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Abstract 

The purpose of this paper is to search the exact chirped soliton solutions of generalized derivative nonlinear 

Schrödinger equation which appears in many fields of physics as various nonlinear waves, such as nonlinear 

Alfvén waves in space plasma, sub-picosecond or femtosecond pulses in single mode optical fibers. Firstly, we 

apply a special complex envelope traveling-wave method to the generalized derivative nonlinear Schrödinger 

equation. Complex envelope traveling-wave solution is used to reduce the governing equation to an ordinary 

differential equation. Secondly, we introduce a new chirping ansatz given as an expansion in powers of intensity 

of the light pulse and obtain both linear and nonlinear chirp contributions associated with propagating optical 

pulses. It is shown that the phase associated to the obtained pulses has a nontrivial form and possesses two 

intensity dependent chirping terms. By using this ansatz the ordinary differential equation has been reduced to a 

fourth-degree an elliptic differential equation. Lastly, using an auxiliary equation to construct the analytical 
chirped solutions of the generalized derivative nonlinear Schrödinger equation. The resulting amplitude 

equation is then solved to get exact analytical chirped bright solitons, dark solitons, and periodic solutions for 

the model. As a result, we derive families of chirped soliton solutions under certain parametric conditions. 
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I. Introduction 

The nonlinear Schrödinger equation (NLSE) is a significant model that naturally arises in fields such as 

nonlinear optics, plasmas, fluid dynamics, and physics such as Bose-Einstein condensation. Mainly, the NLSE 

describes the propagation of an optical pulse in Kerr-law or non-Kerr law media . The NLSE is the familiar 

nonlinear partial differential equations that defined the evolution of optical solitons in optical fiber [1-2].  
Optical solitons represent a non-linear pulse or wave packet that travels without deformation over 

extremely large distances. Due to their remarkable stability properties, optical solitons are now at the center of 

an active research field of nonlinear wave propagation in optical fibers. This research field started with the result 

obtained by Hasegawa and Tappert [3]. 

One of the attractive wave phenomena in recent times is the chirped solitons. The word chirp takes its 

origin from the chirping sound made by birds. For example, in optical transmission systems, ultrashort pulses 

could exhibit chirp, which could interact with the dispersion properties of the materials in which they are 

propagating, to increase or decrease the total pulse dispersion. Chirp is used in spread spectrum communications 

and in some devices as sonar and radar [4]. 

This paper is concerned with the generalized derivative nonlinear Schrödinger equation: 

   
2 4 2

0 ,                                         1
t xx x

x

iq a q b q q c q q id q ih q q       

where  ,q x t  is complex envolope of the physical field in the comoving frame. a, b, c, d, h  are real parameters 

related to the group velocity dispersion, cubic nonlinearity, quintic nonlinearity, the first order derivative term 

and the self steepening, respectively [5].This equation was studied different authors [6-8]. 
 

II. Mathematical Analysis 
It is of interest to find exact chirped soliton solutions of the generalized derivative nonlinear Schrödinger 

equation. In order to obtain such solutions of Eq. (1) we express the complex envolope function as [9-13] 
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where       is the amplitude function and      is the phase function of  ,  x t k x v t   . Also, v is 

the wave velocity, and ω is the frequency of the wave oscillation. The associated chirp is can be written as  

                        ( , ) [ ( ) ] '( ).                                      3x t t
t

     


    


  

Substituting (2) into Eq.(1), an equation consisting of real and imaginary parts is obtained, which depends on the 

dependent variables   and   . Real part gives 

   
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while imaginary part implies 
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where primes denote differentiations with respect to  . Multiplying both sides of (5) by   and integrating once 

time leads to 
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where A is an integration constant. Therefore, the resultant chirp is obtained as  
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which shows that the chirping has two intensity dependent chirping terms apart from the linear term [where 

I=|q|²=ρ² being intensity].   On substituting (6) in (4) gives 
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Multiplying (8) by ρ′ and integrating with respect to ξ, we get 
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where B is the second integration constant. 

Equation (9) is a nonlinear differential equation describing the evolution of the wave amplitude in a nonlinear 

medium that is governed by Eq. (1).      

 

III. Chirped soliton solutions 

Next, we present various chirped soliton solutions of the model Eq.(1), for different parameter conditions. 

Before discussing exact solutions to Eq. (9),  the change of variable for the field amplitude 

       ,                                                                                  1 0² U    

transforms Eq. (9) into the following new auxiliary elliptic equation [14-18] : 
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3.1. Bright solitons 

We have found that there are three types of bright soliton solutions for Eq. (11) under the following parametric 

conditions: 

Case-I: For
0 1 3

0a a a   , 
2 4

0 ,  0 ,   = 1a a    , then Eq. (11) has a bright soliton solution: 
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Based upon the above finding, we obtain a first chirped bright soliton solution for Eq. (1) of the form 
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The corresponding chirp is given as follows: 
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Case-II: For 
0 1 4

0a a a   ,
2 3

0,  0a a  , then Eq. (11) has a bright soliton solution: 
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By using these findings, we can show the second family of chirped bright soliton solution of Eq. (1) as 
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and its corresponding chirping is of the form 
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Case-III: For
0 1 2

0,  >  0 ,a a a   then Eq. (11) has a bright soliton solution: 
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Using the results given above, we obtain the following chirped bright soliton solution for Eq. (1): 
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The corresponding chirping is obtained as 

  

  
 

2 3

2

2

2

2 3

2

3
         2 1

co sh

.
2 co sh2

a a

a

A
v

k

a

a ak k




 









 



  



 

3.2. Dark solitons 
We have found three types of dark soliton solutions for Eq. (11) under the following parametric conditions: 

Case-I: For
2
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Thus, the first chirped dark soliton solution to the Eq. (1) is given by 
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The corresponding chirping is given by 
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Case-II: For
0 1

0 ,  a a 
2 4 3 2 4

0 ,  0 ,   = 2 ,  = 1a a a a a     , then Eq. (11) has a dark soliton solution: 
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The second family of chirped dark soliton solution of Eq. (1) as 
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and its corresponding chirping takes the form 

 
4 2

2

2 4

2

2

2

7
2 3

.           
4

1
1 ta n h 2

21
1 ta n h

2

2

a a
a

a a

v A

kk
k a


  

 

 
  

    




 
   

  



 







 

Case-III: For
0 1 2

0,  >  0 ,a a a   then Eq. (11) has a dark soliton solution: 
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Hence, we obtain the following chirped dark soliton solution for Eq. (1): 
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 For this case, corresponding  chirping is given as 
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3.3. Periodic solitons 

We have found that there are three types of periodic soliton solutions for Eq. (11) under the following 

parametric conditions: 

Case-I: For
0 1 3
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We then obtain the following chirped periodic soliton solution for Eq. (1): 
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The chirping is given as 
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We then obtain the following chirped periodic soliton solution for Eq. (1): 
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The chirping is given as 
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Case-III: For
0 1 4
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0,  0 ,a a  then Eq. (11) has a periodic soliton solution: 
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Then we get the following chirped periodic soliton solution for Eq. (1): 
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And corresponding the chirping is given as 
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IV. Conclusions 
In this paper, we have obtained chirped bright, dark  and periodic soliton solutions for the generalized 

derivative nonlinear Schrödinger equation. After introducing a new ansatz that includes a novel form of 

chirping, the solutions were investigated within the framework of a general fourth order elliptic equation 

involving many parameters. 

The evolution of the wave amplitude is shown to satisfy a nonlinear differential equation involving two 

integration constants which can be readily determined with the initial parameters of the wave. We analytically 

solved the resulting amplitude equation and obtain results for bright, dark  and periodic soliton solutions. We 

have further determined the nonlinear chirp associated with each of these soliton solutions. 
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