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Abstract 
In this study, the effects of aspect ratio, porosity, buoyancy forces (thermal and concentration Grashof numbers) 

and Schmidt number on the flow of soil mineral salt water in the xylem of a non-bifurcating green plant are 

examinedon the velocity and temperature fields. The coupled non-linear differential equations governing the 

motion of the flow are non-dimensionlized and then solved using the homotopy perturbation method. It was 

discovered from the analysis that;the velocity and temperature of flow fields increases as the porosity of the 

fluid carrying vessel and aspect ratio increases;increase in the Schmidt number and buoyancy forcesresulted to 

a corresponding increase in the flow velocity and thus enhancing the effective growth and yield of the plant.  
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I. Introduction 
Green plants are among the most successful organism on earth in terms of biomass and individual size 

range Jensen, et al., [10]. They are the earth’s primary solar energy collectors and are the ultimate source of 

food for both man and animals. Rand, [24]. 

The mechanics of green plants when compared to that of animals is open. In the sense that it consists of 

the roots, stems and leaves. The roost absorbs water and minerals from the soil and transports it through the 

stem and then to the leaves. The stem consists basically two vascular tissues, namely xylem and phloem Dolger 

et al., [5]; Yu, [29]. The xylem is made up of the tracheids and vessel elements that die after reaching maturity 

while the phloem contains sieve elements that still lives after maturity Rand, [24]. The water and minerals that 

enters the stem are transported upwards through the xylem and then to the leaves through its petiole. Most of the 

water leaving the xylem (tracheary elements) moves into the leaf mesophyll (sieve elements) and then 

evaporates into the atmosphere through the stomata (this process is called transpiration).  Carbon dioxide enters 

the leaves from the atmosphere through the stomata by diffusion and then combines with part of the water that 

entered the mesophyll cells in the presence of sunlight to form carbohydrate by the process of photosynthesis. 

The carbohydrate produced is pushed downward with the aid of water into the phloem vessel and then 

translocated downwards to the fruits, shoots and roots where they are needed (this process is known as 

translocation). Bestman, [1]; Jensen, et al., [2]; Rand, [24]; Kizilova, [7].  

The force that drives the upward flow in the xylem is enhanced by suction pressure generated in the 

leaves by evaporation of water vapor into the atmosphere Jensen, et al., [9] and the environmental thermal 

differences resulting from free convective motion of the fluid Okuyade and Abbey, [15]. The downward phloem 

on the other hand is driven by concentration differences resulting from active transport Rand, [24]. 

From literature, it is observed that fluid carrying vessels of green plants are porous and the flow 

naturally convective. Studies have also shown that flow through porous channels are affected by certain 

parameters such as, thermal gradient, concentration gradient, pressure gradient(for example suction and root 

pressure), the porosity, permeability, the physical properties of the fluid(for example, viscosity, density), body 

forces(for example, gravity, magnetic field, buoyancy force)and bifurcation (Muskat, [14]; Zami-Pierre, et al., 

[30]; El-dabe, et al., [6]; Okuyade and Abbey, [16]) etc. Several methods such as Laplace transform, 

perturbation, direct numerical simulations have also been used to examine the effects of these parameters on the 

flow structure. 

The effect of increasing values of the porosity at a small value of the aspect ratio were examined on the 

concentration field of a fully developed flow for the phloem and xylem of a green plant by Bestman, [1] using 

Laplace transform method. Bestman, [2] went further to consider the case where the flow is not fully developed 

for larger value of the aspect ratio using perturbation and finite Fourier sine and cosine technique.Hoad, [8] 

studied translocation of hormones in the phloem of higher plans. Problems associated with collection of sieve 

tube exudates and the analysis of samples were discussed. More so, possible functions of hormones were 
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investigated. From the study, it was established that mobile hormones played a part in controlling the structure 

of the plant as their concentration in sieve tube have been shown to be influenced by the environment and 

developmental stage of the plant. Peuke et al., [20] used the nuclear magnetic resonance (NMR) spectrometry to 

study the measurement of rates of flow in xylem and phloem. The effect of light regime on water flow on xylem 

phloem was monitored using this same method. Rengel, [26] studied the transport of micronutrients (manganese 

and zinc) from leaves to roots, leaves and stems to developing grains and then from one root to another in the 

xylem and phloem of a developing plant species. Result showed that zinc solute was more mobile in phloem 

while manganese solute had poor mobility in the phloem and therefore occurred mainly on the xylem. 

Pitterman, [21] studied the evolution of plant vascular system, highlighted the recent developments that 

contributed to a better understanding of the xylem evolution, discussed the functions of vascular structure in 

terms of support, drought and freeze-thaw stress resistance and also discussed in details the impacts of plant 

transport on hydrology and climate. Cabrita, [3] investigated the magnitude of radial fluxes in the stem (that is, 

water and solute exchanges along the long pathway) and what controlled them using experiment and theory. A 

steady state model of phloem transport was constructed using the Navier-Stokes and convection-diffusion 

equations. It was observed from the model that radial water exchange affects the pressure gradient and solute 

exchange which depends on the permeability of the phloem also affects the pressure gradient.Rand and Cooke, 

[23] studied flow through sieve tubes with sieve plates in the phloem of plants using an idealized single-pore 

axisymmetrical model. Rand et al., [25] also studied the flow using an approximate formula. Jensen et al., [10] 

presented an experimental and theoretical study of transient osmotically driven flows through pipes with semi-

permeable walls. Cabrita et al., [4] studied the transport phloem which allows leakage of solute of a steady state 

model. The sieve tube membrane permeability strongly influenced the results of the model. Payvandi, et al., [19] 

studied the transport of water and nutrient in xylem vessels of a wheat plant. Solution to the transport of the 

nutrient was obtained considering convection and diffusion.Uka and Olisa, [28] studied the transport of sap in 

the stem of a of a non-bifurcating green plant using the homotopy perturbation method. The effects of varying 

values of the aspect ratio, porosity parameter, buoyancy forces and Schmidt number were examined on the 

concentration flow field. Prakash et al., [22].  Okuyade, [18] studied MHD blood flow through bifurcated 

porous fine capillaries of humans using perturbation method. Effects of magnetic field and environmental 

thermal parameters on the flow structure were examined. Tadjfar and Smith [27] examined the effects of 

bifurcation angle on a 3-dimensional laminar steady flow of an incompressible viscous fluid through a straight 

mother tube bifurcating into two straight but divergent daughter tubes by direct numerical simulations. Liou, et 

al., [13] studied the effect of bifurcation angles on the steady flow structure in a straight terminal aneurysm 

model with asymmetric outflow through the branches using the Laser-Doppler velocity and fluctuating intensity 

distribution. Okuyade and Abbey, [16] studied a steady MHD fluid flow in a bifurcating rectangular porous 

medium using perturbation method. The effects of bifurcation angle, magnetic field, thermal and concentration 

Grashof numbers on the flow were examined. This study will however consider the effects of increasing values 

of the porosity, aspect ratio, Schmidt number, buoyancy forces (thermal and concentration Grashof number) on 

the velocity and temperature fields on the steady flow of sap in a non-bifurcating green plant  using the 

homotopy perturbation method. 

 

II. Materials And Method 
The sap in green plants is well describe as viscous, incompressible, Newtonian liquid. The liquid 

carrying vessels are cylindrical and porous in nature and the flow itself naturally convective since they are not 

driven by any physical means. It is assumed that the flow is creepy with a very low Reynolds number. The 

velocity vectors  with respect to the orthogonal coordinate directions (𝑟′, 𝜃 ′, 𝑧 ′) are (𝑢′, 𝑣 ′, 𝑤 ′). Assuming also 

that the flow is fully developed and the velocity is symmetrical about the 𝜃 ′ axis such that the variations about 𝜃 ′ 

is zero. The coordinate and velocity vectors becomes (𝑟′, 𝑧 ′) and (𝑢′, 𝑤 ′) respectively. By the usual Boussinesq 

approximation, the mathematical models describing the motion of the flow in cylindrical coordinate for the 

steady case can be written as 
1

𝑟 ′

𝜕

𝜕𝑟 ′
 𝑟′𝑢′ +

𝜕𝑤 ′

𝜕𝑧 ′
= 0,           (1) 

0 = −
𝜕𝑝 ′

𝜕𝑟 ′
+ ʋ  

𝜕2𝑢 ′

𝜕𝑟 ′2
+

1

𝑟 ′

𝜕𝑢 ′

𝜕𝑟 ′
−

𝑢 ′

𝑟 ′2
+

𝜕2𝑢 ′

𝜕𝑧 ′2
 −

ʋ

𝐾
𝑢′,     (2) 

0 = −
𝜕𝑝 ′

𝜕𝑧 ′
+ ʋ  

𝜕2𝑤 ′

𝜕𝑟 ′2
+

1

𝑟 ′

𝜕𝑤 ′

𝜕𝑟 ′
+

𝜕2𝑤 ′

𝜕𝑧 ′2
 −

ʋ

𝐾
𝑤 ′ + 𝜌𝑔𝛽𝑡 𝑇 − 𝑇∞ + 𝜌𝑔𝛽𝑐 𝐶

′ − 𝐶∞ ,                   (3)  

𝜌𝐶𝑝  𝑢′ 𝜕𝑇

𝜕𝑟 ′
+ 𝑤 ′ 𝜕𝑇

𝜕𝑧 ′
 = 𝛼  

𝜕2𝑇

𝜕𝑟 ′2
+

1

𝑟 ′

𝜕𝑇

𝜕𝑟 ′
+

𝜕2𝑇

𝜕𝑧 ′2
 ,                                                                        (4) 

 𝑢′ 𝜕𝐶 ′

𝜕𝑟 ′
+ 𝑤 ′ 𝜕𝐶 ′

𝜕𝑧 ′
 = 𝐷  

𝜕2𝐶 ′

𝜕𝑟 ′2
+

1

𝑟

𝜕𝐶 ′

𝜕𝑟 ′
+

𝜕2𝐶 ′

𝜕𝑧 ′2
 ,                                                                              (5) 

where 𝑝 is the pressure, ʋ is the viscosity, 𝑇 𝑎𝑛𝑑 𝐶 ′ are the fluid temperature and concentration respectively, 

𝑇∞ 𝑎𝑛𝑑 𝐶∞ are the temperature and concentration at equilibrium, 𝐾 is the permeability, 𝑔 is the gravitation 

which acts in opposite direction to the flow, 𝜌 is the fluid density, 𝛽𝑡  𝑎𝑛𝑑 𝛽𝑐  are the coefficient of volume 
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expansion for temperature and concentration respectively,  𝐶𝑝  is the heat capacity, 𝛼 is the thermal 

conductivity,𝑘0 is the thermal diffusivity and 𝐷 is the mass diffusion coefficient. 

 𝑢′, 𝑤 ′  0, 𝑧 = 1 ;    𝑇 0, 𝑧 = 𝑇∞𝐶 ′ 0, 𝑧 = 𝐶∞           at 𝑟′ = 0, 
 𝑢′, 𝑤 ′  1, 𝑧 = 0;     𝑇 1, 𝑧 = 𝑇𝑤𝐶 ′ 1, 𝑧 = 𝐶𝑤          at 𝑟′ = 1.                                     (6)    

The following non-dimensional quantities are used to normalize the governing equations. 

𝑟 =
𝑟′

𝑟0

;  z =
𝑧 ′

𝑙
;   𝑢, 𝑤 =  𝑢′, 𝑤 ′ 

𝑟0

ʋ
;  𝜃 =

𝑇 − 𝑇∞
𝑇𝑤−𝑇∞

;  ∅ =
𝐶 ′ − 𝐶∞

𝐶𝑤−𝐶∞

; 𝑝 =
𝑟0

3 𝑝′ − 𝑝∞ 

𝜌∞𝑙ʋ2
;  𝑅 =

𝑟0

𝑙
, 

𝑥2 =
𝑟0

 𝐾
;  𝐺𝑟 =

𝑔𝛽𝑡 𝑇𝑤−𝑇∞ 𝑟0
3

ʋ2    ;       𝐺𝑐 =
𝑔𝛽𝑐 𝐶𝑤−𝐶∞ 𝑟0

3

ʋ2   ;   𝑆𝑐 =
ʋ

𝐷
; 𝑃𝑟 =

ʋ

𝑘0
 , 𝑘0 =

𝛼

𝜌𝐶𝜌
.      (7)   

Thus, the normalized governing equations are; 
1

𝑟

𝜕

𝜕𝑟
 𝑟𝑢 +

𝜕𝑤

𝜕𝑧
= 0,                   (8) 

0 = −
𝜕𝑝

𝜕𝑟
+

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2 − 𝑥2𝑢 − 𝑅2 𝜕2𝑢

𝜕𝑧2  ,                                                                                (9) 

0 = −𝑅
𝜕𝑝

𝜕𝑧
+

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
− 𝑥2𝑤 + 𝑅2 𝜕2𝑤

𝜕𝑧2 + 𝐺𝑟𝜃 + 𝐺𝑐∅,      (10)                                                             

𝑃𝑟  𝑢
𝜕𝜃

𝜕𝑟
+ 𝑅𝑤

𝜕𝜃

𝜕𝑧
 =

𝜕2𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝜃

𝜕𝑟
+ 𝑅2 𝜕2𝜃

𝜕𝑧2  ,                                                     (11) 

𝑆𝑐  𝑢
𝜕∅

𝜕𝑟
+ 𝑅𝑤

𝜕∅

𝜕𝑧
 =

𝜕2∅

𝜕𝑟2 +
1

𝑟

𝜕∅

𝜕𝑟
+ 𝑅2 𝜕2∅

𝜕𝑧2  .                                                      (12) 

For convenience, we assume a solution of the form  

𝜃(0) = 𝜃 𝑟 − 𝛾𝑧, ∅ = ∅ 0  𝑟 − 𝛾𝑧, 𝑝 = 𝐾𝑧 −
𝛾

𝑅
𝑧2 ,    (13) 

as given by Bestman, [1]. Substituting the assumed solution (13) into equations (8) - (12), we have 

𝐾 = 𝑤″ +
1

𝑟
𝑤 ′ − 𝑥2𝑤 + 𝐺𝑟𝜃 0 + 𝐺𝑐∅ 0 ,    (14)                                                            

−𝑃𝑟𝑅𝛾𝑤 = 𝜃(0)″ +
1

𝑟
𝜃(0)′,                                                                               (15) 

−𝑆𝑐𝑅𝛾𝑤 = ∅ 0 ″ +
1

𝑟
∅ 0 ′,   (16)               

where 𝛾 is a constant, 𝑅 is the aspect ratio, 𝑥 is the porosity parameter, 𝐺𝑟 is the thermal Grashof number, 𝐺𝑐 is 

the concentration Grashof number, 𝑆𝑐 is the Schmidt number, 𝑃𝑟 is the Prandtl number. The transformed 

boundary conditions are; 

∅ 0  0 = 1;           ∅ 0  1 = 0, 
𝑤 0 = 1;              𝑤 1 = 1,       

𝜃(0) 0 = 1;           𝜃(0) 1 = 1 .                                                                                                   

(17) 

According to the HPM of He, [7] , the homotopy form of (14), (15) and (16) are constructed as follows 

 1 − 𝑝  𝑤″ + 𝑝  𝑤″ +
1

𝑟
𝑤 ′ − 𝑥2𝑤 + 𝐺𝑟𝜃 0 + 𝐺𝑐∅ 0 − 𝐾 = 0,    (18)                                                                                                             

 1 − 𝑝  𝜃 0 ″ + 𝑝  𝜃 0 ″ +
1

𝑟
𝜃 0 ′ + 𝑃𝑟𝑅𝛾𝑤 = 0,     (19) 

 1 − 𝑝  ∅ 0 ″ + 𝑝  ∅ 0 ″ +
1

𝑟
∅ 0 ′ + 𝑆𝑐𝑅𝛾𝑤 = 0.     (20) 

We assume w, 𝜃 0  and ∅ 0  as 

𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + ⋯,   (21) 

𝜃 0 = 𝜃 0 
0 + 𝑝𝜃 0 

1 + 𝑝2𝜃 0 
2 + ⋯,                                 (22)   

∅ 0 = ∅ 0 
0 + 𝑝∅ 0 

1 + 𝑝2∅ 0 
2 + ⋯,   (23) 

Substituting equations (21) – (23) into equation (18) and simplifying, we have 

𝑤0
′′ + 𝑝𝑤1

′′ + 𝑝2𝑤2
′′ + 𝑝  

1

𝑟
 𝑤0

′ + 𝑝𝑤1
′ + 𝑝2𝑤2

′ ) − 𝑥2 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝐺𝑟 𝜃 0 
0 + 𝑝𝜃 0 

1 +   𝑝2𝜃 0 
2 +

𝐺𝑐∅00+𝑝∅01+𝑝2∅02−𝐾=0.     (24)                                                                                                                                                       

Substituting equation (21) and (23) into equation (19) and simplifying, we have 

𝜃 0 
0

″
+ 𝑝𝜃 0 

1

″
+ 𝑝2𝜃 0 

2

″
+ 𝑝  

1

𝑟
 𝜃 0 

0

′
+ 𝑝𝜃 0 

1

′
+ 𝑝2𝜃 0 

2

′
 + 𝑃𝑟𝑅𝛾 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2  = 0.            

           (25)                                                                                                 

Substituting equations (21) and (23) into equation (20) and simplifying, we have 

∅ 0 
0

″
+ 𝑝∅ 0 

1

″
+ 𝑝2∅ 0 

2

″
+ 𝑝  

1

𝑟
 ∅ 0 

0

′
+ 𝑝∅ 0 

1

′
+ 𝑝2∅ 0 

2

′
 + 𝑆𝑐𝑅𝛾 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2  = 0.             

           (26)                                                                                                                                                                                              

Rearranging equations (24) - (26) based on the powers of 𝑝-terms together with its boundary conditions, we 

have 

𝑝0;      𝑤0
′′ = 0                                                              ;               𝑤0 0 = 1; 𝑤0 1 = 0, 

𝜃 0 
0

″
= 0 𝜃 0 

0 0 = 1; 𝜃 0 
0 1 = 1, 
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∅ 0 
0

″
= 0∅ 0 

0 0 = 1; ∅ 0 
0 1 = 1,         (27)                                                                                   

𝑃1;     𝑤1
′′ = −

1

𝑟
𝑤0

′ + 𝑥2𝑤0 − 𝐺𝑟𝜃 0 
0 − 𝐺𝑐∅ 0 

0 + 𝐾   ;    𝑤1 0 = 0;  𝑤1 0 = 0, 

𝜃 0 
1

″
 = −

1

𝑟
𝜃 0 

0

′
− 𝑃𝑟𝑅𝛾𝑤0𝜃

 0 
1 0 = 0; 𝜃 0 

1 1 = 0, 

∅ 0 
1

″
= −

1

𝑟
∅ 0 

0

′
− 𝑆𝑐𝑅𝛾𝑤0∅

 0 
0 0 = 0; ∅ 0 

1 1 = 0,             (28)  

𝑃2;   𝑤2
‴ = −

1

𝑟
𝑤1

′ + 𝑥2𝑓1 − 𝐺𝑟𝜃 0 
1 − 𝐺𝑐∅ 0 

1           ;      𝑤2 0 = 0; 𝑤0 1 = 0,                                                                                                                                     

𝜃 0 
2

″
= −

1

𝑟
𝜃 0 

1

′
− 𝑃𝑟𝑅𝛾𝑤1𝜃

 0 
2 0 = 0; 𝜃 0 

2 1 = 0,   

∅ 0 
2

″
= −

1

𝑟
∅ 0 

1

′
− 𝑆𝑐𝑅𝛾𝑤1∅

 0 
2 0 = 0; ∅ 0 

2 1 = 0,               (29)                                                                      

Solving (27) - (29) we have 

𝑤0 = 𝐴1𝑟 + 𝐴2,  (30)                                                                   

𝑤1 = −𝐴1 𝑟 𝐼𝑛 𝑟 − 𝑟 +
1

6
 𝑥2𝐴1 − 𝐺𝑟𝐵1 − 𝐺𝑐𝐷1 𝑟3 +

1

2
 𝑥2𝐴2 − 𝐺𝑟𝐵2 − 𝐺𝑐𝐷2 + 𝐾 𝑟2 + 𝐸1𝑟 + 𝐸2, (31)                                                                                                   

𝑤2 =
𝐴1

2
(𝑟(𝐼𝑛 𝑟)2 − 𝐼𝑛 𝑟) − 𝐸1 𝑟 𝐼𝑛 𝑟 − 𝑟 −

𝑥2𝐴1

2
 
𝑟3𝐼𝑛 𝑟

3
−

𝑟3

9
 +

𝐺𝑟 𝐵1

2
 
𝑟3𝐼𝑛 𝑟

3
−

𝑟3

9
 +

1

120
 𝑥4𝐴1 − 𝑥2𝐺𝑟𝐵1 −

𝑥2𝐺𝑐𝐷1+𝐺𝑟𝑃𝑟𝑅𝛾𝐴1+𝐺𝑐𝑆𝑐𝑅𝛾𝐴1𝑟5+124𝑥4𝐴2−𝑥2𝐺𝑟𝐵2−𝑥2𝐺𝑐𝐷2+𝑥2𝐾+𝐺𝑟𝑃𝑟𝑅𝛾𝐴2+𝐺𝑐𝑆𝑐𝑅𝛾𝐴2𝑟4+16𝑥2
𝐴13−𝑥2𝐴1+𝑥2𝐸1−𝐺𝑟𝐵13−𝐺𝑟𝐵1−𝐺𝑟𝐸3−𝐺𝑐𝐷13−𝐺𝑐𝐷1−𝐺𝑐𝐸5𝑟3−12𝑥2𝐴2−𝐺𝑟𝐵2−𝐺𝑐𝐷2−𝑥2𝐸2+𝐺𝑟𝐸4+𝐺
𝑐𝐸6+𝐾𝑟2+𝐸11𝑟+𝐸12,           (32)                                                    

𝜃 0 
0 = 𝐵1𝑟 + 𝐵2,                                                                                                                              (33)                                                                                        
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𝑃𝑟𝑅𝛾𝐴1

6
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1
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𝑃𝑟𝑅𝛾𝐺𝑐𝐷1𝑟5−124𝑃𝑟𝑅𝛾𝑥2𝐴2−𝑃𝑟𝑅𝛾𝐺𝑟𝐵2−𝑃𝑟𝑅𝛾𝐺𝑐𝐷2𝑟4−16𝑃𝑟𝑅𝛾𝐴1+𝑃𝑟𝑅𝛾𝐸1𝑟3+12𝑃𝑟𝑅𝛾𝐴2+𝑃𝑟𝑅𝛾𝐸2𝑟2
+𝐸7𝑟+𝐸8,        (35)                                                                                                

∅ 0 
0 = 𝐶1𝑟 + 𝐶2,    (36)                                                                                                 
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6
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𝑟2 + 𝐸5𝑟 + 𝐸6,     (37)       
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(𝑟(𝐼𝑛 𝑟)2 − 𝐼𝑛 𝑟) − 𝐸5 𝑟 𝐼𝑛 𝑟 − 𝑟 +
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III. Results And Discussion 
The effects of varying values of theporosity parameter (𝑥), aspect ratio (𝑅), Schmidt number (𝑆𝑐), buoyancy 

forces (Thermal and Concentration Grashof number, (𝐺𝑟/𝐺𝑐))embedded in the fully developed flow at a very 

low Reynolds number are examined on the velocity and temperature  fields.The results obtained are examined at 

a fixed value of 𝑃𝑟 = 7.0,   𝐾 = 𝜂 = 0.5.  and varying values of 

𝑥 = 1.0, 5.0, 10.0, 15.0, 𝑅 = 0.5,1.0, 3.0, 5.0, 𝐺𝑐 = 𝐺𝑟 = 1.0, 5.0, 10.0, 15.0, 𝑆𝑐 = 1.0, 5.0, 10.0, 15.0, 20.0. as 

shown in figures (1) –(9). Nusselt number(𝑁𝑢) effect is also shown. 

 

Figure 1: Effects of 𝒙 on velocity at 𝑃𝑟 =
7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝐺𝑟 = 𝐺𝑐 = 1.0. 

Figure 2: Effects of 𝒙 on temperature at 

𝑃𝑟 = 7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝐺𝑟 = 𝐺𝑐 = 1.0. 
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Figure 3: Effects of 𝑹 on velocity at 𝑃𝑟 =
7.0, 𝛾 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑟 = 𝐺𝑐 = 1.0. 

Figure 4: Effects of 𝑹 on temperature at 

𝑃𝑟 = 7.0, 𝛾 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑟 = 𝐺𝑐 = 1.0. 

Figure 5: Effects of 𝑮𝒓 on velocity at 𝑃𝑟 =
7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑐 = 1.0. 

Figure 6: Effects of 𝑮𝒓 on temperature at 

𝑃𝑟 = 7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑐 = 1.0. 
 

 
Figure 7: Effects of 𝑮𝒄 on velocity at 𝑃𝑟 =
7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑟 = 1.0 

 
Figure 8: Effects of 𝑮𝒄 on temperature at 

𝑃𝑟 = 7.0, 𝛾 = 𝑅 = 𝐾 = 0.5, 𝑆𝑐 = 𝑥 = 𝐺𝑟 = 1.0. 

 
 

Figure 9: Effects of 𝑺𝒄 on velocity at 𝑷𝒓 = 𝟕. 𝟎, 
 𝛾 = 𝑅 = 𝐾 = 0.5, 𝐺𝑐 = 𝑥 = 𝐺𝑟 = 1.0. 

 

Table 1: The effect of porosity parameter(𝒙) variation on Nusselt 

number (𝑵𝒖) 
𝒙 𝒌 𝑷𝒓 𝑵𝒖 

1.0 0.5 7.0 1.02049 

5.0 0.5 7.0 0.08716 

10.0 0.5 7.0 -2.82951 

15.0 0.5 7.0 -7.69063 
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It is observed from figures 1 −  4 that at larger values of the porosity parameter andaspect ratio,the 

flow velocity and temperatureincreases.Figures  5 − (8)displays the effects of the buoyancy forces. It shows 

that increasing values of 𝐺𝑟/𝐺𝑐 resulted to increase in the flow velocity but its temperature decelerated.From 

figure (9), the flow velocity increased with increase in the Schmidt number. Thus, as the rateat which the fluid 

is transported into the plant increases, more nutrients are absorbed into the plant, hence enhancing its growth 

and productivity.Finally, fromTable (11), the rate of heat transfer (Nusselt number) decreases as the porosity 

parameter increases.  

 

IV. Conclusion 
A steady, two-dimensional flow of a viscous incompressible, Newtonian fluid in the stem of a non-

bifurcating green plant has just been analyzed. The coupled non-linear governing equations of the flow were 

non-dimensionalized and then solved by homotopy perturbation method. Analytical results for various 

parametric conditions of the fully developed flow were presented on the velocity and temperature fields. Results 

showed that increasing the porosityand aspect ratio resulted to anincrease in the velocity and temperature flow 

fields. Increase in the buoyancy forces had a positive effect on the flow velocity. In order words, as more 

nutrients are absorbed into the plant, the rate at which they are transportedwithin the vessel increases. This 

enhancesits growth and productivity.  
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