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I.  Introduction:

In mathematics, (wikipedia) an Fjset is a countable union of closed sets.The notation originated in
French with ‘F’ for ‘ferme’ (French: closed) and ‘o’ for ‘somme’ (French:sum, union). The complement of
Fyset is called a Ggset. The notation originated in German with ‘G’ for ‘Gebiet’ (German: area or
neighbourhood) and ‘6’ for ‘Durchschnitt’ (German: intersection). G.Thangaraj.et.al introduce the concepts of
o- Baire space using F; set. The spaces are named in honor of Rene-Louis Baire who introduced the concept.
The concept of o-Baire Space was coined by Thangaraj et.al and discussed various properties with clear
examples. Also they initiated D-Baire Space and they discussed some of its characterizations.

Il.  Primary Needs:

On the whole paper, we discussed the non-void set X and mentioned GITS (X, u,;) as X. Let u,be the
collection of 1Ss of X. Then X is said to be GITS if ¢p_€y, and g, is closed under arbitrary unions. Then the
elements of g, are called ;-open and their complements are named as y;-closed sets. ¢, (A) = N{F: F is u;g-
closed set and A <€ F} and iy, (A) =U{G:G is u;g-open set, G < A}. If ¢, (A) S U whenever A € U where
U is p;- open set in X then A € X is called w,; g-closed set (1,9-CSGITS). c;;, (4) and i (A) are defined as
follows, c; (A) = N{F: F is u;g-CSGITS and A € F} and i;;,(A) =U {G: G is y;g-open set (4,9-OSGITS), G
A} If Ais p;g-CSGITS (resp.u;g-OSGITS) then ¢, (A) = A (resp.i;, (A) = A).[2] Theyw,g-Frontier,u; g-
Exterior and ,; g-border is defined as follows: Fr; (4) = c;, (4A) — i, (A), E;,(A) = i;,(A) and by, (A) = A —
iy, (A).[3] Ifc;, (A) = X_ (resp.c;,(A) = X_) then A is named as ,9-DGITS (resp.x;g-CDGITS). Also a subset
A of an ITS of X is said to be 1,9-NDGITS if the y,g-closure of A contains no y,g- interior points or i, (c,,(A))
= ¢.. Every subset of a u,g-NDGITS is a w,g-NDGITS. An ISs A in X is called u,g-FCGITS if
A=Uj2, B;,where B;€ Nd*(u;). Remaining sets in X are said to be of y;g-SCGITS. The complement of y,g-
FCGITS is called a p, g-residual set in X. The pair(X, i) is said to be a u,;g-Baire space if i;, (U2, 4;) = ¢,
where 4;€ Nd*(u;). We call (X, ¢, X) as €, (X, ¢, p) as O and (X, X, ¢) as U.

Proposition:2.2[4](a)c;, (4) = 1, (A) 5 (b)c;, (A) =iy, (A); (©)c;, (A) =i, (A); (d) ¢y, (A) =1, (A).
Proposition:2.3[3]LetA be an 1Ss of X. If A € Nd*(;) in X, then i;, (4) = €.
Proposition:2.4[4](i)i,, (A) U i;,(B) € i;,(A U B), where A and B are ISs in X.
(i)c, (A) U ¢z, (B) < ¢, (AU B), where A and B are ISs in X.

Corallary:2.5[3]LetA € X. If Ais u;g-CSGITS with i;; (4) = € then A is u; g-NDGITS.
Proposition:2.6[3]Let(X, 1;) be a GITS. Then the following are equivalent

(i)(X, u;) is a u; g-Baire space.

(ii)iy, (A) = €, for every A € F*(uy).

(iii) ¢, (B) = U, for every u, g-residual set B in X
Definition:2.7[1]An 1Ss A is said to be w,g-strongly nowhere dense set (in short,u;g-SNWDS) if i,
(c; (ANA)) = E.
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Theorem:2.8[1]LetA < X. If A is u;g-CSGITS with i, (A) = € then A is y1;g-SNDS.

1. pgF,-setand pu;9Gs-setin GITS

Definition:3.1 An ISs g in X is called a p,gF,-set if gy = U}, gx,, Where g, are 11,g-CSGITS.
Definition:3.2 An ISs gy in X is called a p,9Gs-set if gy = N2, gx,, Where gy are y,;g-OSGITS.
Remark:3.3 The complement of u,gF,-set is u,9Gs-set.
Egample:3.4 Let X = {nx t, A} w={CAX, @, {&x (X, {nx}, P)AX, {nx, £}, PIX, {0y}, (A Dy, 9F,-set =
{U:(X: ¢: {UX}):(X: ¢' {I]X' tX}):(X; {tX}' {I]X}})v(X' {tX}' ¢)1(X' {tX}' {KX})!
(X, (&3, (03, A DX {3, )X {3, (o DX, A (DX, Ak ), {0y, 8 DX, {6y, Ak ), @),
(X, {ex, A 1, (0x DAX, {05, A 3, 90X, {0y, Ak} {66 1)} and U;9Gs-set = {€(X,{nx}, P),
(X' ¢l {I]Xl tX}>l(X' {I]X}' {tX})I(X' ¢' {tX})v(X' {XX}' {tX})v(X' {UX' 7\X}' {tX})y(X' ¢; {XX})y
(X, (0x 3 A DX, G AR DAX, (g, 63 A DX, @, {8, A DX, {x ) {65, A DX, @, {0y, Ag D),
(X, {&x3, {nx, A D}
Properties:3.5 (i) € is always in p;gGg-Set.

(if)Intersection of 1;9Gs-set is always a p;gGs-set.

(iii)Every p;g-OSGITS is u;9Gs-set.

(iv) U is always in u,gF,-set.

(V) Union of u,gF;-set is a u;gF,;-set.

(vi) Every p;,g-CSGITS is p;gF;-set.
Proof: The proof of(i),(ii),(iii),(iv),(v) and (vi) are obvious. The backforth of (iii) and (vi) are not required. For
example,Let X = {¥x,0x @y} with w={CAX, {9y}, {ex (X, b, {ox}),
(X, {9x, 0x3, PIX, {ox ) {wx, Ix (X, {ox} PIAX, (9x ), {wx AKX, (95}, PIAX, (9%, 0x ), {wx DX, {ox }, (9 D}
Then 04X, {9y}, d).(X, {9y, 0x}, ) are w,gF,-set but not a p,;g-CSGITS and O,(X, p, {9 ). (X, @, {9y, 0x})
areu;gGg-set but not a y;g-OSGITS.
Remark:3.6 Union of pu,gGs-set need not be a p;gGs-set. In example 3.4, the union of (X, ¢, {t,})and
(X, {&¢ 3, (A4 }) is (X, {4}, @) but which is not in p;gGs-set.
Remark:3.7 Intersection of u,gF,-set need not be a y,gF,-set. In example:3.4, intersection of (X, ¢, {ny})and
(X, {tx}, {Ax}) is (X, ¢, {nx, Ax}) but which is not in y,gF,-set.
Theorem:3.8 Ifgy is u;g-DGITS and p,9Gs-set then g is a u,g-FCGITS.
Proof: Let gy be a y;g-DGITS and ,9Gs-set. Then ¢, (gx) = U and gy = N2, @x; Where gy, are p,g-
OSGITS = (N2,gx,) =T But i (N21gx,) € N21 6 (9x,) and hence
Ucng, e, (@x)=N21c,(gx) =U. Thus we have c; (gx,) =U, where g, are 1,g-OSGITS =
¢, (in,(gx) = 0 =i, (¢, (7x,)) = E.Therefore gy is a 41,g-NDGITS. Now g = N2, gy, = U, gx,and
hence gy = U2, gx,, Where g isa ,g-NDGITS. Henceforth gy is a u,;g-FCGITS.
Theorem:3.9 Ifgy is u;,g-DGITS and p,9Gs-set then g is a u;g-residual set.
Proof: Let gy be a y;g-DGITS and p,;gGs-set. Then by theorem:3.8, g is a u,g-FCGITS. Therefore g is a
u;g-residual set.
Theorem:3.10 Ifgy is 4;g-FCGITS in X then there is a non-void p,gF,-set py in X such that g, S py.
Proof: Let gy beay,g-FCGITS in X. Then gy = U2, gx,, Where g, ’s are 1;g-NDGITS. Now (¢, (gx,) isa
w9-OSGITS in X. Then N2, (c;;, (¢x,) is a u,9Gs-set. Take N2, (cy, (gx,) = Bx- Now N2, ¢, (gx,) =

21 ca(9x) € U2, gx = gx and hence 8y S gx=gx S B,. Then we take 8 = 1. Since 8y is a 11,9G5-

set, ny IS a y;gF,-set. Therefore gy S ny.
Theorem:3.11 If i, (1y) = €, for each y,gF,;-set py in X, then X is a y1,9-Baire space.
Proof: Let g be a y;g-FCGITS in X. Then there is a non-void y,gF,-set py in X such that
gx € x=1i,,(gx) € i;,(ny) = €andhence i;,(gx) = €, for each ,g-FCGITS gy in X. By proposition:2.6,
X is a u;g-Baire space.
Theorem:3.12 If ¢, (8y) = 7, for each p,9G4-setBy in X, then X is a u,g-Baire space.
Proof: Let g, be a y;,g-FCGITS in X. Then there is a non-void u,gF,-set 1y in X such that gy S py. Since py
is a u,gF,-set, Hy is a y;9Gs-set and then ¢, (fiy) = L’I’zi;l(nx) = €. Now gy S py = iy, (gx) S iy, (1x) =
€ and hence i, (gx) = €. By proposition:2.6, X is a y,g-Baire space.
Theorem:3.13 If 64 is a u, g-residual set in X then there exist a y;gGs-set g such that g, < 8y.
Proof: Let 8y be a u;g-residual set in X. Then 6y is a ;g-FCGITS by theorem:3.10,we have there is a non-
void u,gF,-set py in X such that 8, € py. Hence Ty € 8y and fiy is a p,gGs-set. Take gy = Fiy. Therefore we
have gy € 8y.
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IV.  u;0 o-Nowhere dense sets in GITS
Definition:4.1 An ISs g in X is called p,go-Rare set (4,90-RS) if gy is a y,g F,-set such that i;; (gx) = €.
Definition:4.2 An ISs g in X is called u,;go-Nowhere dense set (u,go-NWDS) if g is a u;g F,-set such that
i, (6 (gx)) = €.
Remark:4.3 If g isa pu,gF;-set and y; g-NDGITS in X then g isa u;go-RS.
Example:4.4 In example 3.4,u;,90-RS = {X, ¢, {nx, & DX, A} {05, & N3} and  w,go-NWDS =
{X, &, {nx, &), (X, {A}, {nx, 1)} because (X, ¢, {ny, tx )X, {Ax}, {Dx, £x}) is @ p,9F,-set with their u,g-
interior will be€ and also u,g-interior of u,g-closure is €.
Theorem:4.5 An ISsgy in X is w,00-RS iff gy is w,0-DSGITS and p,9Gs-set.
Proof: Let gy be 11,go-RS in X. Then gy is p,gF,-set such that i; (¢x) =€ = ¢, (gx) = U and gx =
UZ19x, = Ni21gx, where gy € 1,g-OSGITS.Thereforegy is a 1;g-DSGITS and p,;9Gs-set. Conversely,
assume that gy is 4,9-DSGITS and p,9Gs-set in X. Then gy = N2 gx,=gx = UjZ; gx, Where gy ’s are (1, 0-
CSGITS =gy in X is w,gF,-set. Also ¢; (§x) = U = i;, (gx) = €. Therefore g is 11,90-RS.
Corralary:4.6 An I1Ssgy in X is ;90-RS iff E; (gx) = € and gy is a j1;9Gs-set.
Proof: Let gy be y;90-RS in X. Then gy is u,gF;-set such that i), (gx) = €. Now E; (gy) = i;,(gx) = € and
gx = Uj21¢x, = N2, gx, Where gy, € 11,9-OSGITS. ThereforeE; (gx) = € and gy is a 1;9Gs-set. Conversely,
assume that E;, (g¢5) = € and gy is a y,9Gs-set in X. Then gx=N;2, gx,=gx = U2, gx, Where gy ’s are y;g-
CSGITS =gy in X is ,gF,-set. Also i, (gx) = i, (gx) = E;; (gx) = €. Therefore g is y;9o-RS.
Theorem:4.7 Ifan 1Ssgy in X is u;go-RS then u,;g-border is a subset of p;g-Frontier.
Proof: Supposegy in X is u;go-RS then gy is a p,9F,-set and i, (gx) = €=gy = U2, gy,, Where g ’s are
#,9-CSGITS. Now by, (gx) = gx — iy, (gx) = gx and Fr; (gx) = ¢;,(gx) — iy, (9x) = ¢, (gx). Henceforth
u;g-border is a subset of a u,g-Frontier.
Theorem:4.8 Ifgy in X is y;go-RS then g is u,9-SFCS.
Proof:Supposegy in X is y;go-RS then gy is a w,gF;-set (gx = U2, gx,, Where gy, ’s are (1,g-CSGITS) and

[oe]

iz, (gx) = €. By proposition:2.4, U2, iy, (gx,) S is, (U1 gx,) = iy, (gx) = €=i; (gx,) = €, where gy.’s
are 1,9-CSGITS. By theorem:2.8,gy,’s are (,g-SNWDS and hence gy = U2, gx,, where gy ’s are p,g-
SNWDS. Therefore gy is p;g-SFCS.
Remark:4.9 The reverse of Theorem:4.8 is not required.For example, Let X = {¢y, dy, a5, ¥x} With g, =
{€AX, {ex, dy, ax}, P)AX, b, {ex, ax X, {ex}, {dx, x DAX, {ex }, D),
(X, {dy, 2}, {wx DAX, {dx, %}, §) (X, {6x, dy, ax}, {3x )} Then(X, {xx, 2}, {ex, dx (X, {3x, 6x}, {ox, dx }),
(X, {ex, ¢} {dx D (X, {ex, >x }, {dx, ¥x}) are u;9-SFCS but not p,9o-RS.
Theorem:4.10 Every u;go-NWDS is y;go-RS.
Proof: Let gy S X be a u,go-NWDS. Then gy is a y,gF;-set and u,g-NDGITS. Using theorem:2.3, g is a
w9F;-set and i), (gx) = € and hence gy is a ;1;9o-RS.

The reverse is wrong but we can add one more condition that the subset is u,g-CSGITS then the reverse
part of theorem:4.10 is true.
Corrolary:4.11 An ISsgy in X is u,;90-RS and p,g-CSGITS after that g is u;go-NWDS.
Proof: Given that gy in X is 1;,90-RS and y,g-CSGITS. Then gy is a w,gF,-set with i; (gx) = € and
¢, (gx) = gx. Therefore by Corrolary:2.5, we get gy is 11;g-NDGITS and hence g is y;go-NWDS.
Remark:4.12 Every p,go-NWDS is p; g-NDGITS but the reverse is not valid.
Theorem:4.13Ifgy in X is u,0o-NWDS then gy is y,g-SFCS.
Proof: Using theorems:4.10 and 4.8, g is u,g-SFCS.
Theorem:4.14 If anlSsgy in X is u,go-NWDS then g is u;g-DSGITS and p,9Gs-set.
Proof: Using theorems:4.10 and 4.5, we havegy is u;g-DSGITS and p,9Gs-set.

The converse is true when the subset is 1,g-CSGITS.
Theorem:4.15 If anlSsgy in X is ;go-NWDS then E;; (gx) = € and gy is a u;9Gs-set.
Proof: Using corollary:4.6 and theorem:4.10,E; (gx) = € and gy is a 11;9Gs-set.
Theorem:4.161f anlSsg in X is y;go-NWDS then p,g-border is a subset of a u,g-Frontier.
Theorem:4.17 (i)Every subset of au;go-RS is a y;go-RS.
(ii)Every subset of ay;go-NWDS is a y;go-NWDS.
Definition:4.18An ISs § is said to be w,;go-Category | Set in GITS (;90-C-1) if §x = U2, §, where §4,'s are
1;90-RS. Remaining sets are called u,ga-Category Il Set (u;ga-C-I1). The complement of x;go-C-1 is named as
a y;go-complement set.
Example:4.19  Let X = {gy, dy, o, ¥y} With g, = {EAX, {ex, dy, 3y}, P)AX, b, {ex, oy }),
X, {ex ) {dx, wx DAX, {ex b @)X {dy, o}, o DAX {dy, a0}, @)X {ey, Ay, o}, (D} Thenygo-Cl =
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{X, {3y} {dy, 2, ex DX, @, {dy, g, 6x 1)} and u;go-Complement Set =
{X, {dy, oy, 6x ), {xx DX, {dy, o, 65}, D)}
Theorem:4.20 Every subset of au;go-C-1is a y;go-C-l.
Theorem:4.21 Ifgy is u;0-DGITS and u,9Gs-set then g isa u;go-C-l.
Theorem:4.22 Ifgy is u;go-C-1 in X then g, S py Where iy is a non-void y,gF,-set in X.
Theorem:4.23 If 8, is a u;go-Complement Set in X then there exist a u,9Gs-set g such that g, < 8y.
Proof: Let 8, be a u;go-Complement Set in X. Then 8y is a u,go-C-I by theorem:4.22,we have there is a non-
void p,gF,-set py in X such that 8, S p,. Hence fiy S 8 and iy is a p;9Gs-set. Take g = fiy. Therefore we
have g5 C 8y.
Theorem:4.24 (i)Every u,go-C-lis ap,gF,-set.

(if)Every p,go-Complement Set is a u,9Gs-set.
Definition:4.25An 1Ss §y is said to be p,go-First Category Set in GITS (w;9o-1-CS) if §; = UiZ, §, where
§Xl.’s are u;0go-NWDS. Remaining sets are called y,go-Second Category Set (u;go-11-CS). The complement of
u;90-1-CS is named as a y,;go-Residual Set.
Example:4.26 Let tr = {&AX, {5x, O} LEx X, {ox, O d PIX, {0}, D)} Theny,go-1-CS =

{X, &, {sx, X, {8} {sx, Cx 1)} and p,go-Residual Set = {(X, {sx, {x}, {§x 1), (X, {5x, {x}, &)}
Theorem:4.27 Every subset of au;go-1-CS is a y,go-1-CS.

Theorem:4.28 Ifgy is 1;,9-DGITS and p,9Gs-set then g is a y;go-1-CS.
Theorem:4.29 Ifgy is 1;9o-1-CS in X then gy S py where py is a non-void y,gF,-set in X.
Theorem:4.30 If 84 is a u,go-Residual Set in X then there exist a y;9Gs-set g such that gx < 8y.
Proof: Let 8y be a u;go-Residual Set in X. Then 8, is a u;go-1-CS by theorem:4.28,we have there is a non-
void p,gF,-set fy in X such that 8y € py. Hence fiy € 8 and Tiy is a p;9Gs-set. Take gy = fiy. Therefore we
have gy C 8y.
Theorem:4.31 (i)Every u,go-1-CSis au,gF,;-set.
(if)Every p,go-Residual Set is a ¢;gGg-Set.

V.  u9B4- Space and u;go-Baire spaces in GITS

Definition:5.1 If i,j,(U?‘;l §Xi) = €, where §,’s are ;1,go-RS then X is a p1,gB;-space.
Definition:5.2 If i,j,(U?‘;l §Xi) = €, where §,’s are ;go-NWDS then X is a 1,go-Baire space.
Example:5.3 In example:4.19,i,, ({X, {wx}, {dx, 2, 6x})) = €. Hence (X, ;) is a 1;9B,- space.
Theorem:5.4 If c,j,(ﬂ?‘;l §Xi) = U, where §x,’s are y;g-DGITS and y,9Gs-set , then (X, w;) is a u,;9B,-space.
Proof: Given that c;, (N2, 8x,) = U which gives ¢ (N2, §x,) = =iy, (UR, §x) = E.Take B;=§,. Then
i, (UZ;By) =C. Now §y,’s are 1;g-DGITS and p,9Gs-set in X, by theorem:4.5 §_Xl is a y;9o-RS and hence
iy, (UZ; By) =€, where B;’s are y;9o-RS. Therefore (X, y;) is a u;9B,-space.
Theorem:5.5 Let(X, u;) be GITS. Then the following are equivalent

(X, uy) is p,9B,-space.

(i1)iy, (8x) = €, for every 11;,go-C-I§x in X.

(iii) c;, (gx) = U, for every u,go-Complement Set g, in X.
Proof: (i) = (ii), Let §x be w,go-C-l inX. Then §¢ = U2, §y, where §4’s are w;go-RS and i; (§x) =
in, (UZ1 8x,). Since (X, ;) is a w,9B,-space , i, (§x) = €.
(if) = (iii) Let gy be u,go-Complement Set in X. Then gy is u;go-C-1 in X. From(ii), iy, (gx) = €=c;; (gx)
=€ . Hence ¢;,(gx) =U.
(iif) = (i) Let §4 be y,;9o-C-1 in X. Then §; = U2, §x, where §y,’s are ,9o-RS. We have, if §y is ;go-C-I
inX then §y is u,go-Complement Set. By (iii) we get c;;,(g) =U, which gives u,(8x) = U. Therefore
i;,(8¢) = € and hence i, (U;2; 8x,) = €, where §,’s are y;go-RS. Hence (X, 1) is a 4;9B,-space.
Theorem:5.6 If i, (1) = €, for each y,gF,-set py in X, then X is a y;9B,-space.
Proof: Let gy be a ;9o-C-lin X. Then gy € iy where iy is a non-void p,gF,-set in X=i; (gx) <€ i;,(1x) =
€ and hence i, (gx) = €, for each y;go-C-1 gy in X. By theorem:5.5, X is a u;gB,-space.
Theorem:5.7 If ¢; (8y) = 7, for each p1,9Gs-setBy in X, then X is a y;9B,-space.
Proof: Let gy be a y;go-C-l in X. Then g € py Where py is a non-void u,gF,-set in X. Since py is a y,gF;-
set, My is a u;9Gs-set and then ¢, (fiy) = I’J’:i;l(nx) = €. Now gy € iy = iy, (gx) S i, (1y) = € and
hence i, (gx) = €. By theorem:5.5, X is a y;9B,-space.
Theorem:5.8 If iﬁ,(U?il §Xi) = €,where §,’s are y; g-CSGITS and y;9o-RS in X then (X, y,) is a y,go-Baire
space.
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Proof: Given that i;, (U2, §x,) = € where §,’s are 1;,g-CSGITS in X and y,9o-RS. By corollary:4.11,§,,’s
arep,go-NWDS. Therefore i ;, (U2, §x,) = €.8x,’s arey,go-NWDS and hence (X, ;) is a u,go-Baire space.

Remark:5.9 Every u,gB;-space is a u; g-Baire space if every u,9o-RS is p;g-closed.
Theorem:5.10 Every u,go-Baire space is a y; g-Baire space.
Theorem:5.11 Let(X, u;) be GITS. Then the following are equivalent

()(X, i;) is u,go-Baire space.

(i)iy, (§8x) = €, for every u;go-1-CS§y in X.

(iii) ¢, (¢x) = U, for every p,go-Residual Set g, in X.

Proof: (i) = (ii), Let § be y,go-1-CS inX. Then §x = (U2, §x,) Where §,’s are ,go-NWDS and i, (§) =
iy, (U721 8x,)- Since (X, u;) is a u,go-Baire space , i, (§x) = €.

(i) = (iii) Let gx be p,;go- Residual Set in X. Then gy is w,go-1-CS in X. From(ii), i}, (gx) = €=c;, (gx)
=€ . Hence c;,(gx) =U.

(i) = (i) Let §x be p;go-1-CS in X. Then §x = U2, §, where §,’s are y;go-NWDS. We have, if § is y,go-
I-CS inX then §y is ,go- Residual Set. By (iii) we get c;, (§;) =U, which gives i, (§5) = U. Therefore
i;,(8¢) = € and hence i; (U7, 8x,) = €, where §,’s are y;go-RS. Hence (X, 1) is a 4,;9o-Baire space.
Theorem:5.12 If i;; (1iy) = €, for each p,gF,-set iy in X, then X is a u;go-Baire space.

Proof: Let gy be a w,;9o-1-CS in X. Then gy C ny where py is a non-void u,gF,-set in X=i, (gx) S
i,,(y) = €andhence i, (gx) = €, for each ,9o-1-CS gy in X. By theorem:5.11, X is a y1,go-Baire space.
Theorem:5.13 If ¢;, (8x) = 7, for each p,9G5-set6y in X, then X is a u;go-Baire space.

Proof: Let g, be a y;go-1-CS in X. Then g S ny Where py is a non-void p,gF;-set in X. Since py is a u,gF,;-
set, Ty is a p;9Gs-set and then c,, (fiy) = l'J’=>i;;I(nX) = € Now gy S ny = i,,(gx) S i;;,(ny) = € and
hence i, (¢x) = €. By theorem:5.11, X is a y,go-Baire space

VI.  u;gD-Baire space in GITS
Definition:6.1 A GITS X is said to be a y; gD-Baire space if i), (c;,(gx)) = € for each u;g-FCGITS gy in X.
Example:6.2 (X, {€(X, {¢x, {x}, {Ex (X, {ox, {x } @)X, {{x}, ¢)}) is a p, gD-Baire space.
Theorem:6.3 Every u,gD-Baire space is a u; g-Baire space.
Proof: Let hy be a ;g-FCGITS in a u;gD-Baire space X. Then by = U2, by Where by, ’s are y;,g-NDGITS
and i, (c;, (bx)) = €. By proposition:2.3, iy, (by) = € and hence i; (U2, bx,) = €, where by ’s are y;g-
NDGITS. Therefore X is a u,g-Baire space.
Theorem:6.4 If by is a u;g-FCGITS and p; g-CSGITS in a y,g-Baire Space X then X is a u; gD-Baire space.
Proof:Let by be a y;g-FCGITS in a y;g-Baire space X. By proposition:2.6, iy, (hy) = €. Now i, (c;, (hy)) =
iy, (bx) = €. Therefore X is a u; gD-Baire space.
Theorem:6.5 Ifc;; (i;,(hy)) = U’ for each u,g-DGITS and p,9Gs-set by in X then X is a u; gD-Baire space.
Proof: Let b, be a u,g-DGITS and u,9Gs-set in X.By theorem:3.8,by is a w,g-FCGITS. By hypothesis,
(i, (by)) = U= iy, (¢ (bx)) = €. Henceforth X is a y; gD-Baire space.
Theorem:6.6 Ifc;; (i;,(hy)) = U for each u, g-residual sethy in X then X is a u; gD-Baire space.
Proof: Let by be a y;g-residual set in X. Then by is a x,;g-FCGITS. By hypothesis, ¢, (i;, (x)) = U=
iy, (¢, (bx)) = €. Henceforth by is a u;,g-NDGITS. Therefore X is a u; gD-Baire space.

VIl.  Conclusion:
In this paper, first we defined u,gGs-setthen introduceu,g o-Baire space and D-Baire space. Various properties
of their Baire spaces are to be discussed and their characterizations are to be analysed.
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