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Abstract

In this paper we assume that Hardy's inequality on a Skew-symmetric function. In general, it has much better
constants. This enables us they depend on the lowest degree of spherical harmonics Skew-symmetric
polynomial. We prove the existence of Hardy inequalities on the class of a Skew-symmetric function. In addition,
we find some conditions for specific Schrddinger operators in Skew-symmetric functions that do not have
nonpositive eigenvalues. Then we discuss some cases of Caffarelli-Kohn-Nirenberg inequalities and apply our
results to spectral properties of Schrédinger operators.
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I Introduction

We consider the different forms of Hardy's inequality and their applications are extensive, which
cannot be covered in this paper. We only review paper [4] and Books [8], [9], [10] and [11].

In [14] and [15], Hardy's inequalities and their applications are studied in the spectral theory of
Schrédinger's operators when N = 2.

The inferred inequality in (proposition (2.4) and Corollary (2.7) for N = 2 are finite cases of
Caffarelli-Kohn-Nirenberg inequalities [1], which cannot be adopted without Skew-symmetric conditions.

Additional applications of Hardy's inequalities for Skew-symmetric functions are used to prove the
spectral properties of the Schrédinger's operators with decay strength and corresponding estimates are given in

[2].

There is a nontrivial inequality [3] because the zero point of the spectrum is not a resonant state of the
Schrédinger magnetic operator with the Aharonoff-Bohm magnetic field in the 2-Dimention state in [5]. Also in
[5],[6] some spectral inequality of parameters of voltage functions in L' (R, ,L* (S),r dr).

In this paper, we use 2-Dimention Hardy's inequality for Skew-symmetric functions, which allows us
to show nonpositve eigenvalues for Schrédinger's operators in [Theorem 3. 2] .These classes were taken to
prove the Lieb-Thirring inequality for Schrédinger's operators on Hardy in [23]. In [7; Proposition 4.1] the
constant C,(N) depends on the lowest Dirichlet eigenvalue of the Laplace—Beltrami operator, and then we
calculated this eigenvalue directly due to the special structure of the Skew-symmetric functions.

Finally, in [12],[13] we show the absence of bound cases in the triplet S-sector for Schrodinger's
operators and Some properties of fermionic wave functions.

(1.1) Definition (classical Hardy inequality)

N — 2)? v|?
f |Vv|2dx = ( ) f vl dx. (1)
4 [x]2
]RN
Wherev € HY(RY) and N > 3.
We consider Definition (1.1) on the class of Skew-symmetric functions H*(RY), which we denote by H; (RY).
These functions are supposed satisfy the following Skew-symmetric conditions:
V(oo Xy Xjyen) = —v(...,xj,...,xi,...) 2
Wherex = (xg,...,xy) € RV,
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Obviously H}(RM) c H*(R"), the constant in (1.1) is expected to be much larger. To show that, for v €
H,(RY), we have

v 2
f|\7v|2dx > C,(N) f% dx, N=2 3)
RN RN x
Where
_w-2)2
_ N CA_(N) =
In [16] and [17] some sharp inequalities were obtained, and it was proved that for v(x) = —v(—x) € H*(R")
fVZd >N2f|v|2d 4
o2 de = = | o dx @
RN RN

If N = 2, the constant corresponds with C,(N) = 1.
(1.2) Definition (Laplace- Beltrami operator Ay on S¥~1)
The Laplacian in polar coordinates (r, ) is
A 02 N—-120 1

T or? r ar rz °°
where SV = {x e RV : |x| = 1}, 6 =§, r = |x|,and x € RV .
Py (x) The harmonic homogeneous polynomial of degree M , and its spherical harmonic Y,, = P,,/r™. The Y},
spherical harmonics are eigenfunctions of the — 4,:

—AgYy = M(M + N — 2)Yy = Ayn Vi

And the polymorphism of the eigenvalue 4, y is

_(N+M-1y (N+M-3

h Ny = ( o ) = ( oo ).

(1.3) proposition
Assume W be an analytic Skew-symmetric function on RY and V) is Vandermonde determinant

| 1 1 1 1 |
X, X, X3 ... Xy
_ 2 2 2 e 2
Uy =| xi X2 X3 ) XN (5)
V=t XN Xt xN~1

Satisfying condition (1.2), Then ¢ the a symmetric analytic function such that ¥ = ¢ V.
Proof
Since ¥ is Skew-symmetric for x, = x;. We have ¥ (x) = 0. Hence ¥ has the factors x, — x; forall k = j.
From Properties of analytic Skew-symmetric functions we conclude ¢ (x) is symmetric and analytic, Such
that:

¥ (x)

—— =Y V)L
Mooy o —25) ()W)

$(x) =

(1. 4) Definition
Let Pyvy # O of degree M(N) such that there is a Skew-symmetric harmonic homogeneous polynomial by
M(N) and N > 1.The VY, defined in (1.5) is such a harmonic polynomial, then
NN —-1)
(1.5)Corollary
The 4, defined on Skew-symmetric functions in L2(SV~1) satisfies the inequality in the quadratic form
—Ag = M(N) = N(N — 1)/2

1. Main results
(2.1)Theorem
Let N >2andv € Hi(RN). Then
v 2

f |[Vv|2dx = C,(N) f % dx, (7

RN RN
Where

2 _ 5\2
CaN) = =2 (8)

4

DOI: 10.9790/5728-1803013439 www.iosrjournals.org 35 | Page



On Hardy’s Inequality for Several variables: Skew-Symmetric Functions

Proof
Let x = (r,0),r € (0,0),and 8 € S¥N~1.Then

r v

2 — _

f Vvl " dx = f f <8r
]RN 0 SN—l

Suppose U = orthogonal of spherical harmonic functions and i, c U, for any v € Hi(RN), then
) = ) v )% (0). (10)

k:Y €Uy

2
1
+r—2|A9v|2>rN‘1d0 dr (9

Where
U, be the orthogonal subset of U skew-symmetric functions. We use M(N) = min{ k:Y;, € U,} and
N(N —1)(N2+ N — 4)

4

Aun = M(N)(M(N) + N —2) =
Then

[ wovtorizas= 3 adwor
sN-1 k=M(N)

[oe]

> Auw D 0P =dn [ 0G0 a6 an

k=M(N) sN-1
From the inequality (1) we find:

[oe]

[ (5

Substituting (11) and (12) into (9), finally we get

J|l7v|2dx2J J(@_v
ar
0 sN-1

RN

2 2 < 2
N — 2 v
)r”‘ldrz %jlr—zlr""ldr. (12)
0

2

+ /‘{M,N

r2

|A9v|2> =140 dr

|v|?
ZCA(N) JW dx.
RN

(2.2)Proposition
The Inequality

lv|?
j|l7v|2dx = CA(N) jW dx
RN RN

is sharp.
Proof

Let vo(x) = @ ()Y (6).
Replacing this function with formula (10), we get

‘ Gl 2 1 2
f||7v0|2dx zf f <|§| Y| +ﬁ|¢|2|ﬁeym(w)| )TN_ld@ dr
N 0 sN-1

It is known that inequality

[ (100 N =22 [ ol
f(a—(f )r”‘ldrz %fl(:;zlr’v‘ldr. (13)
0 0
is sharp. Then
1 2 1 2
f ﬁ|A9YM(N)| =Aun f T._2|A9YM(N)| (14)
sN-1 sN-1
Combining (13) and (14), we complete the proof.
(2. 3) Definition (classical Sobolev inequality)
(N=2)/N
f |v] 2N/(N=2) gy < Sy f |Vv|? dx (15)
RN RN

Where N = 3and Sy is sharpin [18],[19].
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N(N — 2 N(N — 2 N + 1"V
SN — ( 2 ) |SN |2/N — ( 2 ) 22/N 7.L.1+1/N1"< 5 ) (16)
(2.4)Proposition (Caf farelli- Kohn- Nirenber g inequalities )
Case1: N = 3, we let
_ 2N — 9N 9 -1 0<9 <1
“=§y-—z PNy =v=a
Then
2/a 9 1-9
lv]?
|x|® |v|*dx < Cys |7v|? dx T dx 17)
RN RN RN x
For any skew-symmetric function v € H*(RV), where
Cno <SH. (18)
Proof
Applying (15) and Holder’s inequalities, we get
2/a 2/a
|U|2 a(1-9)
[ # wiax f v |“19< . |2) dx
]RN
Y(N-2) 1-9
2N lv]?
< |v|N=2 dx J—z dx
||
RN RN
9 1-9
o |v|?
< Sy |Vv|? dx W dx
N ]RN x
We complete the proof.
(2.5)Proposition (Caffarelli— Kohn- Nirenberg inequalities)
Case2: N = 2
Then there exists C, 5 > 0, forany0 < 9 < landv e Hj(R?),
1-9 9 1-9
|v]>/ (-9 |v]?
T dx < CN,ﬁ levIz dx fW dx (19)
2 2 R2
Proof
Let

17=j vdx
B

1]
WhereB, ={0 < |x| <p ,p >0} , For any skew-symmetric function v € H;(R?)then by using the

inequality in ([20],[22],[21],[11]) with a = ﬁ , We get
da/2 (1-9)a/2

[v|*dxCyy <C fleIZ dx flvl2 dx

Bp

Ya/2

<cC f||7v|2 dx flvlz dx (20)
R2 B

Multiply (20) by p=3 , since (20) is independent of the disc B, with radius p, and using the identities

pr‘3f lv|%dx dp -1 f ﬂdx

0 |x|<p 2 R2 |x|2 '
vl

f ‘3f lv|2dx dp ——fldx,
lxIsp |2

Finally we integrate with respect to p over (0, o). We get
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da/2
lv]? lv]?
f—deCSC fleIzdx f—dx
|| |x|2
2 RZ ]RZ

Combining (2.4) and (2.1), we obtain the following corollary
(2.6) Corollary

Ifa =N —oy 21 0<®9 <1land N > 3

fa=y—2s F=WNy§—3p = U= A=
For any skew-symmetric function v € H}(RN), Then

2/a 9 1-9
C, (NP vI?
& flxlﬁ |v|*dx <Cyy f|l7v|2 dx f% dx (21)
RN RN X
(2.7) Corollary
IfC,(2)=1a = ﬁ,O < ¥ <1, andapplying Proposition(2.5), we obtain
1-9
|v|2/@-9)
f PE dx < Cyy fIVvl2 dx (22)
2

For any skew-symmetric function v € H} (]R{Z).

I11.  Applications to Spectral Properties of Schrédinger's Operators
(3. 1) Definition (Schrodinger's Operator)
H=-4-1YV, V=0,
On L2(RM) and its quadratic form

(Hv,v) =J (Ivv]? = V |v|®)dx. (23)
]RN

(3.2) Theorem

Assume that o and 9 satisfy the assumptions of Corollaries (2.6) and (2.7) if N > 3 and N = 2 respectively.
Let

N/(29)

1-9
ﬂ( J PN/@B) [ |-/ (20) dx) <1
RN

Cnyo
Then
H=-4-V2>=0, is positive. (24)

If N = 2, then (24) provided that
9

Cap (f Y/ || A=0)/D dx) <1.
]RZ

Proof
we use Holder's inequality, we find

f Vv|? dx = j V |x|* |v|?|x]|~% dx
RN RN

1/q
s(f Ve |x|«a dx) (f |x|~2P V |v|P dx)
RN RN

Where1l/q + 2/p = 1, then

2/p

_ 1 2N—219 29
q 2N N’
Choosing
Y 2N19—1N—219_1 9
=TT N-20 2N ’
we have

N
=01 -9=—=
| aq = ( )7s
Using Corollary (2.6), we obtain
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(vv)? = V |v|?)dx =
]RN

1-9 N/(29)
1 —ﬂg YN/@9) || A-9IN/(29) dx) f VIv|? dx = 0.
Cnyo RN RN
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