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I. Introduction 
We all know that the sum of powers of natural numbers has a crucial role in mathematics and natural 

sciences. It has comprehensive application in vast areas of simple mathematics problems to the analysis of black 

holes. For formulating the sum of powers of natural numbers, the conventional method is algebraic. It is tedious 

work. If the power is n, we have to solve n+1 equations to find the coefficients. This work is the solution for the 

ridiculous time-consuming algebraic method of formulating. 

There will be an accidental understanding behind every invention. Because of that understanding, I have done 

this research.  If ( ) 1 , 2 , 3 , .........,
K K K K

k
f n n then

1 1 1 1

1
( ) 1 , 2 , 3 , .........,

K K K K

k
f n n

   


 . When I 

was Learning calculus, I saw a gripping formula in integration
1

1

0

1
( ) ( )

1 1

th

n K

th

k K

n
x te rm o f f n d x n te rm o f f n

K K




  

 
 , and this relation tells us that there 

exists an integral relationship between the nth terms of ( )
K

f n  and
1
( )

K
f n


. That fact forced me to think 

about the possibility of an interrelation between the sum of n terms of 
1
( )

K
f n


using the sum of n terms of 

( )
K

f n by integration. 

   This method itself becomes the proof for the vanishing of some terms of polynomial  in the formulae of 
k

n  

 

II. Data required 
 

 
1

( 1)
( )

2

n n
f n


  

 
2

( 1)( 2 1)
( )

6

n n n
f n

 
  

 
2

3

( 1)
( ) [ ]

2

n n
f n


  

 

2

4

( 1)( 2 1)(3 3 1)
( )

3 0

n n n n n
f n

   
  

 

2 2 2

5

( 1) ( 2 2 1)
( )

1 2

n n n n
f n

  
  
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 

4 3

6

( 1)( 2 1)(3 6 3 1)
( )

4 2

n n n n n n
f n

    
  

 

III. Learning Activity 
 

 (1)Finding the formulae for  
2 2 2 2 2

2
1 2 3 4 ...... ( )n f n       from  

1
1 2 3 4 ... . . . . ( )n f n       

 

1
( ) 1 2 3 4 ....... ( 1)

2

n
f n n n       

 

    Writing it as polynomial = 
2

2 2

n n
  

Find 
1

0

( )

n

f x d x  

          

2 3 2

1

0 0

( ) ( ) .
2 2 6 4

n n

x x n n
f x d x d x       

Existing formulae for 
2 2 2 2 2

2

( 1)( 2 1)
( ) 1 2 3 4 ......

6

n n n
f n n

 
        

                                                                                                          
3 21 1 1

3 2 6
n n n    

Comparing coefficient of n3 and n2 in 
1

0

( )

n

f x d x  

(a) Coefficient of n3 in 
1

0

2 ( )

n

f x d x  = coefficient of n3 in 
2

( )f n =
1

3
 

(b) Coefficient of n2 in 
1

0

2 ( )

n

f x d x  = coefficient of n2 in
2

( )f n =
1

2
 

   And linear term in 
2

( )f n = 1 – [sum of coefficient of nonlinear terms] 

                                                 =
1 1 1

1 [ ]
3 2 6

    

2
( )f n =

( 1)( 2 1)

6

n n n 
     

 

(2)Finding the formulae for
3 3 3 3 3

3
( ) 1 2 3 4 ......f n n       from

2 2 2 2 2

2
1 2 3 4 ...... ( )n f n       

 

 

 

2 2 2 2 2

2
1 2 3 4 ...... ( )n f n      =

( 1)( 2 1)

6

n n n 
 

 

    Writing it as polynomial  
3 21 1 1

3 2 6
n n n    
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Find 
2

0

( )

n

f x d x  

          

3 2 4 3 2

2

0 0

( ) ( ) .
3 2 6 1 2 6 1 2

n n

x x x n n n
f x d x d x         

Existing formulae for = 
3 3 3 3 3

3
( ) 1 2 3 4 ......f n n      =

2( 1)
[ ]

2

n n 
 

                                                                                                          
4 3 21 1 1

4 2 4
n n n    

Comparing coefficients of n4, n3, and n2 in  

(a) Coefficient of n4 in 
2

0

3 ( )

n

f x d x  = coefficient of n4 in 
3

( )f n  =
1

4
 

(b) Coefficient of n3 in
2

0

3 ( )

n

f x d x   = coefficient of n3 in
3

( )f n =
1

2
 

(c) Coefficient of n2 in 
2

0

3 ( )

n

f x d x  = coefficient of n2 in
3

( )f n =
1

4
 

   And the coefficient of the linear term in
3

( )f n  = 1 – [sum of coefficient of nonlinear terms] 

                                                 =
1 1 1

1 [ ] 0
4 2 4

     

3
( )f n =

2( 1)
[ ]

2

n n 
     

 

 

(3) Finding the formulae for 
4 4 4 4

4
( ) 1 2 3 ... . . .f n n     from

3 3 3 3 3

3
( ) 1 2 3 4 ......f n n       

 
 

3 3 3 3 3 2

3

( 1)
( ) 1 2 3 4 ...... [ ]

2

n n
f n n


        

 

    Writing it as polynomial  
4 3 21 1 1

4 2 4
n n n    

 

Find 
3

0

( )

n

f x d x  

          

4 3 2 5 4 3

3

0 0

( ) ( ) .
4 2 4 2 0 8 1 2

n n

x x x n n n
f x d x d x         

Existing formulae for 
4 4 4 4

4
( ) 1 2 3 ... . . .f n n     = 

2
( 1)( 2 1)(3 3 1)

3 0

n n n n n   
 

                                                                                                
5 4 31 1 1 1

5 2 3 3 0
n n n n     

Comparing coefficient of n5, n4, n3and n2 in 
3

0

( )

n

f x d x  
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(a) Coefficient of n5 in 
3

0

4 ( )

n

f x d x  = coefficient of n5 in 
4

( )f n   = 
1

5
 

(b) Coefficient of n4 in
3

0

4 ( )

n

f x d x   = coefficient of n4 in 
4

( )f n = 
1

2
 

(c) Coefficient of n3 in 
3

0

4 ( )

n

f x d x  = coefficient of n3 in 
4

( )f n = 
1

3
 

(d) Coefficient of n3 in 
3

0

4 ( )

n

f x d x  = coefficient of n2 in 
4

( )f n =0 

   And the coefficient of the linear term in
3

( )f n  = 1 – [sum of coefficient of nonlinear terms] 

                                                 = 
1 1 1 1

1 [ ]
5 2 3 3 0

        

4
( )f n  

2
( 1)( 2 1)(3 3 1)

3 0

n n n n n   
  

(4)Finding the formulae for 
5 5 5 5

5
1 2 3 ... . . . . . ( )n f n       from 

4 4 4 4

4
( ) 1 2 3 ... . . .f n n      

4 4 4 4

4
( ) 1 2 3 ... . . .f n n    

2
( 1)( 2 1)(3 3 1)

3 0

n n n n n   
  

 

 Writing it as polynomial  
5 4 31 1 1 1

5 2 3 3 0
n n n n     

 

Find 
4

0

( ) .

n

f x d x  

          

5 4 3 6 5 4 2

4

0 0

( ) . [ ] .
5 2 3 3 0 3 0 1 0 1 2 6 0

n n

x x x x n n n n
f x d x d x          

Existing formulae for 
5

( )f n =
5 5 5 5

1 2 3 ........ n    =

2 2 2
( 1) ( 2 2 1)

1 2

n n n n  
 

                                                                                                
6 5 4 21 1 5 1

6 2 1 2 1 2
n n n n     

Comparing coefficient of n6, n5, n4, n3 and n2 in 
4

0

( ) .

n

f x d x  

(a) Coefficient of n6 in
4

0

5 ( ).

n

f x d x   = coefficient of n6 in 
5

( )f n   = 
1

6
 

(b) Coefficient of n5 in
4

0

5 ( ).

n

f x d x   = coefficient of n5 in
5

( )f n  = 
1

2
 

(c) Coefficient of n4 in 
4

0

5 ( ).

n

f x d x  = coefficient of n4 in
5

( )f n  = 
5

1 2
 

(d) Coefficient of n3 in 
4

0

5 ( ).

n

f x d x  = coefficient of n3 in
5

( )f n = 0 
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(e) Coefficient of n2 in 
4

0

5 ( ).

n

f x d x  = coefficient of n2 in 
5

( )f n = 
1

1 2
  

   And the coefficient of the linear term in
3

( )f n  = 1 – [sum of coefficient of nonlinear terms] 

                                                 = 
1 1 5 1

1 0
6 2 1 2 1 2

 
    
 
 

    

5
( )f n = 

2 2 2
( 1) ( 2 2 1)

1 2

n n n n  
 

 

(5)Finding the formulae for 
6 6 6 6

6
1 2 3 ... . . . . . ( )n f n       from 

5 5 5 5

5
1 2 3 ... . . . . . ( )n f n      

5 5 5 5

5
1 2 3 ... . . . . . ( )n f n    

2
( 1)( 2 1)(3 3 1)

3 0

n n n n n   
  

 

 Writing it as a polynomial  
6 5 4 21 1 5 1

6 2 1 2 1 2
n n n n     

 

Find 
5

0

( ) .

n

f x d x  

          

6 5 4 2 7 6 5 3

5

0 0

5
( ). [ ] .

6 2 1 2 1 2 4 2 1 2 1 2 3 6

n n

x x x x n n n n
f x d x d x          

           

Existing formulae for 
6

( )f n =
6 6 6 6

1 2 3 ........ n    =

4 3
( 1)( 2 1)(3 6 3 1)

4 2

n n n n n n    
 

                                                                                              =  
7 6 5 31 1 1 1 1

7 2 2 6 4 2
n n n n n     

Comparing coefficient of n7, n6, n5,n4, n3 and n2 in 
5

0

( ) .

n

f x d x  

(a) Coefficient of n7 in 
5

0

6 ( ).

n

f x d x   = coefficient of n7 in 
6

( )f n    = 
1

7
 

(b) Coefficient of n6 in 
5

0

6 ( ).

n

f x d x  = coefficient of n6 in 
6

( )f n  = 
1

2
 

(c) Coefficient of n5 in 
5

0

6 ( ).

n

f x d x  = coefficient of n5 in 
6

( )f n  = 
1

2
  

(d) Coefficient of n4 in 
5

0

6 ( ).

n

f x d x  = coefficient of n4 in 
6

( )f n = 0 

(e) Coefficient of n3 in 
5

0

6 ( ).

n

f x d x  = coefficient of n3 in 
6

( )f n = 
1

6
  

(f) Coefficient of n
2
 in 

5

0

6 ( ).

n

f x d x  = coefficient of n
2 

in 
6

( )f n = 0 

   And the coefficient of the linear term in
3

( )f n  = 1 – [sum of coefficient of nonlinear terms] 
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                                                 = 
1 1 1 1 1

1
7 2 2 6 4 2

 
    
 
 

 

6
( )f n = 

4 3
( 1)( 2 1)(3 6 3 1)

4 2

n n n n n n    
    

 
 

IV. Tabular Analysis 
 

 
 

V.   Conclusion 

 
1

0

( ) ( 1) ( ) .

n

K K
f n K f x d x


    + Linear term  

        

                 Such that, 1-[Sum of coefficients of nonlinear terms] = The coefficient of linear term 

 We know, 

1

0
1

n m

m a n
a x

K






    if 0a   then the term 
1m

n


 vanishes 

When we consider the integration method, if the formulae ( )
K

f n don't have the term 
m

n  then   
1m

n


 never 

exist in the formulae of 
1
( )

K
f n


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