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Abstract. In this paper, we introduce semi-slant pseudo-Riemannian submersions from indefinite almost para-
contact manifolds onto pseudo-Riemannian manifolds. We investigate necessary and sufficient conditions for
foliations determined by horizontal and vertical distributions to be totally geodesic. We also obtain a necessary
and sufficient condition for submersions to be totally geodesic and provide a non- trivial example. Moreover, we
discuss the harmonicity of such submersions.
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I. Introduction
The theory of Riemannian submersions was introduced by O’ Neill [13] and Gray [8]. Several
geometers studied Riemannian submersions with suitable surjective maps ([7], [12], [13], [16]). It is known that
Riemannian submersions are related with physics and have their applications in the Kaluza-Klein theories ([3],
[10]), Yang-Mills theory ([2], [24]), supergravity and superstring theories ([10], [11]), the theory of robotics

([1D).

In 1984, Chinea studied Riemannian submersions between almost contact manifolds and investigated
some geometric properties and interrelations of structures between such manifolds [4], [5]. In 2010, Sahin
introduced anti-invariant and semi-invariant Riemannian submersions from almost Hermitian manifolds onto
Riemannian mani- folds [17], [18]. He also gave the notion of a slant submersion from an almost Her- mitian
manifold onto a Riemannian manifold as a generalization of almost Hermitian submersions and anti-invariant
submersions [19]. Further, in 2013, K. S. Park intro- duced semi-slant submersions from an almost Hermitian
manifold onto a Riemannian manifold and obtained interesting results [14], [15].

In the present paper, our aim is to study semi-slant pseudo-Riemannian submersions from indefinite
almost para-contact manifolds onto pseudo-Riemannian manifolds.

The composition of the paper is as follows. In section 2, we collect some basic definitions, formulas
and results on indefinite almost para-contact manifolds and pseudo-Riemannian submersions. In section 3, we
give an example of semi-slant pseudo-Riemannian submersions from indefinite almost para-contact manifolds
onto pseudo-Riemannian manifolds. We investigate necessary and sufficient conditions for foliations
determined by horizontal and vertical distributions to be totally geodesic. We also obtain a necessary and
sufficient condition for submersions to be totally geodesic and check the harmonicity of such submersions.
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Il.  Preliminaries:
2.1 Almost Para-Contact Manifolds. Let M be a (2Zn+1)-dimensional Riemann- ian manifold and ¢ be a (1.1) type

tensor field, £ a vector field. called characteristic vector field and # a 1-form on M. Then. (¢, & #) is called an almost
para-contact structure on M if
(2.1) P2X = X — n(X)é forany X €T(TM), (&) =1
and the tensor field ¢ induces an almost para-complex structure on the distribution
D=ker(n) ([20]. [25]).
M is said to be an almost para-contact manifold. if it is equipped with an almost para-contact structure. Again, M with
an almost para contact structure (¢, & 5) is called an indefinite almost para-contact manifold if it is endowed with a
pseudo-Riemannian metric g such that

(22 g(@X,$Y) = g(X,¥) — en(Xm(¥), KX ¥ ET(IM),

where ¢ = 1 or —1. according as the characteristic vector field ¢ is spacelike or timelike. It follows that

(2.3) 9(&,8) = £g9(,X)
(2.4) = en(X),
(2.5) gX,9Y) = g(¢X,V),

for all X, ¥ €T(TM).
In particular, if index g = 1, then the manifold (M, ¢, & », g) is called a Lorentzian almost para-contact manifold.

If the metric g is positive definite, then the manifold (M, @, . g) is the usual almost para-contact metric manifold
([21D-

The fundamental 2-form @ on M is defined by

(2.6) PXY) = g(X,¢9YV),

for all X, ¥ €T(TM).

Let M>™! be an almost para-contact manifold with the structure (¢, & ). An almost para-complex structure J

on M x E is defined by

@7 J(x.r2) = ox +re, n0S

where X is tangent to M>"™!, #is the coordinate on F.and fis a smooth function on M>*"!

An almost para-contact structure (¢, &, 1) is said to be normal. if the Nijenhuis tensor Ny of almost para-complex structure

J defined as where X is tangent to M>"!, 7is the coordinate on E and f is a smooth function on M

An almost para-contact structure (¢, & ) is said to be normal. if the Nijenhuis tensor Ny of almost para-complex

structure J defined as
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(2.8) N;XY) = UJIXY) = UXJY] +*[XY] - JUXY] - J[X,]V],

for any vector fields X, ¥ €I'(TM). vanishes.

If X and ¥ are vector fields on M>"™!, then we have ([20]. [25])

(2.9) N; = ((X,0), (Y,0)) = (Ng (X, Y) — 2dn(X, VE{(LeXn)Y — [Lq,XT])}i

(2.10) N, = ((X, 0), (0%)) =- ((%X'I)Y — (£yXn) %)

where L y is the Lie derivative respect to a vector field X and Ny, NIV, N® NG N® are defined as

(2.11) Ny (X,Y) = [¢,9](X,V) = [¢pX,¢Y] + ¢*[X.Y] — ¢ [¢ X V] — ¢ [X,9Y]
(2.12) NOEX,Y) = Ny (X,Y) — 2dn(X,Y ),
(2.13) NOE®,Y) = Lyxy)V — LgryX,

(2.14) N®(X) = (L)X

(2.15) N®(X) = (L&) X.

For an almost para-contact structure (¢, & #). vanishing of N implies the vanishing of N®, N® and
N®. Moreover. N@ vanishes if and only if ¢ is a killing vector field.
An indefinite almost para-contact manifold (M>"™, @, & 1, g, ) is called
(1) normal, if Ny —2dn & =0,

(ii) para-contact. if @ =dy.

(iii) K-para-contact, if M is para-contact and ¢ is killing,

(1v) para-cosymplectic. if V@ = 0, which implies Fy = 0, where Vis the Levi- Civita connection on

M,
(V) almost para-cosymplectic, if dy =0 and d@ =0,
(Vi) weakly para-cosymplectic, if M is almost para-cosymplectic and

[R(X,Y),¢] = R(X,Y)p — ¢ R(X,Y) =0,

where R is Riemannian curvature tensor on M.
(Vil) para-Sasakian. if ® =dy and M is normal.

(Viil) quasi-para-Sasakian. if d® =0 and M is normal.
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2.2 Pseudo -Riemannian Submersions: Let (M m‘g? ) and (M" g) be two connected pseudo-Riemannian

manifolds of indices 5(0 =5 =m) and s (0 = s = n) respectively. with s > 5.
A pseudo-Riemannian submersion is a smooth map f : ﬁm—b M which is onto and satisfies the following
conditions ([7]. [8]. [13]. [16]):

(1) the derivative map fop- Tp M—» TipM is surjective at each point p eM

(ii) fibres }(g) of fover g €M are pseudo-Riemannian submanifolds of M

(1i1) f«preserves the length of horizontal vectors.

A vector field on M is called vertical if it is always tangent to fibers and it is called horizontal if it is always orthogonal

to fibres. horizontal if it is always orthogonal to fibres. We denote by V the vertical distribution and by H the
horizontal distribution. Also. we denote vertical and horizontal projections of a vector field E on M by vE
and by hE respectively. A horizontal vector field X on A is said to be basic if X is f-related to a vector

field X on M i.e.f;i’ = Xof.

Thus, every vector field X on M has a unique horizontal lift X on M.

We recall the following lemma for later use:

Lemma 2.1. ([7]. [12]) If f: M — M is a pseudo-Riemannian submersion and X, ¥ are basic vector fields on M that
are f-related to the vector fields X, ¥ on M respectively. then we have the following properties:
@) g(&X,¥) = g(X,Y) = f.
(i) h[X, ¥] is a vector field and h[X,¥] = [X, V] o f.
(iil) h(V,Y) is a basic vector field f-related to VY. where V and V are the Levi-Civita
connections on M and M respectively,

(iv) [E, U] € V. for any vector field U € V and for any vector field E € ['(TM).

A pseudo-Riemannian submersion f: M — M determines tensor fields T and A of type (1,2) on M defined

by formulas ([7]. [12]. [13])

(2.16) T(E,F) = TgF = h(VpghF) + h(VpghF).
(2.17)  A(E,F) = AgF = v(VpghF) + h(VpzF).
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for any E,F € T(TM).

Let X, ¥ be horizontal vector fields and U, V be vertical vector fields on M. Then. we have

(2.18) X =v(V,X), T,V = h(V,V),
2.19) VyX = TyX + h(VyX),
(2.20) T,F =0, TI,F = T, F,
(2.21) VyV =T,V+ul,V),

(2.22 AzgY = v(Vgl), AgU = h(VzU).
(2.23) Vel = AgU + v(Vzl).
(2.24) AyF = 0,AzF = ApF.
(2.25) ViV = AgV + h(Vz7)
(2.26) h(VyX) = h(VgU) = AgU
(2.27) Agl = Zv[X,T].
(2.28) AgV = —AgX.
(2.29) T,V =T,U,

VE,F € T(TM).
It can be easily shown that a Riemannian submersion f: M — M has totally geodesic fibres if and only if T
vanishes identically. By lemma (2.1). the horizontal distribution H is integrable if and only if A = 0. Also. in
view of equations (2.28) and (2.29), <A is alternating on the horizontal distribution and T is symmetric on the
vertical distribution.

Now. we recall the notion of harmonic maps between pseudo-Riemannian manifolds. Let (M, §) and
(M, g) be pseudo-Riemannain manifolds and let f: M — M be a smooth map. Then the second fundamental

form of the map f is given by

(2.30) WX, Y) = (VoY) o f — £.(V, V),

for all X, Y € T(TM). where V/ denotes the pullback connection of V with respect to f and the tension field
T of f isdefined by

(231) o(f) = race(@f) = ) (@f(ey e,
where {e,, €, €,,} is an orthonormal frame on M.
It is known that f is harmonic if and only if T(f) = 0[6].

In this paper. we study pseudo Riemannian submersions f: M — M such that

fibres f~*(q) over ¢ € M be pseudo-Riemannian submanifolds admitting non-lightlike vector fields.
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I11.  Semi-Slant PSEUDO-Riemannian submersions

Definition 3.1. Let (M?™1%1,¢,&7,g) be an indefinite almost para-contact manifold and (M™2,g) be a
pseudo-Riemannian manifold with m, > m,. A pseudoRiemannian submersion f: M — M is called a semi-
slant pseudo-Riemannian submersion if the structure vector field & is horizontal and there exists a distribution
D < kerff, such that

(i) keriif, =D @ D;

(i) (D) = D; and

(iii) for any non-zero vector field X, € D;, the angle 6 between ¢ X, and the space D, isConstant

This angle 6 is called semi-slant angle of the submersion.

If dimension D = 0, then the map f is a slant pseudo-Riemannian submersion and

ifo = % then it is a semi-invariant pseudo-Riemannian submersion.

For any vector field U € V, we put

3.1 U=PU+QU,
where PU € D and QU € D*.
Also, for any vector field U € D+, we set

(3.2)¢U = YU + wU,

where YU and wU are horizontal and vertical components of ¢ U respectively.
For any vector field X € 7, we put

(3.2)¢pX = tX + nX,

where tX and nX are horizontal and vertical components of ¢X respectively.

Example 3.2. Let {(RE,$,&,7,); (x1,+, X6, ¥1,+*, V6, 2)t} be an indefinite almost para-contact manifold

with
_( 0 ) 0 _< d ) d _ ( d )
0%/ 1.6 ay;’ ; 0Yi)i_14..6 ox;’ P\oz ’

&= 2:—2,77 = 2dz, signature of § = (—,—, —, +,+,+,—, —, —, +,+, +,+) and let (RS, g) be a pseudo-
Riemannian manifold.
Define a submersion £: {RE; (x1,*, X6, Y1, > Ve, 2)'} — {RS; (uy, uy, -+, ug)'}

by

where a € R.
The vertical distribution V is span of

o 0 .. 0 - 0 — o ) 0 -
{—,—, cosiity — — sinity —— , —siniitt — + cosity —, cosidyk — + siniidk —
0x; 0y, X2 V2 X3 V3 0xy Y4
.0
sinfity —— + cosiitk —, cosiitk —— + sinif —}
s 5 dys X6 6
We have D = Spani?iﬁ —} cVand
dx1 " 0y1
Dt =S { i 9 inirdy 9 ini7de g + cosii 9 i 4 9 + sinfidy 9
= Spani{fcosiity — — sinftt —, —sinitt — + cosiidy ——, cosiitk —— + siniily —
P 0x; 0y, 0x3 0y3 0x4 0ys
- o d 0 - )
sinéity — + cosfik —, cosiity — + siniid —} .
X5 Vs 0% Y

It can be seen that D is invariant with respect to ¢ and semi-slant angle of submersion f is 0= %— 2a.
Proposition 3.1. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
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contact manifold (M, ¢,&,7,g) onto a pseudoRiemannian manifold (M, g). If U,V are vertical and X,Y are
horizontal vector fields on M, then we have

J(wQU,V) = gU,wQV),
(3.5) gtx,v) =gXtv),
gWU,X) = gU,nX).

Proof. Using equations (2.5), (3.1) and (3.2), for any vector fields U,V € V, we have

g(@PU +yYQU + wQU,V) = g(U, PV +¢YQV + wQV)
which implies
3(@QU,V) = g(U, wQV).
Similarly, for any vector fields U,V € V and X, Y € H, we have equations (3.5) and (3.6).

Theorem 3.3. Let (M, ¢, £, 7, g) be an indefinite almost para-contact manifold and (M, g) a pseudo-Riemannian
manifold. Then, a pseudo-Riemannian submersion f: M — M is a semi-slant pseudo-Riemannian submersion if
and only if there exists A € [0,1] such that

(3.7) (Qw)? = A2,

Moreover, if 6 is semi-slant angle of the pseudo-Riemannian submersion, then 2 = cos?i9.

Proof. Let V € D*. Then, we have

7(pV, QuwV
(3.8) cosip = TPV, QwV)
|pV]IQwV|
Again, we have
. |QuV|
(3.9) cosi) = ——.
oV

From equations (2.5), (3.2) and (3.8), we have

T — g_(V,(Qw)ZV)
(3.10) cosi'@ IR

In view of equations (3.9) and (3.10), we have

gV, (Qw)*V)
(3.11) costig =~~~ 2
gV, $*V)
Equation (3.11) implies that cos?#® = constant if and only if (Qw)? and ¢? are conformally parallel.
Hence, we get (Qw)? = A¢2, for some A € [0, ).
Again, by using equations (3.7) and (3.11), we have A = cos?#. Consequently, we get A € [0,1].

Proposition 3.2. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢,£,17,g) onto a pseudoRiemannian manifold (M, g). If @ is semi-slant angle of the
pseudo-Riemannian submersion, then for U,V € D+,

(3.12) gQwU,QuwV) = (g(U,V) — eq(U)f(V))cos%i®,

(3.13) g(pUYV) = g(dU, pV)sin®#® — g(PwU, PwV).

Proof. Let U,V € D*. On replacing V by QwV in equation (3.4), we get

gQwU,QwV) = g(U, (Qw)*V).
In view of equations (2.2) and (3.7), above equation implies equation (3.12). Similarly, we have equation (3.13).

Theorem 3.4. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, $,&,7,) onto a pseudo-Riemannia: manifold (M, g). Then, (D+)* is invariant with
respect to ¢.
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Proof. Let U € (D1)* < H.Forany V € D*, we have

g(@U,QwV) = g(U,¢(QuV))
= g(U,YQwV + wQuwV)
=0
which implies ¢U € (yD*)*.
Again, for any V € D+, we get ) )
g(u,v) =g, ¢V)
= G(U, YV + PwV + QuV)

=0
which implies ¢pU € (¥D)*.
Hence, ¢(YD+)*c (yDL)L.
. a 1 a .
Proposition 3.3. Let {ax —} be a basis of D* and {a T W} a basis of

Dl=2m;+1—m, — k.
Then{y ( ) csc, Y ( ) csc 6,y ( ) csch, ..y (ai) csc 8} is an orthonormal basis of yD*.
Xk
Proof. We have

g‘(lp(a)csce tl)( )csc@) g(zp(aixl) w(a%»cscze
- g‘(@(: )csc@ @( ])> sin® @ csc*@ —g<Pw (aixi)'P‘“ (a%))cscze

= 81

a
"%y “axg
{ Qw ( )sec ; ( ) sec 9, . ch ( ) sec @}is anorthonormal basis of Dt

Proposition 3.4.1f i are any orthonormal vector fields in D' then

Proof. We have

(Qw( )sec@ Qw(aa )sec@) <Qw( ) Qw( )) sec’
=9 (0 ) - GO G)

= 61j.
Lemma 3.5. Let f: M —— Mbe a semi-slant pseudo-Riemannian submersion froman indefinite almost para-
contact manifold (M, @, &, 7, g) onto a pseudo-Riemannian manifold (M, g). Then, for any U,V € V and
X,Y € H, we have

h(Vey(BPV)) + v(Vey(@ PV)) + h(Vqu(BPV)) + v(Vqu(BPV))
+h(Veu(YQV)) + Tru(YQV) + Tru(wQV)+ v (Vey(wQV))

(3.14)  +h(Veu(®QV)) + Tou(®QV) + h(Vou(wPV)) + Tqu(wQV)

= (Vu@)V + ((TuV) + n(TuV) +@(P(uVyV))+p(Q (uVuV)) + w(Q(uVyV)),

hv)?(t?) + cﬂx(tY) + ﬂx(ﬂ?) + U(v)?(TlY))
(3.15) = (Vgd)Y + t(hV5Y) + n(hVxY) + ¢(P(AxY))
+(Q(AxD)) + w(Q(AxD))

Az (pPU) + v(Vx(¢PU)) + h(Vz(YQU))
(3.16) +Ay (YQU) + Ax (wQU) + v(Vx (wQU))
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= (V) U + t(Ag) + n(AgV) + (P (w7 D))
+(QVx))) + w(QVxD)),

h(vu(t)?)) +T,X) + Ty (nX) + v(VU(nX))
= (Vy)X + t(hVyX) + n(hVyX) + ¢(P(TyX))

3.17 _ _
(317) +Y(QTX) + w(QTX)).

Eroo_f. For l_J, VEV, we have
Vy(@V) = Vegrou(d(PV +QV)),
which gives ~ ~
PV + t([TV) + n(@yV) + (PO V) + Y (Q(wVy V) + w(QWVyV))
= h(Vey (PPV)) + v(Voy ($PV)) + h(Vou ($PV)) + v(Vou (#PV))
+h(Vpy (PQV)) + Tpy (wQV) + Tpy (YQV) + v(Vpy (wQV))
+h (Voo QV)) + h (Tor (0QV)) + Tou (YQV) + Ty (@QV)
Similarly, we have other equations
By using similar steps as in lemma (3.5), we have
Lemma 3.6. Let f: M/———»Mbe a semi-slant pseudo-Riemannian submersion froman indefinite

almost para-contact manifold (M, @, &, 7, g) onto a pseudo-Riemannian manifold (M, g). Then, for any
UV €eVandX,Y € H, we have

Tpy (PPV) + h(Voy (@PV)) + h(Vpy (QV))
(3.18)+Tpy (wQV) + h(Vou QV)) + h(Ver (wQV)

= t(TV) + p(QWVyV));
u(Vpy (PPV)) + V(VQU (‘l_’PV)) + Tpy (PQV)
(3.19) +v(Vpy (wQV)) + Toy (WQV) + Ty (wQV)
=n(TV) + pPWV,V) + 0(Q(wVyV)).
(3.20) h(Vx (t7)) + Ag(n?) = t(hVx¥) + P(Q(AxV));

(3.21)Ag (t7) + v(Vg(nY)) = n(hVs¥) + w(Q(AgY)) + pP(AgY).
(3.22) A ($PU) + h(Vz (¥QU)) + Axg (wQU) = t(AxU) + (QwVxl));

(3.23) v (Ve (@PU)) + Ag(QU) + v(Tg(@QU)) = n(AgU) + pPWVgV) + wQ (w5 U)

Lemma 3.7. Let f: M ——» Mbe a semi-slant pseudo-Riemannian submersion froman indefinite almost
para-contact manifold (M, @, &, 77, §) onto a pseudo-Riemannian manifold (M, g). Then, for any U,V € v
and X,V € H, we have

h(Vpy (9PV)) + v(Vpy (PPV)) + h(Voy (PPV)) + v(Voy (4PV))
+h(Voy QV)) + Tpy (PQV) + Tpy (wQV) + v(Vpy (wQV))
+h (Tou WQV)) + Tou QV) + h (Vo (@QV)) + Ty (wQV),
(3.26) = G(U,V)E + t(TyV) + n(hVyV) + ¢P(v(VyV))
+PQ(wVyV) + wQ WV, V)

h(v)?(tY)) + cﬂx(t?) + c/l)((TlY) + U(VX(TLY))
= g(X, V& — en(V)X + t(hVzY) + n(hVgY)
+dP(AxY) + PQ(AxY) + wQ(AgY),
Axg ($PU) + v(Vg(¢PU)) + h(Vx (hQU))
+Ag(WYQU) + Az (wQU) + v(Vg(wQU))
(3.28) = g(X, U)¢ + t(AzU) + n(AgU)

+pP(WVgU) + YQ(wVzU) + QQ(wVzl),

(3.27)
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h(Vy (tX)) + Ty (tX) + Ty (nX) + v(Vy (nX))
(3.29) = gU,X)é — en(X)U + t(hVyX) + n(hV,X)
3 +dP(TyX) + YQ Ty X) + wQ(WVy X).
Theorem 3.8. Let f M ——p Mbe a semi-slant pseudo-Riemannian submersion froman indefinite

almost para-contact manifold (M, @, £, 7, §) onto a pseudo-Riemannian manifold (M, g). Then, the fibres
of f are totally geodesic if and only if
(330) Vy (V) = WV, V)
forany U,V € v.
Proof. Let U,V € v. By using equation (3.1), we have
Vy(@V) = (VyPIV + ¢(Vpy PV + Vpy QV + Vi PV + Vy, QV).
In view of equation (2.18) and (3;1),_the above equation implies
V) = W)V + BT V) + T, V).,
Since the manifold (M, @, ¢, 77, g) is para-cosymplectic, we have (V;¢) = 0. So from
above equation, we have

(331) Vy(@V) = V) + T, V)
Now, fibres are totally geodesic if and only if TuV = 0, which implies equation
(3.30)

Theorem 3.9. Let f: M__p M be a semi-slant pseudo-Riemannian submersion froman indefinite
almost para-contact manifold (M, @, &, 7, §) onto a pseudo-Riemannian manifold (M, g). Then, the
horizontal distribution # defines a totally
geodesic foliation if and only if
g(t(hVxY) +9QwVgY), YQU)
(3.32) +g(n(hVxY) + pP(vVxY) + wQ (wVY), $PU)
+g(n(hVs¥) + pP(wV4Y) + wQ (Vs Y), wQU) = 0,
forany X,Y € H.and U,V € V.
Proof. Let X,Y € #.Forany U,V € V, equation (2.2) implies
g(VzY,U) = g(¢(VxY), pU).
By splitting horizontal and vertical components and the using equation (3.1), (3.2),
(3.3), we have ,
g(VxY,U) = g(t(hVgY ), PU) + g(t(hVxY),ypQU) + g(t(hVxY), wQU)
+g(n(hVgY), ¢PU) + g(n(hVgY),pQU) + g(n(hVgY), wQU)
+g(@P(wVxY), pPU) + g(pP(wVxY), YQU) + g(¢P(vVxY), wQU)
+gWQWVgY), ¢PU) + g(WpQ (wVxY), YQU) + gQ (wVgY), wQU)
+g(wQWVgY), $PU) + g(wQ (wVzY), PQU) + g(wQ (WVxY), wQU)
= g(t(hVgY),¥QU) + g(n(hVxY), pPU) + g(n(hVxY), wQU)
+g(pP(WVgY), ¢PU) + g(¢P(vVgY), wQU) + gpQ (wVgY), ¥QU)
+g(wQWVgY), $PU) + G(wQ (wVgY), wQU)
= g(t(hVxY) + YQ(wVgY), YQU)
+3(n(hVY) + pP(wVzY) + wQ(WVsY), pPU)
+g‘(n(hvg7) + q'_)P(vVXY) + a)Q(vVXY), wQU),
which implies VgY € K if and only if right side of a above equation vanishes. Hence
H defines a totally geodesic foliation if and only if equation (3.32) is satisfied.
Corollary 3.1.Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost
para-contact manifold (M, ¢, ,1, §) onto a pseudoRiemannian manifold (M, g). Then following
statements are equivalent:
(a) The horizontal distribution H defines a totally geodesic foliation,
0  GehTg?) +YQWie), pQu)
+g(n(hVgY) + ¢P(vVyY) + wQ(wVsY), pPU)
+g(n(hVgY) + pP(vVxY) + wQ (wV5Y), wQU) = 0,
©  G¥x7, tpQU + YpQwQU) =0, i
(d) Gnt(hVgY) + pPn(hVzY) + wQn(hViY) + ¢2P(vVzY)
+nyPpQ(wVs¥) + pPwQ (vVs¥) + wQuwQ (vVgY), U) =0,
forall X,Y e H,U € V.
Proof. In theorem (3.9), we have proved (a) < (b). Similarly, we can prove (b) & (c), (¢) © (d) and

(d) & ().
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Theorem 3.10. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢, &,1, g) onto a pseudo — Riemannian manifold (M, g). Then, the horizontal distribution
I defines a totally geodesic foliation if and only if
(3.33) g(hVg(tY) + hVz(nY),YQU) + g(wVg(tY), pPU + wQU)
+g(WwVg(nY), pPU + wQU) = 0,
forall X,Y e X and U € V.
Proof. Let X,Y € 7, U € V. Then, by using equation (2.2), we have
G(Vx¥,U0) = g(Vx(¢7) — (Tx )Y, V).
Now, by using equations (3.2) and (3.3) in above equation, we have

gVzY,U) = g(hVg(tY) + hVg(nY),QU)
+g(wVg(tY), PU + wQU)
+g(wVg(nY), pPU + wQU).
H is totally geodesic if and only if Vz¥ € #, which implies g(V;Y, U) = 0. Hence, the proof follows from
equation (3.34).
Theorem 3.11. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢,&,7, g) onto a pseudoRiemannian manifold (M, g). Then, the vertical distribution V
defines a totally geodesic foliation if and only if
(3.35)g(t(hV, V) + YQ (WY, V), tX) + g(n(hV,V) + ¢P(wV,;V)+wQ (vV,V),nX) = 0,
forall U,V e V,X € .
Proof. Let U,V € V,X € H. Using equation (2.2), we have
gvyV,X) = g(@(VyV), pX) + en(Vy V)7 (X).
By using equations (3.2) and (3.3) in above equation, we have
gvyV,X) = g(e(hVyV) +9pQwVyV), tX)
+g(n(hVUV) + P (v, V) + wQ(wVUV),nX)
+en(VyV)n(X)
Now, the proof follows from equation (3.36).
Theorem 3.12. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
cosymplectic manifold (M, ¢, ,7, §) onto a pseudo-Riemannian manifold (M, g). Then, the vertical
distribution V defines a totally geodesic foliation if and only if
(3.37) G(hTy($PV) + h¥y (WQV) + hVy (0QV), tX) )
+g(WVy (pPV) + vV, (WYQV) + vV, (wQV),nX) = 0,
forall U,V e V,X € .
Proof. Let U,V € Vand X € L.
Using equation (2.2), we have
g@yV. X) = g(@(VyV), ) + eV, VA0
As M is almost para-cosymplectic manifold, we have (V;¢)V = 0 and so by using
equations (3.2) and (3.3) in above equation, we get
gvyV,X) = g(hVy(¢PV) + hVy(®QV) + hVy (wQV), tX)
(3.38) +g(WVy (pPV) + vV, (QV) + vV, (wQV), nX)
+en(Vy V)7 (X). _
Now, the vertical distribution V defines a totally geodesic foliation if and only if V,V € V, for all U,V € V.
This completes the proof.
Now, by using similar steps as in theorem 22 and theorem 24 of [22], we have
Theorem 3.13. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢, &,7, §) onto a pseudoRiemannian manifold (M, g). Then, the submersion f is an affine
map on J{.

Theorem 3.14. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢, £,7, §) onto a pseudoRiemannian manifold (M, g). Then, the submersion f is an affine
map if and only if h(VzhF) + Az vF + T,z vF is f-related to Vi Y, forany E, F € T(TM).

Theorem 3.15. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M, ¢,&,1, g) onto a pseudo - Riemannian manifold (M, g). Then, the submersion map f is
totally geodesic if and only if
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(3.39) TyV + AgV + hV,Y =0,
forany U,V € Vand X,Y € (.
Proof. Let E=X+U,F =Y +V € ['(TM).
In view of equation (2.30) and theorem (3.13), by splitting E, F in horizontal and vertical components, we have
(VEI(E F) =W V)+ VAKX, V) + (VWU,Y)
= —f.(R(VyV + VgV + V1)),
Which gives
(3.40) (VEIE,F) = —f.(TyV + AgV + hV,Y).
Now, f is totally geodesic if and if (V£,)(E, F) = 0, which implies equation (3.39).
Theorem 3.16. Let f: M — M be a semi-slant pseudo-Riemannian submersion from an indefinite almost para-
contact manifold (M?*m171,¢,£,7,g) onto a pseudoRiemannian manifold (M™2, g). If the fibres f~(q) of f
over g € M are totally geodesic, then f is a harmonic map.
Proof. The tension field ©(f) of the map f: M — M is defined as
(3.14) 7(f) = tracelvf,).
Let {e1, €2, €, +1-mys €2my+1-mp+1 = 1,82, &n,} be an orthonormal basis of TI(TM), where
{e1, €2+, €2m,+1-m, } is an orthonormal basis of V and {é;, &,, --- &, } is an orthonormal basis of 7. Then, we
have

2mq+1-my ma
(3.42) = ) glewedTeve)+ ) 3(5.6)Tf)(E.5).
i=1 j=1

For any vertical vector fields U,V € V, using equation (2.18), we have

VW, V)
(3.42)

(Vi) o f = £V

—f.(RVyV)

—£.@yV), =

where V/ is the pullback connection of V with respect to . For any horizontal vector fields X,Y € A, which are
f-related to X,Y € I'(TM) respectively, lemma 2.1 and theorem 3.13 imply

GANTLIET) = (VLD o f - £.(TxV)
= (Ve (£D)) o f — £.(hTx7)

=0
In view of equations (3.42), (3.43), (3.44) and theorem 3.14, we get
4m+3-n

(3.45) (f) =- Z g_(eirei)ﬁ(g:ziei)'
i=1

Now, if the fibres f~1(q) of f over q € M areztotally geodesic, then T = 0. So the proof of the theorem follows
from equation (3.45).
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