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1 Introduction

The idea of the fractional powers of the Fourier operator has been “discovered” several times in the liter-
ature. Initially, the idea appeared in the mathematical literature between First world War, 1914 to Second
World War, 1945 (e.g., [1. 2]). A large number of publications relating to this idea appeared after Second
World War, 1945. The fractional Fourier operator re-gains a momentum in 1980s with publications by
Namias (e.g.[3] ). Following Namias’s contribution, a large number of papers appeared in the mathemat-
ical literature during 1990s to 2012s tying the concept of the fractional Fourier operators to mathematical
analysis, Distribution theory, theoretical research and many other fields, Time-frequency analysis as de-
scribed in [4].

The fractional Fourier Transform (FRFT) is an elegant generalization of the ordinary Fourier trans-
form [1-3, 5]. The fractional Fourier transform with a parameter &, has many applications in several
areas including Communications, Optics, Quantum Physics and Singal processing. For more details of
the fractional Fourier transform, see [6, 7]. The a-th order fractional Fourier transform represents the
o-th power of the Fourier transform, when o = 90°, we obtain the Fourier transform, while for a = 0°,
we obtain the signal itself. Any intermediate value of & (0° < & < 90°) produces a signal representation

that can be considered as a rotated time—frequency representation of the signal [4]. The fractional Fourier
transform with a parameter o, @(x) € L;(IR) is defined as [6—10]

(Fa)(6) = Bal&) = [ Kalr.E)p(r)dv (L.1)
with K (x,&) representing the kernel function is defined by
Caemz-E_zlmla_i"écsw, o #nﬂ:,nsz
1 —ixt —
Ka(x,&) = e a=3

52{?;_5}- o =2nm
S(x+&),a=02n+1)m

. .. 1 g . . .
where Cp = (2misinet) ZeT = ‘Jla%t“ and &(x) representing the Dirac delta function. Throughout
the manuscript, we use .%,, or §, to denote the operator associated with the fractional Fourier transform.
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The corresponding inversion formula of (%, @) (&) is given by

00) = [ Kal8)(u9) € )dE (12)
and
C,=Cq= (Exisina)‘%e_% = V* 1ticote C_q.
2n
Hence,

Ko(x,&) =K o(x,§).
The inverse of a FRFT with the parameter « is the FrFT with the parameter —¢.

The current manuscript is was primarily inspired/motivated by the works of Ram Shankar Pathak [11]

The brief of the paper is given as follows: Section 1 is the introduction. In Section 2, some prelim-
inaries results are discussed. In Section 3, extended Sobolev type space *HL, is defined and a theorem
is suggested that characterizes the denseness property of this space. In Section 4, properties asssociated
with the continuity of convolution are investigated. Finally, duality of the space is investigated in Section
5.

2 Preliminaries

In this section, we consider generalized Schwartz space, generalized fractional Fourier transform and
define a linear space * %, with two examples and extended Sobolev type space *Hg”. We also discuss
continuity, linearity, completeness and denseness.

Definition 1 (Generalized Schwartz space) The space "%, is defined as follows: @ is a member of *%,
iff it is a complex valued C~-function on R and for every choice of B and ¥ of non-negative integers, it
satisfies that

%5,(9) = sup (A @(x)| < o,
xe
where 4
Al=— (E —I—z'.xcota) , oa#nm, nel.

Theorem 1 The fractional Fourier transform %, : "%, — *4,is a continuous onto isomorphism. Its in-
verse ' "4, — %, is also a continuous onto isomorphism.

Proof Let @(x) € *9,  L,(IR), then its fractional Fourier transform

(Za0)(&) =0a(E) :/RKa(x.,é)(p(x)dx exists.
Now [12], we have

(A7) 9ul&) = Ful(—ixesca) p))(£)
= (&) (Ze0)(¥))(E), ¥rel.

Since
Q'Y (—ixcscat)Q(x)e Y, = .F[(—ixcsca)Q(x)](&) € Y,.
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Hence,
(@) = 0P 167(4;)a(8)]
= sup |8# Zal(—ixesca)'p)](§)| < oo, 23)
where 8 and y are non-negative integers. This proves that @, € %, (IR).
Also, from (1.1) and (1.2) we see that for all ¢ € 4, (IR),
Fa' (Za0) =0 =Fu(F'9).

It follows that %, : *¥4,(R) — *%,(R) is an one-one and onto function. To show that it is continuous.
We assume that the sequence {@;}jcr converges in *%,(IR) to zero, then from (1.3) it follows that
X5, (Fa@;) = 0 as j — co. This shows the continuity of fractional Fourier transform. Similary we can
show that the inverse fractional Fourier transform .% ' : *%, (R) — *%,(RR) is also a continuous ishomor-
phism onto map.

This completes the proof.

Definition 2 The generalized fractional Fourier transform ., f of f € *9,(R) is defined by

(ﬁaf.‘ (,0) = (f ﬁa('o).‘ 2.4)
where ¢ € "% (R).

Theorem 2 The generalized fractional Fourier transform %, is a continuous linear map of "i«%’; onto
itself.

Proof Proof is similar of Theorem 3.3 [12].

Definition 3 If ¢ is a function defined on an open subset 2 of R, the closure of the set {x € 2 : @(x) £ 0}
is called the support of the function ¢ and denoted by supp @.

The set of all complex valued function ¢ defined on  and (A;)"@(x) exists for all n € IV and ¥x € Q as
well as having compact support, @ # nm, is denoted by * %, . It is a linear space.

Example 1 A function @ : R — R U{—oo} is defined as follows:

®(x)

SINTX

+log |x 3
T+ e 2|'

The set {x € R : @(x) # 0} = R, which is nor a compact set.
Therefore, @ & *%,.

Example 2 A function @ is defined on R as follows:

~(F+—==
Qpx)=( € ("_ b ), O<x<a
0 elsewhere

Now,

(2, _s
A7Q(x) = — (£ +ixcota)e (;I [""‘”‘) = {;4: + {‘_—6‘”1 - ixcota} @(x) exists Vx € R. By mathemati-
cal induction, (A])"@(x) exists for alln € M and ¥x € R.
Now, the ser {x € R: @(x) # 0} = (0,a) = [0,a], which is a compact set.

Hence ¢ € "%, (R).

Theorem 3 "%, (R) is adense in LF(R), 1< p <eco.
Proof Similar proof of Theorem 1.2.4 [14].
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Definition 4 A mapping f : "%, (R) — C is called functional. A functional on * &, (IR) is said to be linear
if (f, Bor+7vd)=(f, Bé)+(f. y:) for any two complex numbers f# and y and ¢, ¢, € *Z,(R).
The linear functional f is said to be continuous if for any sequence of functions {¢,} that converges in
'Z(R) to zero, the sequence of numbers {(f, ¢,) } also converges to zero as n — oo.

The set of all continuous linear functionals on * Z,(IR) is denoted by * 7, (R) or " .

Definition 5 (The generalized Sobolev type space *.#2"7(£2)) : We denote by ".#2"7(£2), is the space of
all distributions f € * %, (R) such that (A; )" f € L?(Q). We equip * #7(£)) with the norm

1
191, = (/, l@rsorar)” @)
U = 1), ¥men, 1<p<en 26

where € is an open subset of R and A’ as above.
We note that *H%?(Q) = LP(Q) and *H™P(Q) c *H"P(Q) if m > n.

Theorem 4 A? is a continuous, linear operator in * ),(£2) in following sense:
Linearity: (A;)"(af +bg) = a(A)"f+b(A])"g. forall f, g€ *Z,(Q) and a, be C.
Continuity: If f, — f in *Z.(Q) then (A])"f, — (A;)"f in “Z(Q) as n — co.

Proof The linearity is trivial. To prove continuity, let @ € *%/(2) and A = — (% +z'xcota) then,
(4:)"9 €~ Z(Q).

Therefore, (A7), . 9) = (/s , (A7)°9) = (f , (4:)"9) = (4:)"F , ) as n— e

Consequently, f, — f in *Z.(Q) then (A))"f, — (A;)"f in *Z.(Q2) as n— oo

Theorem 5 *H!P (L) ia a Banach space.

Proof We need to show that "H"7(£) is complete with respect to the above norms (1.6) and (1.7).
Let {f;} o« be a Cauchy sequence in "H!"7(£2). For every m € N, {(A)"f;},n is a Cauchy sequence
in LP(£Q). We know LP(€) is complete. There exists g,, in LP(Q) such that (A)"f; — g, in L7 () as
J —ce. In particular, f; — go in LP(£2), hence f; — go in "D, (£€2). On other hand forevery m € N, (A; )" is
a continuous operator from *II/, (€2 ) into *D/ () by Theorem 1.4. Hence (A} )"f; — (A;)"go as j— oe.
By the uniqueness of the limit, we get g = (A;)"go.

Therefore, gg € *H"P(£2) and f; — go as j — oo in "HIWP(Q2).

Hence *HIP () is a Banach space.

For p=2, we denote *H™?(Q) by *H"(2) instead of *H"*(£2). In *H"™>(£2), the norm

;
191 = 151 = [, 180" s n

is induced by the scalar product
(8= [ (&) FO BT 8 @)

Proposition 1 *"HZ (L) is a Hilbert space with respect to the inner product (1.9).

3 The Sobolev type Space *HL,.

Sobolev space is named after the Russian mathematicians “Sergei Sobolev (1908-1989)”, although they
were known before the rise of the Russian mathematician to academic stardom. Although, more than 72
years have passed since the birth of Sobolev spaces, they still remain an active field of research. Nowa-
days, Sobolev spaces are the subject of countless papers, articles and monographs.

In this section, we shall define extended Sobolev type space "][-]Ii]= and develop the theorem that character-
izes the denseness property of this space.

By definition, f & *HL iff (A7)* f(x) € L(R). But by fractional Fourier transform, this is equivalent
to (—i€ escat)? fo(&) e LA(R), I€N.
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This motivates us to define the Sobolev type space by imposing suitable condition on the fractional
Fourier transform of f instead of the condition on its A;.

Definition 6 Let/ € R, we denote by *HL, (£2), the space of all f € *%y, (1+|Ecscar |2)2'I fa(&) eL2(R).
Obviously, for any real number [, *HY, (€ ) is linear space.
We equip *H, (£2) with the inner product

(Fogh={f s @, = [, (1+IEesea)” fulE)BalBIdE, (3.9)

which induces the norm

“Ilsg, = ( [, (1+1gesca)” |ﬁ(é)\2d¢){’. (3.10)

Example 3 If S2(A;) is a linear differenrial operator with constant co-efficient of order m and u =

HL(R), then 2 (A )u e "HL,™(R) and the map P?(A}) : "H (R) — *HL ™ (R) is continuous.
Proof Let
2m
P(A]) = Z a (A7) a-eC.
r=0

Then for u € ¥, we have

1

19288 |- gty = ( [ (1 +Igesea)™ ™" Ifa[?’(ﬂ.(}u](é)lzdé)
— ([ 1+ geseat) |2 (-igescoia()Paz )
2 3
= f{l+|§ csca|? ) Zar(—zijcsca} lig (&) d&
r=0
< 20|| (ﬁe (1+[g escal?)™ " (1 +|gescar]?)™ aa(a:n?dé) i
=3 larl el o

which proves that Z2(A;)u € *HI,™(RR). To show that continuity assume that {u;}jen is a sequence in
“H., (R) which converges to zero in *H., (R). Then, from above inequality it follows that

m

) < Y lar [ul
i r=>0

which implies the continuity of the operator 22(A,).

(A

T (R) — 0 as j— oo,

Theorem 6 For an integer m = (), we have
‘HZ(R) = {f € L*(R) : (A7) f € L*(R)},
where A} as above.
Proof Let f € *HI(IR), then f € %/ (2). Hence its fractional Fourier transform exists and we have

[-9_ (A }2:”f(x))] (é — (_1§CSCQ)J" (é)
Since f & "H(R), we have

A (1+|Ecsca|? )Zm

Now using the Parseval’s identity for fractional Fourier transform,

Fa®)[ d& < oo,

L@ ) ar= [ |[#a (@ r0)] @) e
= [ |(-ig cscar™ Fuie)| ag
g&|(1+|§csca|2)2’"};(§ ‘Zdé < oa.
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Next, we assume that (A} )2’" fel’(R), ¥meN,wehave

[ lgeseal)™ |Fute)| d = fz( ) écscaP)k
¥ (2’") L1[#a (@0t )] @

Theorem 7 The generalized Schwartz space *% is dense in *HL,.

Proof We know that

Falt)| de

A

*Fu(R) c "HL(R), VIeR.
Let f € *HL (R), then

(1+ & escal?) FulE) € LA(R).
Since * %, (IR) is a set of all complex valued infinitely differentiable functions ¢ defined on R and having
compact support. *Z¢(RR) is dense in L>(IR). There exists a sequence {@;} jen C *Za(R) such that

= (1+|Eescal?) fu(€) in LX(R) as j—oo.
Since (1+|Ecscal?) ' @;(€) € *Zu(R), the functions w),() z,! ((]+|§Csca|2)_g¢j(§)) are in
*G, < *G.. Tt follows that (Foy;) (&) = (1+|E esca|?) ' @;(&) and then
I =will%, = [, 1+ cscal)* | % (f—wj)(é)|2d€
= [, 1+ gescaP) |(:f 1)E) = (Zav) (©) dE
= [ (1+gescal)’ (é)—{1+|§csca|2)_w;(é)‘zdé
= [ |+ lgescar) fu(@) - 16| g

—0 as j—oo.

This implies that ||f - WJH'H& —0 as j— oo. Hence *%,(R) is dense in *HL (R).

4 Convolution for the fractional Fourier transform
To make the paper self content, we recall the definition of convolution for the fractional Fourier transform
that can be found in [9].
Definition 7 For any function f(x), let us define the functions f(x) and f( ) by f(x) = f(x)e %% and
fx)=f(x)e e L For any two functions f and g, we define the convolution operator * by

h(x) = (£ +8) (x) = Cae ™5 (F52) (x),
where * is the convolution operation for the Fourier transform as defined by

(Fro) @) = [ F0)8tr=)dy

Moreover
2 cote

(Fah)(§) = [Za(f*8)](§) = (Faf)(E)(Fag) (g)g—rg =
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Theorem 8 If ¢ € *H. (R) and y € *G,(R), then the convolution @ v € *HL (R), and the map ¢ —
@ * y is continuous from *H., (R) into *HL (R), VIR,

Proof 1f ¢ € *HL () and y € *¥,(R), then from above definition, we have
[ *y] (x) = Cae % f P(1)e” Ty (x —y)el ) Ty,
R
Itis obvious that @ xy € C*(IR). Since (1 +|& cscar|?) : 0y (&) e L*(R) and Wy (&) € *%, (R), the product

(1+ |§csca|2)I@a(§ JWal(E) € L*(R), hence @ »y < “H', (R). Moreover

%W = (fR{l +|Eescal?) [Za(oxy)] (;)F@g)"’

1

z

= ([ 0+ leescal) [l @F [Fatw) ©)F a2
< sup |[W(E)||@l]. g,

EeR
< oo,

Consequently, @~y  *HL (R).

Theorem 9 If f(x) = f (.>.')<»;""'2m2g € *HL (R) and §(x) = g(.x)e"-"'zC%g € *4,(R), then the product f$ =

*HL,(R), and the map f — 8 is continuous from *HL, (R) into *“HL (R) ¥ 1 € R.
Proof Let f € *HI,(R), £ < *%,(R) such that

h.z col o

fx)=e""7 fx)

and -
3) =g w),
where f € *HY, (R) and g € *%, (IR). Now as per [9], we have
[Za (F0)30))] €) = [Fa (F@s)e )] (€)
_ $&oota [ —dnfeota £ oy, ~hE-mietag = pyg
=C qe fRe fa(n)e a(&—m)dn.

Now, using [13], we have

1+ Eesea?)! [Fa (F20)] €)] £C o [ (1+[Eesca) alm)Gal& ~m)ldn
=C_a/ {1+|§csca|2):

R (1+|n cs-:Oc|3)E
xfa(ﬂ)“?a('ﬁ —1n)ldn

<ca2!l [ (1+]E-mescal) (1+ escal)’

% | fa(m)||g8a(& —n)ldn.

(1+|'ncscoc|2)fl
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Let Ga (&) = (1+ & esca?)' [8a(&)], Fa(&) = (1+|Ecsca?) |ful&))-

Then we have
|(1+1Eesea?)’ [Fa (F0EW)] (€)] < €-a2" (GaxFa) &)
Now, we note that

(GaxFa)(E)] = | [, GH& ~mEu(m)GHE ~mpan

< (o -mirnpa)’ ( [1oc-miam)"

Hence

[ (1+1geseal)” | [Fa (F0)30)] () & <€ [ 1(GanFa) (E)dE

éclfm(fRIGa{é—n}llFa{n)lzdn)dé

X || Gallpr m

—C1[Galy ey [, ()i,

where Cy = |C_,|?21".
Therefore

||}F§’||.Ha < Cillgllpr ) Il gz, (R)-
It implies that fg  *HL (R).
The proof of the theorem is complete.
5 The space *H,'(R)
In this section, we will investigate the duality of the space “HY (R) with some its properties.

A Hilbert space *H!,(R) has a dual space with respect to the inner product space (f , ¢>‘H{,,- A
function f € *9, (k) defines a continuous linear functional on *%(IR) by

(. 0)= [ F0)oe)dx= [ Fu(&)ge(E)dE
by Parseval’s relation. Since

fa(E)Pa(E) = (1+|Ecsca]) ! fu (&) (1+|E escar]) Gu(£),

using Schwartz’s inequality, we obtain
12 @) < Flleggt 93 -

Theorem 10 The space *H,'(R) is the dual space of *H., for all |  R.
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Proof Since *%, is dense in *H, and *¥,, c *H!, < *@,. It implies that the dual space (*Hg)’ of “H., is
a subspace of *@/,. Now let f € *H_!(R) and ¢ € *HL, (R), then

0l =| [ Fa@mtcrae]
= | [+ escaP) (&)1 +E esca Ba(E)E|

< (/R(] +|Ecscar)?) |ﬁx(§)‘2)j{ (fR(H—léj cs.c:0£|3)2!‘|@o:{§)|2>‘ls

= £l szt @l -
It implies that f is a continuous linear functional on ’]HIL. Hence f € {’]HIEI)!.
Thus
-1 A
H C(]HIG) . (5.11)
Now, we want to show that
!
=177l *mr—I
(m,) < ug.

Let f € (*H.,)" be arbitrary.
By Riesz Representation Theorem, we know that if f is a bounded linear functional on a Hilbert space
*HL,, there exists a function ¢ € *H, such that

1©) =, @), = [[(1+[Eesca’)? Pu(E)fux(§)dE.
= [ o)k,
where
k) = 25 [(1+ [ esca) fu(®)]
Since the function
(1+|Ecscal) 'ka(€) = (1 +|Ecscal’) fu(E) € LA(R).

Hence k € *H!, and f(@) = (k, ¢) ¢ =*H.,.
It implies that
r

(=Hg) c*H. (5.12)

From (4.12) and (4.13), we obtain
I

Hy' = ("H,) .

The dual space of space *HL, is *H_!, ¥IeR.

Theorem 11 Ler f € H!, 1N Then

n

f) =Y (A7 )er(x); g el}R), r=0,123.......n.

r=1
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Proof Since f € Hy iff (1+|&cscal?) o (&) € LX(R)
Now let

(1+|&escal’) " fu(§) = 2ulf),
then we have

fa(&) = (1+[Ecsca’) g (§).

™
e

Il
M-

LA

(:)(Ié_csﬂ( —igesca) g (&)

r) (—i€csca)”

Il
=]

r

Il
Pﬂh

r=0

g

(1) izescarue)(@)

Il
=]

r

E ey |2
where %?ﬂ (é) = (f?a‘gr)(é)
Hence, by inverse fractional Fourier transform,

i

fo=Y C) (A g(x): g el*(R), r=0,1,2,30 e,

r=0

This completes the proof of the theorem.

Gilbert G Walter and Xiaoping Shen [14] introduced the subspace By of H~! (R) which is very important
in Wavelet Analysis.

BUZ{fEH_] :suppf C Z}

. This motivates us to define the subspace *B,, of *H,,' () using the theory of distributional fractional
Fourier transform as follows

"By = {h e "H,'(R): suppf C Z}. (5.13)
The following characterization of *By, is due to Pathak [11].

Theorem 12 A necessary and sufficient condition for
h(x)=Y di8(x—n), {dy}el? (5.14)

the series ¥ dn8 (x —n) to be convergent in *4y(IR) is that h € *By.
Proof Necessary Condition. Here we suppose that h is given by (4.15) and the series ¥ d,,6 (x —n) being

convergent in *%, (R).We want to show that i € *B,.
Then it has support in Z and its fractional Fourier transform is given by

ha(E) = ): K o

n=—co

Since {d,} € 2,

/m (1+1¢ -::s-::t:tl2

—on

Y duKalE.m)|dE

N=—uo

|a‘§ f écscaF)

< [ (+igescal)” T (Kl mide

Nn=—oo

<|ca|[ +[Eescaf)’ ( y |dn|) dE < oo

n=—ca

foralll < —% and |Cy| > 0.
Hence h "]B
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Sufficient Condition. Here we suppose that i € *Bg. Then it is a tempered distribution in *¥}, (R).
with point support.We have to prove that the series ¥ d,8(x —n) is convergent in *¥,(R). For any v €
*%y(R) and from (4.15) we have

= i duW(”)

H=—co

(Y ddx—n), y)

n=—oo

1

g(igmﬂ'(imeﬂﬂ

Since Y € *%,(R), y(0) is bounded and |w(n)| < D|n|~', D > 0, for all n 0. Hence

()ai Iw(n)lz)%é(i |Dn“|2)%gD( y nl—z)ioo.

n=—co fn=—co H=—co

Thus, if dy € I, the series ¥ dn8 (x —n) is convergent in *%, ().
Hence the theorem.
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