 2, 3 into equations we get: 

𝑒1𝑑1 = 1 +  𝑘1𝜑 𝑁                                                                                                           (2.1) 

𝑒2𝑑2 = 1 + 𝑘2𝜑 𝑁                                                                                                           (2.2) 

𝑒3𝑑3 = 1 + 𝑘3𝜑 𝑁                                                                                                           (2.3) 

Where𝑘1, 𝑘2, 𝑘3 are positive integers. 

From equation (2.1), we have: 

𝑘1𝜑 𝑁 = 𝑒1𝑑1 − 1 

           ⟹ 𝜑 𝑁 =
𝑒1𝑑1 − 1

𝑘1

                                                                                              (2.4) 

From equation (2.2): 

𝑘2𝜑 𝑁 = 𝑒2𝑑2 − 1 
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          ⟹ 𝜑 𝑁 =
𝑒2𝑑2 − 1

𝑘2

                                                                                               (2.5) 

And from equation (2.3): 

𝑘3𝜑 𝑁 = 𝑒3𝑑3 − 1 

          ⟹ 𝜑 𝑁 =
𝑒3𝑑3 − 1

𝑘3

                                                                                               (2.6) 

Equating (2.4) and (2.5), we have: 
𝑒1𝑑1 − 1

𝑘1

=
𝑒2𝑑2 − 1

𝑘2

 

        ⟹ 𝑒1𝑑1𝑘2 − 𝑘2 = 𝑒2𝑑2𝑘1 − 𝑘1 

        ⟹ 𝑒1𝑑1𝑘2 − 𝑒2𝑑2𝑘1 = 𝑘2 − 𝑘1(2.7) 
Also, equating (2.4) and (2.6), we have: 
𝑒1𝑑1 − 1

𝑘1

=
𝑒3𝑑3 − 1

𝑘3

 

     ⟹ 𝑒1𝑑1𝑘3 − 𝑘3 = 𝑒3𝑑3𝑘1 − 𝑘1 

     ⟹ 𝑒1𝑑1𝑘3 − 𝑒3𝑑3𝑘1 = 𝑘3 − 𝑘1(2.8) 
And equating (2.5) and (2.6), we have: 
𝑒2𝑑2 − 1

𝑘2

=
𝑒3𝑑3 − 1

𝑘3

 

     ⟹ 𝑒2𝑑2𝑘3 − 𝑘2 = 𝑒3𝑑3𝑘2 − 𝑘3 

    ⟹ 𝑒2𝑑2𝑘3 − 𝑒3𝑑3𝑘2 = 𝑘2 − 𝑘3 2.9  

Also, equating (2.6) and (2.4), we have: 
𝑒3𝑑3 − 1

𝑘3

=  
𝑒1𝑑1 − 1

𝑘1

⟹ 𝑒3𝑑3𝑘1 − 𝑘1 = 𝑒1𝑑1𝑘3 − 𝑘3 

    ⟹ 𝑒3𝑑3𝑘1 −  𝑒1𝑑1𝑘3 = 𝑘1 − 𝑘3(2.10) 

Dividing equation (2.7) by𝑒2𝑑1𝑘2 yields: 
𝑒1𝑑1𝑘2

𝑒2𝑑1𝑘2

−
𝑒2𝑑2𝑘1

𝑒2𝑑1𝑘2

=
𝑘2 − 𝑘1

𝑒2𝑑1𝑘2

 

     ⟹   
𝑒1

𝑒2

−
𝑑2𝑘1

𝑑1𝑘2

 =
 𝑘2 − 𝑘1 

𝑒2𝑑1𝑘2

(2.11) 

Under the conditiongcd  (𝑑2𝑘1, 𝑑1𝑘2) = 1 and using Legendre’s equation 

 𝑥 −
𝑎

𝑏
 <

1

2𝑏2
 

We have: 
𝑒1

𝑒2
−

𝑑2𝑘1

𝑑1𝑘2
 <

1

2(𝑑1𝑘2)2 

     ⟹
𝑑2𝑘1

𝑑1𝑘2

is a convergent of the continued expansion of the fraction 
𝑒1

𝑒2

 

Equation (2.11) becomes: 
 𝑘2 − 𝑘1 

𝑒2𝑑1𝑘2

<
1

2 𝑑1𝑘2 2
 

      ⟹
2 𝑘2 − 𝑘1 (𝑑1𝑘2)2

𝑒2𝑑1𝑘2

< 1 

To have:
2 𝑘2−𝑘1 𝑑1𝑘2

𝑒2
< 1 

       ⟹ d1 <
𝑒2

2𝑘2 𝑘2 − 𝑘1 
(2.12) 

Similarly, dividing equation (2.8) by𝑒3𝑑1𝑘3: 

       ⟹  
𝑒1𝑑1𝑘3

𝑒3𝑑1𝑘3

−
𝑒3𝑑3𝑘1

𝑒3𝑑1𝑘3

 =
 𝑘3 − 𝑘1 

𝑒3𝑑1𝑘3

 

      ⟹  
𝑒1

𝑒3

−
𝑑3𝑘1

𝑑1𝑘3

 =
 𝑘3 − 𝑘1 

𝑒3𝑑1𝑘3

(2.13) 

To have 
𝑑3𝑘1

𝑑1𝑘3

 as one of the convergent of the continued fraction expansion of  
𝑒1

𝑒3

 

Under the conditiongcd  (𝑑3𝑘1, 𝑑1𝑘3) = 1 and using Legendre’s equation 

We have: 
𝑒1

𝑒3
−

𝑑3𝑘1

𝑑1𝑘3
 <

1

2(𝑑1𝑘3)2 

Equation (2.13) becomes: 



Diophatine Attacks on RSA Using More Than One Decryption Exponent 

DOI: 10.9790/5728-1705020915                            www.iosrjournals.org                                                 12 | Page   

 𝑘3 − 𝑘1 

𝑒3𝑑1𝑘3

<
1

2 𝑑1𝑘3 2
 

     ⟹
2 𝑘3 − 𝑘1 (𝑑1𝑘3)2

𝑒3𝑑1𝑘3

< 1 

To have:
2 𝑘3−𝑘1 𝑑1𝑘3

𝑒3
< 1 

    ⟹ d1 <
𝑒3

2𝑘3 𝑘3 − 𝑘1 
(2.14) 

And also, dividing equation (2.9) by𝑒3𝑑2𝑘3 gives: 

     ⟹  
𝑒2𝑑2𝑘3

𝑒3𝑑2𝑘3

−
𝑒3𝑑3𝑘2

𝑒3𝑑2𝑘3

 =
 𝑘3 − 𝑘2 

𝑒3𝑑2𝑘3

 

      ⟹  
𝑒2

𝑒3

−
𝑑3𝑘2

𝑑2𝑘3

 =
 𝑘3 − 𝑘2 

𝑒3𝑑2𝑘3

(2.15) 

To have 
𝑑3𝑘2

𝑑2𝑘3

as one of the convergent of the continued fraction expansion of  
𝑒2

𝑒3

 

Under the conditiongcd  (𝑑3𝑘2, 𝑑2𝑘3) = 1 and using Legendre’s equation 

Equation (2.15) becomes: 
 𝑘3 − 𝑘2 

𝑒3𝑑2𝑘3

<
1

2 𝑑2𝑘3 2
 

      ⟹
2 𝑘3 − 𝑘2 (𝑑1𝑘3)2

𝑒3𝑑2𝑘3

< 1 

To have:
2 𝑘3−𝑘2 𝑑2𝑘3

𝑒3
< 1 

        ⟹ d2 <
𝑒3

2𝑘3 𝑘3 − 𝑘1 
(2.16) 

If all the𝑘𝑖
′𝑠 and𝑑𝑖 ′𝑠 are pair wise relatively prime, then𝑑1 = gcd(𝑑1𝑘2, 𝑑1𝑘3)  and𝑘1 = gcd(𝑑2𝑘1, 𝑑3𝑘1), 

which leads to  𝜑 𝑁 =
𝑒1𝑑1−1

𝑘1
and finally to the factorization of𝑁. And also if𝑘𝑖 < 𝑑𝑖 < 𝑁𝛿  for a positive 

constant𝛿, ande1 < 𝑁, then the condition
 𝑘2−𝑘1 

𝑒2𝑑1𝑘2
<

1

2(𝑑1𝑘2)2can be written asN3δ <
1

2
𝑁 = 𝑁1−3𝜀or 

equivalently 𝛿 =
1

3
− 𝜀, where𝜀 > 0 is a small constant depending on𝑁. 

 

2.6. Some Useful Lemmas 

Lemma 2.1 

Let𝑁 =  𝑝2𝑞 be an RSA prime power modulus with𝑞 < 𝑝 < 2𝑞. Then 

2−2 3 𝑁1/3 < 𝑞 < 𝑁1 3 < 𝑝 < 21 3 𝑁1 3  
Proof: 

For  𝑁 = 𝑝2𝑞, 𝑞 =
𝑁

𝑝2
⇒

𝑁

𝑝2
< 𝑝 < 2  

𝑁

𝑝2
  

                                          ⇒ 𝑁 < 𝑝3 < 2𝑁 

                                          ⇒ 𝑁1/3 < 𝑝 < 21/3𝑁1/3(2.17) 

Taking reciprocal of the above equation:  

                                          ⇒
1

21/3𝑁1/3
<

1

𝑝
<

1

𝑁1/3
 

Square both sides: 

                                          ⇒
1

22/3𝑁2/3
<

1

𝑝2
<

1

𝑁2/3
 

Multiply by𝑁: 

                                          ⇒
𝑁

22/3𝑁2/3
<

𝑁

𝑝2
<

𝑁

𝑁2/3
 

                                          ⇒
𝑁

22/3𝑁2/3
< 𝑞 <

𝑁

𝑁2/3
 

                                         ⇒ 2−2 3 𝑁1 3 < 𝑞 < 𝑁1 3 (2.18) 

Combining equation (2.17) and (2.18): 

2−2 3 𝑁
1

3 < 𝑞 < 𝑁1 3 < 𝑝 < 21 3 𝑁1 3  
This terminates the proof. 

 

Lemma 2.2 
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Let 𝑁 = 𝑝2𝑞 be an RSA prime power modulus with q< p < 2q. Let 𝑝2 − 𝑞2 < 𝑁1 2 . Suppose that𝑆 isan 

approximation of𝑝2 + 𝑞2such that 𝑝2 + 𝑞2 − 𝑆 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 then𝑞 =  

𝑆2

4𝑁
 . 

Proof: 

Let𝑆 = 𝑝2 + 𝑞2, where 0<
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 < 𝑁1 3  

We have: 𝑝2 − 𝑞2 2 =  𝑝2 − 𝑞2  𝑝2 − 𝑞2  

                                        = 𝑝4 − 2𝑝2𝑞2 + 𝑞4 

                                       =  𝑝4 + 𝑞4 − 2𝑁𝑞 

                                       =  𝑝4 + 𝑞4 + 2𝑝2𝑞2 − 2𝑝2𝑞2 − 2𝑁𝑞 

                                       =  (𝑝2 + 𝑞2)2 − 2𝑝2𝑞2 − 2𝑁𝑞 

                                       =  (𝑝2 + 𝑞2)2 − 2𝑁𝑞 − 2𝑁𝑞 

                                      =  𝑝2 + 𝑞2 2 − 4𝑁𝑞                                                                  2.19  
Such that 

𝑆2 − 4𝑁𝑞 =  𝑝2 + 𝑞2 2 − 4𝑁𝑞 

                    =  𝑝2 + 𝑞2  𝑝2 + 𝑞2 − 4𝑁𝑞 

                    = 𝑝4 + 2𝑝2𝑞2 + 𝑞4 − 4𝑝2𝑞2 

                    = 𝑝4 + 𝑞4 − 2𝑝2𝑞2 

⟹ 𝑆2 − 4𝑁𝑞 =  𝑝2 − 𝑞2 2 2.20  

Suppose 𝑝2 − 𝑞2 < N1 2  and0 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 < 𝑁1 3  

Then equation (2.20) becomes: 

 𝑆2 − 4𝑁𝑞 < (𝑁1 2 )2 < 𝑁 

Dividing both sides of the above by4𝑁we have: 
𝑆2

4𝑁
− 𝑞 <

𝑁

4𝑁
<

1

4
⟹  𝑞 <

𝑆2

4𝑁
−

1

4
 

Hence, 𝑞 =  
𝑆2

4𝑁
  as required. 

Lemma 2.3 

Let 𝑁 =  𝑝2𝑞 be an RSA prime power modulus with q < p < 2q. Suppose𝑆 is a positive integer such that 𝑝2 +
𝑞2−𝑆<𝑝2−𝑞2𝑝2+𝑞2𝑁13,  𝑆2−4𝑁𝑞isan approximation of𝑝2−𝑞2then 𝑝2−𝑞2−𝐷<𝑁13, whereD2=𝑆2−4𝑁𝑞 

Proof: 

𝐷 ≈ 𝑝2 − 𝑞2 ⟹ 𝐷2 ≈  𝑝2 − 𝑞2 2 

                                  = 𝑝4 − 2𝑝2𝑞2 + 𝑞4 

                                  =  𝑝4 + 𝑞4 − 2𝑁𝑞 

                                  =  (𝑝2 + 𝑞2)2 − 2𝑝2𝑞2 − 2𝑁𝑞 

                                  =  𝑝2 + 𝑞2 2 − 4𝑁𝑞 

                                  = 𝑆2 − 4𝑁𝑞 

hence,                𝐷 =  𝑆2 − 4𝑁𝑞 2.21  

Such that:  𝑝2 − 𝑞2 2 − 𝐷2 =   𝑝2 − 𝑞2 2 −  𝑆2 − 4𝑁𝑞   
                                    =   𝑝2 − 𝑞2 2 − 𝑆2 + 4𝑁𝑞  
                                    =  𝑝4 − 2𝑝2𝑞2 + 𝑞4 − 𝑆2 + 4𝑝2𝑞2  
                                    =  𝑝4 + 𝑞4 + 2𝑝2𝑞2 − 𝑆2  
                                  =   𝑝2 + 𝑞2 2 − 𝑆2  
Thus,  𝑝2 − 𝑞2 2 − 𝐷2 =   𝑝2 + 𝑞2 2 − 𝑆2  2.22  

  𝑝2 − 𝑞2 2 − 𝐷2 can also be written as: 

  𝑝2 − 𝑞2 2 − 𝐷2 =    𝑝2 − 𝑞2 − 𝐷   𝑝2 − 𝑞2 + 𝐷   
                                    =  𝑝2 − 𝑞2 − 𝐷  𝑝2 − 𝑞2 + 𝐷  
Dividing both sides by 𝑝2 − 𝑞2 + 𝐷  

⟹  𝑝2 − 𝑞2 − 𝐷 =
  𝑝2 − 𝑞2 2 − 𝐷2 

 𝑝2 − 𝑞2 + 𝐷 
 

Substituting (2.22) into the above: 

⟹  𝑝2 − 𝑞2 − 𝐷 =
  𝑝2 + 𝑞2 2 − 𝑆2 

 𝑝2 − 𝑞2 + 𝐷 
 

                                   ≤
  𝑝2 + 𝑞2 2 − 𝑆2 

 𝑝2 − 𝑞2 
 2.23  

Similarly,  𝑝2 + 𝑞2 2 − 𝑆2  can be written as: 

  𝑝2 + 𝑞2 2 − 𝑆2 =    𝑝2 + 𝑞2 − 𝑆   𝑝2 + 𝑞2 + 𝑆   
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                                  =  𝑝2 + 𝑞2 − 𝑆  𝑝2 + 𝑞2 + 𝑆  
Such that equation (2.23) becomes: 

 𝑝2 − 𝑞2 − 𝐷 ≤
 𝑝2 + 𝑞2 − 𝑆  𝑝2 + 𝑞2 + 𝑆 

 𝑝2 − 𝑞2 
 2.24  

Using the fact that 𝑝2 + 𝑞2 − 𝑆 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3  

⟹𝑆 <  𝑝2 + 𝑞2 +
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3  

Adding 𝑝2 + 𝑞2  to both sides of the above inequality gives: 

𝑆 +  𝑝2 + 𝑞2 <  𝑝2 + 𝑞2 +  𝑝2 + 𝑞2 +
 𝑝2 − 𝑞2 

3 𝑝2 + 𝑞2 
𝑁1 3  

< 2 𝑝2 + 𝑞2 +
 𝑝2 + 𝑞2 

3 𝑝2 + 𝑞2 
𝑁1 3 ,      ∵  𝑝2 − 𝑞2 <  𝑝2 + 𝑞2  

 ⟹ 𝑆 +  𝑝2 + 𝑞2 < 3 𝑝2 + 𝑞2  
Substituting back into equation (2.24): 

 𝑝2 − 𝑞2 − 𝐷 ≤
 𝑝2 + 𝑞2 − 𝑆  𝑝2 + 𝑞2 + 𝑆 

𝑝2 − 𝑞2
 

                           ≤  
 𝑝2 + 𝑞2 − 𝑆 

𝑝2 − 𝑞2
 3 𝑝2 + 𝑞2  

But 𝑝2 + 𝑞2 − 𝑆 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3  

⟹  𝑝2 − 𝑞2 − 𝐷 ≤
3 𝑝2 + 𝑞2 

 𝑝2 − 𝑞2 
∙

 𝑝2 − 𝑞2 

3 𝑝2 + 𝑞2 
𝑁1 3  

Hence, 𝑝2 − 𝑞2 − 𝐷 < 𝑁1 3 , which terminate the proof 
 

III. Our New Attack 
Let𝑁 =  𝑝2𝑞 be an RSA prime power modulus with𝑞 < 𝑝 < 2𝑞. Let𝑒𝑖  be public key satisfying the 

equation𝑒𝑖𝑑𝑖 − 𝑘𝑖𝑁 = 𝑝2 + 𝑞2 + 𝑡 with𝑔𝑐𝑑 𝑑𝑖 , 𝑘𝑖 = 1. If
𝑘𝑖

𝑑𝑖
 is among the convergent of 

𝑒𝑖

𝑁
 and𝑡 <

 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 < 𝑁1 3 then𝑑𝑖 <

1

4
𝑁2 3 . 

Proof: 

For𝑡 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 ⟹𝑡 < 𝑁1 3  since 

 𝑝2−𝑞2 

3 𝑝2+𝑞2 
< 1 

And dividing𝑒𝑖𝑑𝑖 − 𝑘𝑖𝑁 = 𝑝2 + 𝑞2 + 𝑡 by𝑁𝑑𝑖we have: 

 
𝑒𝑖𝑑𝑖

𝑁𝑑𝑖

−
𝑘𝑖𝑁

𝑁𝑑𝑖

 =
𝑝2 + 𝑞2 + 𝑡

𝑁𝑑𝑖

 

 
𝑒𝑖

𝑁
−

𝑘𝑖

𝑑𝑖

 =
 𝑝2 + 𝑞2 + 𝑡 

𝑁𝑑𝑖

 ≤  
 𝑝2 + 𝑞2 +  𝑡 

𝑁𝑑𝑖

 

But𝑡 < 𝑁1 3 , 

⟹  
𝑒𝑖

𝑁
−

𝑘𝑖

𝑑𝑖

 ≤  
 𝑝2 + 𝑞2 + 𝑁1 3 

𝑁𝑑𝑖

 

Applying Legendre’s theorem, that is 𝑥 −
𝑎

𝑏
 <

1

2𝑏2 

We have: 
𝑒𝑖

𝑁
−

𝑘𝑖

𝑑𝑖
 <

1

2𝑑𝑖
2 

⇒
𝑘𝑖

𝑑𝑖

 is among the convergent of the continued expansion of the fraction
𝑒𝑖

𝑁
 

⟹
 𝑝2 + 𝑞2 + 𝑁1 3 

𝑁𝑑𝑖

<
1

2𝑑𝑖
2 

⟹
2𝑑𝑖

2   𝑝2 + 𝑞2 + 𝑁1 3  

𝑁𝑑𝑖

< 1 

⟹
2𝑑𝑖   𝑝2 + 𝑞2 + 𝑁1 3  

𝑁
< 1 

⟹ 𝑑𝑖 <
𝑁

2  𝑝2 + 𝑞2 + 𝑁1 3  
 

For which𝑝2 + 𝑞2 > 𝑁1 3  
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⟹
𝑁

2  𝑝2 + 𝑞2 + 𝑁1 3  
<

𝑁

4𝑁1 3 
=

1

4
𝑁1− 1 3  =

1

4
𝑁2 3  

hence,𝑑𝑖 <
1

4
𝑁2 3 . 

The following algorithm is designed to recover the prime factors𝑝, 𝑞 for primepower modulus𝑁 = 𝑝2𝑞 in 

polynomial time. 

Proposed Algorithm 1: 

Input: an RSA prime power modulus𝑁 =  𝑝2𝑞with𝑞 <  𝑝 <  2𝑞, and public key (𝑒𝑖 , 𝑁),    𝑖 = 1, 2, 3 

Output: The prime factors𝑝 and𝑞 

1: Compute the continued fraction expansion of
𝑒1

𝑁
 

2: Compute the continued fraction expansion of
𝑒2

𝑁
 

3: Compute the continued fraction expansion of
𝑒3

𝑁
 

4: For every convergent
𝑑𝑖

𝑘𝑖
of

ei

N
, compute  𝑆 = 𝑒𝑖𝑑𝑖 − 𝑘𝑖𝑁 

5: Compute 
𝑆2

4𝑁
  

6:𝑞 = 𝑔𝑐𝑑   
𝑆2

4𝑁
 , 𝑁  

7. If1 < 𝑞 < 𝑁, 𝑡ℎ𝑒𝑛 𝑝2 =
𝑁

𝑞
 

8. End 

 

IV. Conclusion 
In this paper, we have shown that our developed attack on RSA prime power moduli𝑁 = 𝑝2𝑞 and𝑁 = 𝑝𝑟𝑞 

using continued fraction method can be used efficiently. The use of 𝑆 asan approximation of𝑝2 + 𝑞2such 

that 𝑝2 + 𝑞2 − 𝑆 <
 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3  and if𝑡 <

 𝑝2−𝑞2 

3 𝑝2+𝑞2 
𝑁1 3 < 𝑁1 3  with

𝑘𝑖

𝑑𝑖
 among the convergents of 

𝑒𝑖

𝑁
then𝑑𝑖 <

1

4
𝑁2 3 .  
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