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Abstract-In this paper we consider an adaptive approach for estimating reliability growth, based on prior 

information which is motivated from practical considerations. We discuss two situations: in the first, both the 

prior distribution and the posterior distributions of the mean time to failure of an exponential distribution are 

stochastically ordered; in the second situation, the prior distribution is stochastically ordered with respect to 

the last posterior distribution. The former situation leads us to procedure which is not fully Bayesian, and is 

therefore termed "pseudo-Bayesian". Since we do not know the properties of this pseudo-Bayesian approach, we 

can best describe our work here as being a "pseudo-Bayesian scheme". The second situation leads us to an 

approach which is fully Bayesian under certain assumptions. Our work along the lines indicated in this paper is 

still in progress, and we invite the attention of other researchers to some of the problems we have posed, and the 

questions we have raised. 
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I. Introduction 
A complex, newly designed system generally undergoes several stages of testing before it is put into 

operation. After each stage of testing changes are made to the design (or the operating conditions are re-

specified) with the hope that the new design would lead to a longer period of performance this procedure is 

referred to as reliability growth; this is because a longer period of performance implies an improvement in 

reliability. Often, in practice a change in the system design may result in a deterioration of the system 

performance, so that the term reliability growth may not be an appropriate description of what is actually 

happening to the system. However, since the intent of a design change is to improve the reliability, we shall 

continue to use the term reliability growth throughout this paper.Suppose that the system has been tested at 

stages 0, 1, 2,.... At the end of each stage an evaluation of the reliability of the system is made using any of the 

conventional procedures which are used to measure reliability. At each stage of testing, we may test either a 

single copy of the system, or several copies of the system, depending on the particular situation being 

considered. Having tested the system over, say, i, i = 0, 1, 2,..., stages, we would like to obtain the best (in a 

sense to be made precise) estimate of the reliability of the system at the ith stage; in doing so we would like to 

use all the testing information that we have acquired over the various stages.Information of the type indicated 

above will enable a decision-maker to determine if the design changes do indeed result in an improvement in 

reliability, and perhaps determine the rate (with respect to the stages) at which there is a growth in reliability. It 

will also enable a decision-maker to decide if the system is ready to be put into operation, and to arrive at a 

suitable cost-warranty agreement with the user.Since in the 1966 there have been several papers written under 

the heading of reliability growth, each emphasizing a different point of view. For a recent survey of these papers 

we refer the reader to Balaban [1]. The approach that we shall take in this paper is suggested by Bayesian 

considerations, with the analysis being undertaken in a manner which will be described in section 2. Others who 

have adopted a Bayesian point of view, but with a direction different from ours, are Smith [5], Weinrich and 

Gross [6], and Jewell [3]. 

As stated in the abstract, our paper is expository in nature; we do not claim to offer a definitive solution 

to the problem of estimating reliability growth. What we give here is an outline of a few potential approaches 

and discuss their ramifications, both from a philosophical and a practical point of view. We raise several 

statistical issues pertinent to each approach, and invite the attention of other researchers to the questions that we 
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have raised. Toward the end of the paper we also describe some additional practical problems pertinent to 

reliability growth which are of interest, especially to management scientists and operations research analysts, 

since they involve cost considerations and optimization. The contribution of this paper, then, is the introduction 

of a comprehensive and unified Bayesian view of the problem of reliability growth, and an outline of some 

possible approaches that we can take with their ramifications. Our hope is that the text of this paper will 

stimulate more thought along the lines we described. 

 

II. Bayesian Scheme for Estimating Reliability Growth 
Suppose that the failure distribution of the system after the i

th
 design change, i = 0, 1,..., is exponential 

with mean i. That is, 
1( ; )i if t    exp( / ), 0, 0i it t    . In particular, at stage 0, when the system 

is newly built, it’s time to failure has an exponential distribution with mean 0 . Based upon our knowledge of 

the performance of similarly designed systems, we assign a prior distribution to 0 , say 0( ; )G   . Without 

any loss in generality, we let 0( ; )G    be an inverted gamma distribution with parameters 0  and 0 ; this is 

the natural conjugate prior distribution for 0 . Thus, we have 0 0 0 0( ; ) ( , , )dG g      as 

( 1)0 0
0 0 00 0( / ( )) exp( / );

 
    

 
   for 0 0 0, , 0       (1) 

It is easy to verify (Mann, Schafer and Singpurwalla [4, p. 112]) that the mean and the variance of 0  with 

respect to the above prior distribution are 0 0 0( ) /( 1)E     and
2 2

0 0 0 0( ) /( 1)( 2)Var       , 

respectively. Thus, to be assured that both the prior mean and variance of 0  are finite, we must have 0 2  . 

One way of choosing 0  and 0 , the prior parameters, is to set E( 0 ) equal to our best guess of the mean 

time to failure 0 , and to set Var( 0 ) equal to a number which reflects the quality of our guess about 0 . 

Having assigned our prior distribution, 0( ; )G   , we test 0( 1)n   copies of the system, and observe their times 

to failure, 0, 01,...it i n . Let 0
0 0,

n
i iT t  , be the total time on test. Then conditional on 0T , the posterior 

distribution of 0  is also an inverted gamma distribution; that is, 0 0 0 0 0( | ; , , )g T n    is 

 
( 1)0 0 0 0

0 0 0 0 0 0 0 0(( ) / ( )) exp( ( ) / )
n n

T n T
        

       (2) 

It is well known that under the assumption of a squared error loss function, the Bayesian estimate of the mean 

time to failure at stage 0 is the mean of the posterior distribution of 0 . Thus, 

 0 0 0 0 0 0( | ) ( ) /( 1)E T T n       (3) 

is our estimate of the mean time to failure at stage 0, given the failure data T0. To express our uncertainty about 

this estimate, we compute the posterior (1) credibility interval for 0 . This interval is provided by specifying 

two numbers 0 0( | )LT and 0 0 0 0 0 0( | ) , ( | ) ( | )U L UT T T   , such that 

0 0 0 0 0 0 0 0 0I[( | ) , ( | ) ; ( | ; , , )] 1L UT T g T n        (4) 

Where 

 

The parameter 0 , with its posterior distribution, is a measure of the reliability of the system at stage 0. Having 

observed 0 0( | )E T , we may want to increase it either by making design changes or by re-specifying the 

operating conditions of the system. Suppose that we do decide to make these changes; let 1  denote the mean 

time to failure after the changes have been made. The system is now at stage 1, and we are ready to test the 

system and verify if thechanges have resulted in an improvement of the system.Since we have adopted a 

Bayesian point of view, our first task is to assign a prior distribution for 1 say 1( ; )G   . The novelty of our 

[ , ; ( )] ( )

b

a

I a b g s g s ds 
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approach pertains to the manner in which we go about choosing 1( ; )G   , and this is motivated by the following 

consideration.Even though the changes that we have instituted have been undertaken with a view towards 

increasing the reliability of the system, there is a possibility that the changes could be deleterious to the system. 

In order to account for this possibility we shall choose 1( ; )G    in such a manner that 1  is stochastically 

larger than 0 0( | )G T ; this is written as  

1 0 0( | )
st

T   

Thus, we must have:  

1 0 0( ) (( | )  for all 0P x P T x x     

The usual approach for situations involving reliability growth of the type described above is to take 

1 0 0( | )T   with probability 1, as has been done by Barlow, Bartholomew, Bremner and Brunk [2] and by 

Smith [5]. However, a prior chosen to satisfy the above condition does not place any mass in the region

1 0 0( | )T  , and therefore would exclude from our analysis the possibility of an adverse effect of the 

changes. Hence, the requirement that 

1 0 0( | )
st

T   

appears to be more realistic. 

Following our previous discussion, suppose that the prior distribution 1( ; )G    is also an inverted gamma with 

parameters 1  and 1 . That is, 1 1 1( ; , )g     is 

( 1)1 1
1 1 11 1( / ( )) exp( / )

      
   , for  1 1 1 0      (5) 

A sufficient condition for ensuring that 

1 0 0( | )
st

T   

is to have 1 0 0T   , and 1 0 0n   . We can verify that under these conditions 1 0 0( ) ( | )E E T  , 

an inequality we would hope to achieve under the hypothesis that a change is beneficial to the system. One 

possibility is to let 1 0 0 1T a    , where 1a  is a measure of our prior belief about the magnitude of the 

improvement in the mean as a result of the changes. A possible strategy for choosing 1a  is to set 

1 0 0 1 1( ) ( ) / ( 1)E T a       equal to our best guess of the mean time to failure 1 . For reasons to be 

given in section 2.1, we would also want 1 0a  . With 1  thus chosen, it is important that at stage 1 we treat 

0T  as being a constant. If this is not done, then the posterior distribution of 1 will have to be obtained by 

treating 1  as a hyper-parameter with a prior distribution which is related to the unconditional distribution of

0T . Under these circumstances the posterior distribution of 1 will not be an inverted gamma, and our procedure 

will become computationally quite involved. Furthermore, we shall also assume that 1 1 1( ; , )g     is 

independent of 0 0( | ; )g T  .  

Having chosen 1 1 1( ; , )g    , we test 1 1n   copies of the system (under stage 1) and observe T1, the 

corresponding total time on test. Since we now treat T0 as a constant, the posterior distribution of 1 conditioned 

on T1, 1 1( | ; ),g T   is: 

10 0 1 0 0 1
0 0 1 1 0 0 1 1(( | ) / ( ))(1/ )

n n n n
T a T n n

       
       

0 0 1 1 0exp( ( ) / )T a T      (6)  

Analogous to (3), the Bayes estimator of 1 is: 

1 1 0 0 1 1 0 0 1( | ) ( ) /( 1)E T T a T n n          (7)  

Under our postulate of reliability growth, we would also want to have 
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1 1 0 0( | ) ( | )
st

T T  ; 

a necessary (but not sufficient) condition for the above inequality is that: 

0 0 1 1 0 0 1 0 0 0 0( ) / ( 1) ( ) / ( 1)T a T n n T n              (8) 

Which reduces to the requirement that: 

1 0 1 0 0 0 0( ) / ( ) / ( 1)a T n T n       (9) 

If (9) is not satisfied, we proceed to section 2.1 wherein we indicate a pooling procedure which gives us a 

desired inequality. If (9) is satisfied, then 1 1( | )E T , the Bayes estimator of 1 ,with a (1 )  posterior 

credibility interval given by 

 

represents our evaluation of the reliability of the system at 

stages 0 and 1. 

If the value of 1 1( | )E T  and the credibility interval 1 1 1 1[( | ) , ( | ) ]L UT T   meet our desired reliability goals, 

then we choose not to make any further improvements to the system, and stop the testing procedure. If not, we 

proceed to stage 2 by making appropriate modifications to the system. 

If we need to proceed to stage 2, then the prior distribution of 2 must be such that 

2 1 1( | )
st

T  .   (10) 

One way of achieving the requirement specified by (10) is to choose 2 and 2, the parameters of the inverted 

gamma prior distribution of 2, in such a manner that 2 0 0 1 1 2T a T a       and 2 0 1 2n n    . 

Once again, 2a  reflects our belief about the magnitude of the improvement in the mean as a consequence of the 

changes at stage 2, and now both T0 and T1 are treated as constants. Furthermore, for reasons given in section 

2.2, we shall want to have 2 0 0 1a T a   . We shall continue with our discussion of this procedure in 

section 2.2 

 

2.1. Procedures when the posterior distributions at stages 0 and 1 are not stochastically ordered 
If (9) is not satisfied, i.e. if 

1 1 1 0 0 0( ) / ( ) /( 1)nT n T n       , (11) 

and if we have no prior reason to believe that the reliability growth postulate is not true, then we consider that 

the randomness of T0 and Tl are causes for (11), and propose the following two strategies as a means of 

overcoming this. 

Strategy 1. We essentially ignore (11), and for the time being do not concern ourselves with the fact that 

1 1 0 0( | ) ( | )E T E T   Thus, we proceed to stage 2 by choosing the prior distribution of 2 in such a manner 

that (10) is satisfied. After completing the testing over all the stages, we will perform an isotonic regression of 

the posterior means ( | ), 0,1,....i iE T i  . This will represent our final evaluation of the reliability of the 

system based upon tests performed at the various stages of testing. More about this strategy will be said in 

section 3. 

Strategy 2. By ignoring (11) and directly proceeding to stage 2 we will, through the prior distribution of 2, 

allow the effects of (11) to perpetuate over the succeeding stages. We can avoid this by pooling (the violators) 

T0 and T1 and 0n  and 1n . That is, we replace 

(a) both T0 and T1 by T01, where T01 = (T0 + T1)/2, and 

(b) both n0 and n1 by n01, where n01 = (n0 + n1)/2. 

When we pool as indicated, we must test to see if 

1 01 01 0 0 0 01( ) / ( ) / ( 1)a T n T n        (12) 

a condition analogous to (9) except that the ni and the Ti, i = 0, 1, have been replaced by their pooled values. 

Since (0 1) > 0, a sufficient condition for (12) is that 1 0a  . 

To summarize, we must choose 1 0a  , and when (9) is violated, we shall pool as indicated above, and be 

assured that: 

0 01 1 0 01 0 01 0 01( 2 ) /( 2 1) ( ) /( 1)T a n T n           , (13) 

1 1 1 1 1 1I[( | ) , ( | ) ; ( | ; )] 1L UT T g T     
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a condition motivated by (8). 

Note that since (13) can also be written as 

0 0 1 1 0 0 1 0 0 1 0 0 1( ) /( 1) (2 ) /(2 2)T T a n n T T n n                

and since the left-hand side of the above equation is identical to the left-hand side of (8), the effect of pooling is 

to lower the magnitude of the right-hand side of (8), the posterior mean of 0 given T0. Thus, the effect of 

pooling is to lower the posterior mean at the previous stage in the light of information obtained at the current 

stage, the previous stage, and the prior conviction that reliability growth has indeed taken place. 

From (3) replacing 0T  by 01T , and 0n  and 01n , we see that our revised Bayes estimator of 0 is:  

0 0 1 0 0 1 0 0 1( | , ) (2 ) / (2 2)E T T T T n n            (14) 

and the revised (1 ) posterior credibility intervals for 0 are given by 0 0 1( | , )LT T  an 0 0 1( | , )UT T , 

where 

0 0 1 0 0 1 0 0 1I[( | , ) , ( | , ) ; ( | , ; )] 1L UT T T T g T T      , 

with 0 0 1( | , ; )g T T   being an inverted gamma distribution with scale parameter 0 0 1(2 ) / 2T T    and 

shape parameter 0 0 1(2 ) / 2n n   . To obtain a revised estimator of 1 , the one which incorporates the 

effect of pooling, we replace, in (7), 0 1 0, , ,T T n and 1n by their pooled values. We can now immediately verify 

that the Bayes estimator of 1 remains unchanged and is therefore given by (7). Consequently, the credibility 

interval for 1 is also unchanged. We can now either stop at this point or proceed to stage 2, our choice being 

determined by the criteria described prior to and following (10). If we choose to stop, then our assessment of the 

reliability of the system at stages 0 and 1 is given by (14) and (7), respectively. 

We remark that instead of pooling the Ti's and the ni's, we could have pooled the quantities 1;/ 0,i iT n i  . The 

reason we choose the former is that the resulting expressions are much simpler to work with, and are also easier 

to interpret. 

 

2.2. Procedures for analysis at stage 2 
In the previous section we saw that whether (9) is satisfied or not (i.e. irrespective of pooling), the prior 

distribution of 2 could be an inverted gamma with parameters 2 and 2 , where

0 0 1 1 22 T a T a      and 2 0 10 .n n    Having chosen  2 2 2;  ,  ,g    we test 2 1n   

copies of the system (under stage 2) and observe 2T , the corresponding total time on test. If  2 2 2;  ,  ,g  

is assumed to be independent of 1 1 .( | ,);g T  then the posterior distribution of 2 given T2 is also an inverted 

gamma with parameters  0 0 1 1 2 2T a T a T      and  0 0 1 2  n n n     

Here again, in order to be assured that 2 2 1 1( | ) ( | )
st

T T   

We need, as a necessary condition, 

2 2 2 0 0 1 1 0 0 1( ) / ( ) /( 1)T n T a T n n          . (15) 

If the above condition is satisfied, then we can either stop and (because of the independence assumption) use 

0 0 1 1 2 2 0 0 1 2( ) / ( 1)T a T a T n n n           as our Bayes estimator of 2 ,with a 100 (1 )

credibility interval for 2 given by the two numbers 2 2( | )LT and 2 2( | )UT , where 

2 2 2 2 2 2[( | ) , ( | ) ; ( | )] 1L UI T T g T      

or we can proceed to stage 3 by making the appropriate modifications to the system. If we proceed to stage 3, 

we repeat our cycle so that the prior distribution of 3 satisfies the condition 

3 2 2( | )
st

T   

If condition (15) is not satisfied, then we can, following strategy 1 of section 2.1, either ignore the inequality 

(15) and proceed directly to stage 3, or follow strategy 2 and pool T1 and T2 to obtain T12 = (T1 + T2)/2 and n12 = 

(n1 + n2)/2. If we choose to pool then, analogous to (12), we must have 
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2 12 12 0 0 1 12 0 0 12( ) / ( ) / ( 1)T n T a T n n           (16) 

A sufficient condition for the above is that 2 0 0 1>  + .a T a   Thus, at this stage, the prior parameter a2 has to 

be related to T0 the total time on test at stage 0. 

As we emphasized in section 2.1, the effect of pooling is a lowering of the posterior mean at the previous stage. 

In the present case, we have changed the posterior mean at stage 1 from 

0 0 1 1 0 0 1( ) /( 1)T a T n n        ; (eq. (7)) to 

0 0 1 12 0 0 1 1 2
1 0 1 2

0 0 1 0 0 1 2

2( )
( | , , )

1 2( ) 2

T a T T a T T
E T T T

n n n n n

 


 

      
 

      
 (17) 

Furthermore, our credibility intervals for 1 , will now be given by the equation: 

1 0 1 2 1 0 1 2 1 0 1 2[( | , , ) , ( | , ) ; ( | , , ; )] 1L UI T T T T T T g T T T        

where 1 0 1 2( | , , )g T T T is an inverted gamma distribution with a scale parameter

0 0 1 1 2(2( ) ) / 2T a T T      and a shape parameter 0 0 1 2(2( ) 2) / 2n n n     . Of course, our Bayes 

estimator of 2 remains unchanged as 0 0 1 1 2 2( ) /T a T a T      0 0 1 2( 1)n n n     . Since we 

have revised our estimator of 1 from that given by (7) to that given by (17), we will have to see if 

1 0 1 2 0 0( | , , ) ( | )
st

T T T T   (18) 

if we did not have to pool at stage 1, or 1 0 1 2 0 0 1( | , , ) ( | , )
st

T T T T T   (19) 

if we had to pool at stage 1. A necessary condition for (18) is that 

0 0 1 12 0 0 12 0 0 0 0( ) / ( 1) ( ) / ( 1)T a T n n T n              (20) 

which reduces to the requirement that 

1 12 12 0 0 0 0( ) / ( ) / ( 1)a T n T n      . (21) 

If (21) is not violated, we proceed to stage 3. If (21) is violated, then we shall pool T0 and T12 and n0 and n12 to 

form 

0,12 0 12( ) / 2T T T    and  0,12 0 12( ) / 2n n n   

and replace the appropriate quantities in (20) by their pooled values. Having done this, we shall need to have 

0 0,12 1 0,12 0 0,12

0 0,12 0,12 0 0,121 1

T a T T

n n n

 

 

   


    
  (22) 

which, because of 1 0a  , is always true. 

Since 0,12 0 1 2(1/ 2)( (1/ 2)( ))T T T T    and 0,12 0 1 2(1/ 2)( (1/ 2)( ))n n n n   , condition (22) reduces 

to 

0 0 1 12 0 0 1 2

0 0 12 0 0 1 2

4 2

1 4 2 4

T a T T T T

n n n n n

 

 

     


      
 

Thus, if we did not have to pool at stage 1, and if condition (21) is violated, our Bayes estimator of 0

conditioned on T0, T1 and T2 is 

0 0 1 2 0 0 1 2 0 0 1 2( | , , ) (4 2 ) /(4 2 4)E T T T T T T n n n          .         (23) 

The credibility intervals for 0 are now given by an inverted gamma distribution with scale parameter

 0 0 1 24  2  / 4T T T     and shape parameter  0 0 1 24  2  / 4n n n    .We can now either stop or 

proceed to stage 3. 

Reverting to (19), we note that a necessary condition for satisfying this equation is that 

0 0 1 12 0 0 12( ) /( 1)T a T n n       0 0 1 0 0 1(2 ) /(2 1)T T n n        (24) 

If condition (24) is satisfied, we proceed to stage 3. Note that for n1n2 condition (24) reduces to 

1 12 0 0 12 0 1 0 0 1( ) /( 1) ( ) /(2 1)a T n n T n n           ; (25) 
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note that when 1 2 0 0 1 0 0 12,2 1 1n n n n n n         . Clearly, condition (25) is satisfied whenever 

12 1T T , i.e. when 2 1T T .Thus, in view of the above arguments, whenever condition (24) is violated, i.e. 

whenever 1 2 2 1  or  n n T T   or both, we shall replace 1T  and 1n  by their pooled values 12T  and 12n . 

Thus, after pooling, (24) becomes 

0 0 1 12 0 0 1( ) /( 1)T a T n n        0 0 1 2 0 0 1 2(4 2 ) /(4 2 2)T T T n n n         

which, because 1 0a  , is always true. 

To summarize, if we had to pool at stage 1, and if condition (24) is violated, our Bayes estimator of 0  

conditioned on 0 1,T T  and 2T  is 

0 0 1 2 0 0 1 2 0 0 1 2( | , , ) (4 2 ) /(4 2 2)E T T T T T T n n n           

Note that its estimator is identical to the one given by eq. (23), which was based on the fact that there was no 

pooling at stage 1. 

However, in the present case the credibility intervals for 0 are given by an inverted gamma distribution with 

scale parameter 0 0 1 2(4 2 ) / 2T T T     and shape parameter 0 0 1 2(4 2 ) / 2n n n    . We can now 

either stop or proceed to stage 3. 

We contrast these to the credibility intervals for 0 given after (23); these pertained to the case of no pooling at 

stage 1. We note that pooling at both stages 1 and 0 has a tendency to make the credibility intervals wider than 

those obtained when there is pooling at stage 0 only. Thus, based on the above analysis, we claim that excessive 

pooling results in wider credibility intervals. 

Our analysis of the failure data at the succeeding stages follows along the lines mentioned above. Our evaluation 

of the reliability of the system at stage i, i = 1, 2,..., is given by the appropriately conditioned Bayes estimator of 

θ, and its associated credibility interval. 

 

2.3. Some remarks on the pooling procedure 

 Here it is clear that condition (7) is likely to be violated whenever 1 1( / )T n  is not much larger than

0 0( / )T n . Note that ( / ),i iT n i = 0, 1, is the classical maximum likelihood estimator of i , i = 0, 1. Thus, (7) 

will be violated if the improvement in reliability in going from stage 0 to stage 1 is not significantly large. 

Hence, pooling will be necessary whenever the effect of the design changes is not substantial (or if the design 

changes have produced a significant deterioration).The pooling procedure advocated here is one among several 

others that can be used. For example, we could have pooled the estimated mean times to failure, 0 0( / )T n and

1 1( / )T n , or we could have just pooled the observed total time on test, T0 and T1. However we pool, the 

important question is whether pooling the data is a legitimate Bayesian procedure. 

An orthodox Bayesian might argue that by pooling we have violated the "likelihood principle" of statistical 

inference. He will object on the grounds that our decision rule is not based on the information provided to us by 

the true posterior distribution, but is instead based on a posterior distribution which is modified to suit our 

hypothesis. He would recommend that instead of pooling, it would be better to choose 01a  , so that 

condition (7) will always be satisfied, or to choose a joint prior distribution on 0 and 1 in such a manner that 

there is no probability mass in the region 1 0  (as was done by Barlow et al. [2]).Our response to the above 

arguments is that not allowing any prior or posterior probability in the region 1 0  is too strong, and is 

perhaps an unreasonable requirement, and that pooling is necessitated by the randomness of the data. Thus, 

whenever the posterior distributions violate our requirement, i.e.  1 1 0 0( | ) ( | )
st

T T   

it is preferable to pool the variables rather than to change the prior parameters in order to make 1 0a  . As a 

compromise, we may want to delete the requirement that 1 0

st

  with respect to the posterior distributions, and 

just work with the requirement that 

1 0 0( ) ( | )
st

T  ;  (see section 4). 
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 Another comment about our procedure pertains to our rationale for requiring that subsequent to 

pooling, conditions of the type given by (13) be satisfied. Note that (12) is analogous to the necessary condition 

(8). However, the terms which comprise condition (13) are not the means of the true posterior distribution after 

pooling. For instance, after we replace 0T by 01T , and 0n by 01n , the mean of the posterior distribution of 0

conditioned on 01T  is not  0 01 0 01/ ( )1T n    , as is implied by the right-hand side of (13). The actual 

mean of the true posterior distribution is quite complicated, and in view of the resulting computational 

difficulties we choose  0 01 0 01( ) /  1T n    as being analogous to the mean of the posterior 

distribution of 0 given 01T .We approximate the mean of the posterior distribution of 1 given 01T in a similar 

manner, and thus write condition (13). Since the above approximations are motivated by the arguments which 

lead us to pool, we feel that they are inherently satisfactory.We close this section by stating that in the light of 

the above discussions, our approach should be called a "pseudo-Bayesian approach". 

 

III. An isotonic regression of the raw posterior means 
Our strategy 1 of section 2.1 specifies that the inequality (11) and similar inequalities be ignored whenever the 

posterior means do not have the correct order. As a result, we will have at the end of testing over, say ( + 1) 

stages, the ( + 1) posterior means 

0 0 1 0 1 0 1( | ), ( | , ),..., ( | , ,..., )E T E T T E T T T    ; Where 0 0 0 0 0 0( | ) ( ) / 1)E T T n       and 

0 0

1
0 1

0 0

0

( )

( | , ,..., ) ; 1,2...,

1

i

j j

j
i i i

j

j

T a T

E T T T i

n n



 







  

 

  




 

Under our postulate of reliability growth, we would need to have (as a necessary condition) 

0 1 0 1( | ,..., ) ( | ,..., ) ; 0,1,..., 1i i i iE T T E T T i       (26) 

If condition (26) is satisfied, then our evaluation of the reliability growth curve is given by these posterior 

means, and our Bayes estimator of the reliability at stage  is simply 0 1( | , ,..., )E T T T  .Note that because of 

the adaptive nature of our scheme 0( | ,..., )E T T  is based on the failure data over all the previous and present 

stages of testing and our prior knowledge about the magnitude of the improvement over each stage. If condition 

(26) is violated by any one or more of the indices i, i = 0, 1,...,, then we shall, following Barlow et al. [2], pool 

the adjacent violators to obtain the isotonic regression of 0( | ,..., )i iE T T , i = 0, ...,, say 
*

0( | ,..., )i iE T T

.We shall use the
*

0( | ,..., )E T T  , i = 0,..., as our evaluation of the reliability growth, and 

*
0( | ,..., )i iE T T  as our estimate of the reliability at stage . Note that like 

*
0 0( | ,..., ), ( | ,..., )E T T E T T      is based on the failure data over all the previous stages, our prior 

knowledge about the magnitude of the improvements at each stage, and the postulate of reliability growth. 

The remarks of section 2.3 are also appropriate for the isotonic regression estimators
*

0( | ,..., )i iE T T , since 

(a) by performing an isotonic regression of the true posterior means we have violated the likelihood 

principle; and 

(b) the estimators 
*

0( | ,..., )i iE T T  are not the true posterior means of the θi, i = 0, ...,  , and thus are 

not fully Bayesian. 

 

IV. Estimation when the ordering is with respect to the priors only 
In section 2 we considered the case when the mean lifetimes were stochastically ordered with respect to 

both the prior and the posterior distributions. In this section we delete the requirement that the means be ordered 

with respect to the posterior distribution. When this is done we will not have to pool the violators, nor will we 

have to perform an isotonic regression of the posterior means should we choose not to pool. 
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We start by choosing a prior distribution of 0 0 0 0, ( ; , )g    , as given by (1). The posterior distribution of 

0 conditioned on 0T , 0 0 0 0 0( | ; , )g T n    is given by (2). Assuming a squared error loss, the Bayes 

estimator of 0 is 0 0( | )E T , and this is given by (3); the credibility intervals for 0 are given by (4). 

We now choose a prior distribution of 1 1 1 1, ( ; , )g    , in such a manner that 

0 0( | )
st

i T   

Following our discussion in section 2, we take  2 2 2; ,g a   as our prior distribution of 2 with

2 0 0 1 2 2T a T a      and 2 0 0 1n n    ; here again we treat 0T and 1T as constants. As before, if 

2 2 2)  ; ,(g    is taken to be independent of 1 1 )   ( | ; .g T , then the mean of the posterior distribution of 2   

conditioned on T2 is our Bayes estimator of 2 .We continue in this manner going from one stage to the next, 

obtaining at each stage the Bayes estimator of i , i = 3,...,. 

 

V. Summary and conclusions 
In this paper we have considered an adaptive approach for estimating reliability growth based on prior 

information.In section 2 we imposed a strong requirement on our approach by requiring that the mean times to 

failure at the various stages be stochastically ordered with respect to both the prior and the posterior 

distributions. The latter requirement can be satisfied if we pool the violators; however, pooling results in a 

violation of the likelihood principle and creates other computational difficulties. Even though the computational 

difficulties can be avoided by using some approximations (see section 2.3), the pooling makes our procedure not 

fully Bayesian. Thus, what we present in section 2 can best be described as a pseudo-Bayesian scheme for 

estimating reliability growth. A formal investigation of the properties of our scheme, despite the fact that it is 

not fully Bayesian, is a matter which needs further attention. Our scheme, however, does produce results which 

are reasonable and intuitively satisfying. 

Our review of the literature in Bayesian statistics indicates that there is no discussion or even mention 

of the problem of estimating parameters which are stochastically ordered. As mentioned before, our strategy of 

pooling the violators to obtain the stochastic order may be unacceptable to a Bayesian. We therefore hope that 

this paper can stimulate some basic research into this general problem area. 

In view of the difficulties mentioned above, in section 4 we weaken the specifications on our approach 

by deleting the requirement that the parameters by stochastically ordered with respect to the posterior 

distributions. This simplification obviates the need for pooling the violators, and thus would make our procedure 

fully Bayesian and therefore optimal in the usual sense of minimizing the square error loss function. However, 

the adaptive nature of our problem imposes certain computational difficulties. We circumvent these by treating 

the observed statistic Ti as constant at stage (i + 1), i = 0, 1, 2, ..., 1, and by assuming the prior distribution at 

stage j to be independent of the posterior distribution at stage (j 1), j = 1, 2,..., . Then, within the context of the 

above assumptions, the procedure of section 4 is fully Bayesian. 
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