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Abstract: In this paper, we introduce the notion of strong neutrosophic diameter zero for a family of subsets 

based on the neutrosophic diameter for a subset of  . Then, we introduce nested sequence of subsets having 
strong neutrosophic diameter zero using their neutrosophic diameter. 

Keywords: Diameter;  Metric Space; Strong completeness;  Neutrosophic metric space. 

2010 AMS subject classification: 05C72, 54E50, 03F55. 

--------------------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 16-01-2022                                                                           Date of Acceptance: 31-01-2022 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

I. Introduction: 
The theory of fuzzy sets was introduced by Zadeh [26] in 1965. Kramosil and Michalek [7] introduced 

the fuzzy metric spaces by generalizing the concept of probabilistic metric spaces to fuzzy situation. George and 

Veeramani [4] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [7] with a view 

to obtain a Hausdorff topology on fuzzy metric spaces which have very important applications in quantum 

particle particularly in connection with both string and E-infinity theory.  

Atanassov [2] introduced and studied the notion of intuitionistic fuzzy set by generalizing the notion of 

fuzzy set.  Recently, Park[8] and Park et al. [9] defined the intuitionistic fuzzy metric space. Many authors 

[8,9,10,11] obtained a fixed point theorems in this space. In 1998, Smarandache [13,14] characterized the new 

concept called neutrosophic logic and neutrosophic set and explored many results in it. In the idea of 
neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-membership. 

Basset et al. . Explored the neutrosophic applications in different fields such as model for sustainable supply 

chain risk management, resource levelling problem in construction projects, Decision Making.  In 2020, Kirisci 

et al [18] defined NMS as a generalization of IFMS and bring about fixed point theorems in complete NMS.  In 

2020, Sowndrarajan et al. [16] proved some fixed point results for contraction theorems in neutrosophic metric 

spaces. 

In this paper, the concept of characterization of strong neutrosophic diameter zero in neutrosophic 

metric spaces are introduced and also discuss some properties of strong neutrosophicdiameter zero in 

neutrosophic metric spaces. 

 

II. Preliminaries: 
Definition: 2.1. 

A binary operation * : [0, 1] x [0, 1]   [0, 1] is a continuous t-norm [CTN] if it satisfies the following 

conditions : 

1. * is commutative and associative, 

2. * is continuous, 

3.  1*1 =  1 for all   1  [0, 1], 

4.  1*  2  ≤  3* 4  whenever   1 ≤  3 and   2  ≤  4  , for each  1,  2,  3,  4   [0, 1]. 

Definition: 2.2. 
A binary operation   : [0, 1] x [0, 1]   [0, 1] is a continuous t-conorm [CTC] if it satisfies the following 

conditions: 

1.   is commutative and associative, 

2.   is continuous, 

3.  1  0 =  1 for all  1  [0, 1], 

4.  1  2  ≤  3  4  whenever   1 ≤  3 and   2  ≤  4  , for each  1,  2,  3 and  4  [0, 1]. 

http://fs.unm.edu/NSS2/index.php/111/article/view/753
http://fs.unm.edu/NSS2/index.php/111/article/view/753
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Definition: 2.3. 

A 6-tuple (           ) is said to be an Neutrosophic Metric Space (NMS), if Σ is an arbitrary non 

empty set,   is a neutrosophic CTN,   is a neutrosophic CTC and          are neutrosophic onΣ2 ×  + 

satisfying the following conditions:   

For all  ,  ,  ,   ,     +. 

1. 0    (  ,  ,   ) ≤ 1; 0    (  ,  ,   ) ≤ 1; 0    (  ,  ,   ) ≤ 1; 

2.   (  ,  ,   ) +   (  ,  ,   ) +   (  ,  ,   ) ≤ 3; 

3.   (  ,  ,   ) = 1  if and only if      ; 

4.   (  ,  ,   ) =   (  ,    ),  

5.   (  ,  ,   )   (    ,  ) ≤   (  ,  ,    ), for all      > 0; 

6.   (  ,  ,   ) : (0, ∞ )   ( 0 , 1] is neutrosophic continuous ; 

7.    
   

  (  ,  ,   ) = 1   for all     ;  

8.   (  ,  ,   ) = 0  if and only if      ; 

9.   (  ,  ,   ) =   (  ,    ) ; 

10.   (  ,  ,   )    (    ,  ) ≥   (  ,   ,    ), for all      > 0; 

11.   (  ,  ,   ) : (0, ∞ )   ( 0 , 1] is neutrosophic continuous; 

12.    
   

  (  ,  ,  ) = 0   for all     ; 

13.    (  ,  ,  ) = 0  if and only if       ; 
14.    (  ,  ,   ) =    (  ,    ) ; 

15.   (  ,  ,   )     (    ,  ) ≥    (  ,  ,    ), for all      > 0; 

16.  (  ,  ,   ) : (0, ∞ )   ( 0 , 1] is neutrosophic continuous; 

17.    
   

  (  ,  ,   ) = 0   for all     ; 

18. If     then   (  ,  ,   ) = 0;    (  ,  ,  ) = 1;     (  ,  ,   ) = 1.  

Then, (     ) is called an NMS on  . The functions          denote degree of closedness, neturalness 

and non-closedness between           with respect to  respectively. 

 

III. Main Results: 
Definition :3.1. 

The Neutrosophic Diameter (ND) of a non-empty set   of a NMS (           ), with respect to  , is 

the function  φB: (0, + ∞) → [0, 1] given by   ( ) =    {   ( ,  ,  ):  ,    },   : (0, + ∞) → [0, 1] given by  

  ( ) =    {   ( ,  ,  ):  ,    } and   : (0, + ∞) → [0, 1] given by    ( ) =    {   ( ,  ,  ):  ,    }, for 

each    + . 

Definition: 3.2. 

A collection of sets {  }   of a NMS (           ) is said to have ND zero if given    (0, 1) and    + 

there exists     such that  ( ,  ,  ) ≥ 1 −  ,  ( ,  ,  ) ≤   and   ( ,  ,  ) ≤ r , for all  ,     . 

Theorem :3.3. 

Let         be a nested sequence of sets of the NMS (           ). Then the following statements are 
equivalent:   

(i)         has ND zero. 

(ii)    
   

   
( ) = 1,    

   
   

( ) = 0 and    
   

   
( ) = 0 , for all    + . 

Proof: 

(i)→(ii): Let     +. Given    (0, 1) exists        such that  

 ( ,  ,  ) > 1 –  ,  ( ,  ,  ) <   and   ( ,  ,  ) <  , for each  ,       with   ≥      . 

Then,     
( )  =    {   ( ,  ,  ):  ,     } ≥ 1 –   ,    

( ) =    {   ( ,  ,  ):  ,     } ≤    and 

   
( ) =    {  ( ,  ,  ):  ,     }≤   ,  for all n ≥     .  

Hence,    
   

   
( ) = 1,    

   
   

( ) = 0 and    
   

   
( ) = 0, since r is arbitrary in (0,1). 

(ii)→(i): Suppose    
   

   
( ) = 1,    

   
   

( ) = 0 and    
   

   
( ) = 0, for all    + . 

Let    + and let    (0, 1). 

We can find        such that    
( ) > 1 −   ,   

( ) <   and    
( )<  , for all   ≥     .  

Thus,  ( ,  ,  ) >1 –  ,   ( ,  ,  ) <   and  ( ,  ,  )<  , for each  ,      with   ≥     . 

i.e.,         has ND zero.   

Definition: 3.4. 
A family of non-empty sets         of a NMS(           ) has strong ND zero if for    (0, 1) there 

exists     such that   ( ,  ,  ) > 1 –  ,   ( ,  ,  ) <    and   ( ,  ,  ) <   , for each  ,      and all    +. 
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Theorem: 3.5. 

Let (           ) be an NMS and let         be a nested sequence of sets of  . Then the following 

statements are equivalent. 

(i)         has strong ND zero. 

(ii)    
   

   
(  ) = 1,    

   
   

(  ) = 0 and    
   

   
(  ) = 0,   for every decreasing and 

increasing sequence of positive real numbers        that converges and diverges respectively. 

Proof:  

(i) → (ii): Let        be a decreasing, increasing sequence of positive real numbers that converges and diverges 

respectively. Given    (0, 1), we can find      such that  

  ( ,  ,  ) > 1 –  ,   ( ,  ,  ) <    and   ( ,  ,  ) <  ,  for each a, b   Bn with   ≥    and all    +.  

In particular,   ( ,  ,   ) > 1 –  ,   ( ,  ,   ) <    and   ( ,  ,   ) <  , for all a, b  Bnwith   ≥   ,  

i.e.,    
(  ) >1−  ,    

(  ) <   and     
(  )<  , for all   ≥   . 

i.e.,    
   

   
(  ) = 1,    

   
   

(  ) = 0 and    
   

   
(  ) = 0. 

(ii) → (i): Suppose that         has not strong ND zero. Let r   (0, 1) such that     = {n   :   ( ,  ,  ) ≤ 1 –  , 

  ( ,  ,  ) ≥   and   ( ,  ,  ) ≥  ,for some  ,      and some    +}, is infinite.  

Take  1 = min I. Then, there exist    ,        
 such that  (   ,    ,   ) ≤ 1 –  ,   (   ,    ,   )  ≥   and 

 (   ,    ,    )  ≥   with 0 <   < 1. 

Take  2>  1, with  2  , such that   (   ,    ,     ) ≤ 1 –  ,   (   
,    ,     )  ≥    and  (   ,    ,    )  ≥  ,   

for  some      ,        
 and 0 <    <   {    , 

 

 
}. In this way, we construct, by induction, a sequence {        

such that  (   ,    ,     ) ≤ 1 –  ,   (   ,    ,     )  ≥   and (   ,    ,     )  ≥  ,  for some    ,        
 ,      

with    >   −1 and 0 <    < {     
, 
 

 
 }.   Then,      

    
(     = {  ( ,  ,    ):  ,      

} ≤ 1 –  ,     
 (      = {   ( ,  ,     ):  ,      

} ≥   and 

    
 (     = {  ( ,  ,     ):  ,      

} ≥  , for all      . 

Hence {    
 (        , {    

 (         and {    
(         does not converge and diverge respectively.  

Now, {        is a subsequence of the decreasing and increasing sequence {       that converges and diverges 

respectively, given by 

         =  
                        

     
                  

  

and the sequence {   
(       , {   

(        and {   
(        does not converge and diverge respectively. 

Thus, we get the contradiction.  

Theorem: 3.6. 

Let {       be a nested sequence of sets with ND zero in a NMS (           ).         has strong ND 

zero if and only if {  } is a singleton set after a certain stage.   

Proof:  

Suppose {       is not eventually constant. Put   =sup{ ( ,  ):  ,     },   = {( ,  ):  ,    } and  

s =    { ( ,  ):  ,      }. Take   =   ,    =   and    = s  for all     . Then, {         is a decreasing and 

increasing sequence of positive real numbers converges and diverges respectively.   

Then,    
   

   
 (   =    

   
 {   ( ,  ,   ):  ,      } =     

   

  

            
 =     

   

  

      
 = 

 

 
 , 

   
   

   
 (   =    

   
sup{   ( ,  ,   ):  ,      } =     

   

        

            
 =     

   

  

      
 = 

 

 
 and 

   
   

   
 (   =    

   
sup{   ( ,  ,   ):  ,      } =     

   

        

  
  =     

   

  

  
 =  . 

Hence {      has not strong ND zero. 

Theorem: 3.7 

Let (           ) be a NMS. If {       is a nested sequence of sets of   which has strong ND zero 

then {      has strong ND zero.   

Proof:  

        First, we prove that    ( ) =    ( ),    ( ) =  ( ) and    ( ) =  ( ) for every subset   of    . Indeed, 

take  ,    . Then, we can find two sequences {       and {        in   that converge to   and  , respectively. 

Let    + and an arbitrary ε   (0, 1).  

We have that  ( ,  ,   + 2 ) ≥  ( ,   ,  )   (  ,   ,  )   (  ,  ,  ) ≥  ( ,   ,  )     (  )   (  ,  ,  ),  

 ( ,  ,   + 2 ) ≤  ( ,   ,  )   (  ,   ,  )   (  ,  ,  ) ≤  ( ,   ,  )    (  )   (  ,  ,  ), 
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 ( ,  ,   + 2 ) ≤   ( ,   ,  )    (  ,   ,  )    (  ,  ,  ) ≤   ( ,   ,  )    ( )    (  ,  ,  ) and taking limit on 

the inequality when n tends to ∞, we obtain  

  ( ,  ,   + 2 ) ≥ 1     ( )   1 =    ( ), ( ,  ,   + 2 ) ≤ 0    ( )  0 =    ( ) and  

  ( ,  ,   + 2 ) ≤ 0       ( )  0 =    ( ). 

Since ε is arbitrary, due to the continuity of  ( ,  ,  ),  ( ,  ,  ) and   ( ,  ,  ),  we obtain  

 ( ,  ,  ) ≥    (  ),  ( ,  ,  ) ≤    (  ) and   ( ,  ,  ) ≤    (  ), then     (  ) ≥    ( ),  (  ) ≤   ( )  

and   (  ) ≤    ( ).  

On the other hand, we have    (  ) ≤    ( ) ,   (  ) ≥    ( ) and   (  ) ≥    ( ), hence    (  ) =    ( ), 

   (  ) =    ( ) and   (  ) =    ( ).   

Let {        be a decreasing and increasing sequence of positive real numbers convergent and divergent 

respectively.  By theorem (3.5), we have that 
   
   

   
(  ) = 1,    

   
   

(  ) = 0 and    
   

   
(  ) = 0.  

We have that,    
   

   
(  )  =    

   
   

(  ) = 1,      
   

   
(  )  =    

   
   

(  ) = 0 and 
   
   

   
(  )  =    

   
   

(  ) = 0and consequently, by theorem (3.5), {        has strong ND zero. 

 

IV. Conclusion 
Neutrosophic set theory plays a vital role in uncertain situations in all aspects. In this paper, the 

characterizations of strong ND zero in NMS are discussed and proved that the nested sequences having the 

strong ND zero in NMS. We have also provided that nested sequences of subsets has strong ND zero if and only 

if singleton set after a certain stage in a NMS. 
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