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PREFACE:- 

 

Firstly, I want to introduce myself, my Name is Shelbistar Marbaniang. I am a citizen of India (State 

Meghalaya). I have been graduated since 2018. 

 

As a student I enjoy solving mathematical problems and my greatest wish for myself is one day I will be able to 

fix or resolve the Riemann Sum of Definite Integral as it is widely known as an Approximation area under a 

curve. 

 

ABSTRACT:- 

In this paper ∆𝑥 is considered as an equal length (constant length) of each rectangles and triangles under a 

closed curve define by a function  𝑓(𝑥) . 

And 𝑓 𝑥0  , 𝑓 𝑥1  , 𝑓 𝑥2  , ……………… . , 𝑓 𝑥𝑖−1  , 𝑓 𝑥𝑖  are the points traced by a function 𝑓(𝑥) at      

 𝑥0 , 𝑥1 , 𝑥2 , …………… , 𝑥𝑖−1, 𝑥𝑖  . 
 

Keywords: Definite Integral, Area under a curve by summation. 

 

Definition:- 

If  𝑓(𝑥) is a continuous function defined on the interval   𝑎 , 𝑏  , then the area under the curve  𝑓(𝑥) above the 

𝑥 − axis, and between   𝑥 = 𝑎 and 𝑥 = 𝑏  is given by  

     𝑓 𝑥 𝑑𝑥 =
1

2
 lim
𝑛→∞

       𝑓 𝑥𝑖−1 + 𝑓 𝑥𝑖  ∆𝑥
𝑛
𝑖=1     

     
  

𝑏

𝑎
        

          Where 𝑓 𝑥𝑖−1  is a point traced by a function   𝑓 𝑥  at 𝑥𝑖−1  and  𝑓 𝑥𝑖  is a point 

traced by a function 𝑓 𝑥  at  𝑥𝑖  , and    ∆𝑥 is the length of each sub-interval of equal length. 

 Also   𝑥𝑖−1 = 𝑎 +  𝑖 − 1 ∆𝑥    and  𝑥𝑖 = 𝑎 + 𝑖∆𝑥    

 

Proof:    

Suppose the interval of a function  𝑓(𝑥) is divided into  𝑛  number of sub-intervals of equal length Δ𝑥 as shown 

in Fig.1. 

Let  𝑃 =  𝑎 = 𝑥0 , 𝑥1  , 𝑥2 , ………… , 𝑥𝑛−1 , 𝑥𝑛 = 𝑏  is called a partition of   𝑎  , 𝑏   .   
Then,  

The total sum of 𝑛 number of subintervals of equal length of function 𝑓(𝑥)  is given by  

  𝑛Δ𝑥 = 𝑏 − 𝑎        (1.1) 
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Fig.1 

 

Step.1:-   Finding the area of a closed curve at   𝑥𝑜  , 𝑥1  :   
Let 𝑓 𝑥0 = 0 be a point traced by the function 𝑓(𝑥) at 𝑥0  as shown in Fig.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

 

 Again, consider a rectangle ABCD of width 𝑓 𝑥0 = 0 and length = 𝑥1 − 𝑥0 = ∆𝑥  exists in a closed curve of 

Fig.2 as shown in Fig.3 

 
Fig. 3 

 

From Fig.3, we have  

AD=BC= 𝑓 𝑥0    ,   but  𝑓 𝑥0 = 0 

AB = CD= 𝑥1 − 𝑥0 = ∆𝑥    

EB= 𝑓 𝑥1  
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EC=EB−BC    = 𝑓 𝑥1 − 𝑓 𝑥0  
 

Now, 

 Area of a Rectangle, ABCD = 𝑓 𝑥0 ∆𝑥     (1.2) 

 Area of a Rectangle, ABCD =0∆𝑥       , Since  𝑓 𝑥0 = 0 

 Area of a Rectangle, ABCD = 0 

 

And, 

 Area of Triangle EDC=
1

2
 CDEC 

Area of Triangle EDC=
1

2
   ∆𝑥   𝑓 𝑥1 − 𝑓 𝑥0         

Area of Triangle EDC=
1

2
 𝑓 𝑥1 ∆𝑥 −

1

2
𝑓 𝑥0  ∆𝑥     (1.3) 

Thus,  

 Total Area of a closed curve ABED = Area of a Rectangle, ABCD + Area of Triangle EDC  

 Total Area of a closed curve ABED = 𝑓 𝑥0 ∆𝑥 +
1

2
 𝑓 𝑥1 ∆𝑥 −

1

2
𝑓 𝑥0  ∆𝑥            from (1.2) and (1.3) 

 Total Area of a closed curve ABED = 
1

2
𝑓 𝑥0 ∆𝑥 +

1

2
 𝑓 𝑥1 ∆𝑥 

 Total Area of a closed curve ABED = 
1

2
 𝑓 𝑥0 ∆𝑥 +  𝑓 𝑥1  ∆𝑥      (1.4) 

 

Step.2:-   Finding the area of a closed curve at  𝑥1 , 𝑥2     
 

 
Fig.4 

 

 

From Fig.4, we have  

 PS = QR = 𝑓 𝑥1   
PQ=RS= 𝑥2 − 𝑥1 = ∆𝑥   

QT= 𝑓 𝑥2   
RT =QT−QR        But QR=PS 

RT =QT− PS   

 RT =𝑓 𝑥2 − 𝑓 𝑥1       
 

Now, 

Area of Rectangle PQRS =PQ  PS 

Area of Rectangle PQRS = 𝑓 𝑥1   ∆𝑥 

       Area of Rectangle PQRS = 𝑓 𝑥1  ∆𝑥           (1.5) 

 

And, 

Area of a Triangle TSR =
1

2
 RS  RT 

Area of a Triangle TSR =
1

2
 ∆𝑥   𝑓 𝑥2 − 𝑓 𝑥1           

 Area of a Triangle TSR =
1

2
𝑓 𝑥2 ∆𝑥 −

1

2
𝑓 𝑥1 ∆𝑥     (1.6) 

Thus,  

Total Area of a closed curve PQTS = Area of Rectangle PQRS + Area of a Triangle TSR 

Total Area of a closed curve PQTS =  𝑓 𝑥1  ∆𝑥 +  
1

2
𝑓 𝑥2 ∆𝑥 −

1

2
𝑓 𝑥1 ∆𝑥          
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Total Area of a closed curve PQTS =  
1

2
𝑓 𝑥1  ∆𝑥 +  

1

2
𝑓 𝑥2 ∆𝑥      

 Total Area of a closed curve PQTS =
1

2
 𝑓 𝑥1 ∆𝑥 +  𝑓 𝑥2  ∆𝑥        (1.7) 

Step.3:- Finding the area of a closed curve at  𝑥𝑖−1 , 𝑥𝑖     

   
Fig.5 

 

From Fig.5, we have  

 OL=MN= 𝑓(𝑥𝑖−1) 

LM=ON= 𝑥𝑖 − 𝑥𝑖−1 = ∆𝑥 

PM= 𝑓(𝑥𝑖) 

PN=PM−MN 

 PN = 𝑓 𝑥𝑖 − 𝑓(𝑥𝑖−1) 

Now, 

Area of Rectangle LMNO =OL  LM 

Area of Rectangle LMNO = 𝑓(𝑥𝑖−1)∆𝑥 

  Area of Rectangle LMNO = 𝑓(𝑥𝑖−1)∆𝑥        (1.8) 

 

And   

Area of Triangle PON = 
1

2
 ON  PN 

Area of Triangle PON = 
1

2
∆𝑥   𝑓 𝑥𝑖 − 𝑓(𝑥𝑖−1)   

 Area of Triangle PON = 
1

2
𝑓 𝑥𝑖 ∆𝑥 −

1

2
𝑓 𝑥𝑖−1 ∆𝑥     (1.9) 

 

Thus, 

Total Area of a closed curve LMPO = Area of Rectangle LMNO + Area of Triangle PON 

Total Area of a closed curve LMPO = 𝑓 𝑥𝑖−1 ∆𝑥 +  
1

2
𝑓 𝑥𝑖 ∆𝑥 −

1

2
𝑓 𝑥𝑖−1 ∆𝑥       

Total Area of a closed curve LMPO =
1

2
𝑓 𝑥𝑖−1 ∆𝑥 + 

1

2
𝑓 𝑥𝑖 ∆𝑥       

  Total Area of a closed curve LMPO =
1

2
 𝑓 𝑥𝑖−1 +  𝑓 𝑥𝑖   ∆𝑥      (2.0) 

 

Step.4:- Finding the total area under the closed curve of function 𝑓(𝑥) on interval  𝑎 , 𝑏    
Total area under a curve = Total Area of a closed curve ABED + Total Area of a closed curve PSTQ + 

……………………. + Total Area of a closed curve POLM  

  

  

Total area under a curve = 
1

2
 𝑓 𝑥0 ∆𝑥 +  𝑓 𝑥1  ∆𝑥 +  

1

2
 𝑓 𝑥1 ∆𝑥 +  𝑓 𝑥2  ∆𝑥 ………+

1

2
 𝑓 𝑥𝑖−1 +  𝑓 𝑥𝑖   

∆𝑥             

(Using   (1.4)   ,   (1.7)   ,   (2.0)   )     

 

  Total area under a curve = 
1

2
   𝑓 𝑥𝑖−1 +  𝑓 𝑥𝑖   ∆𝑥 

𝑛
𝑖=1      
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Hence,  

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

    𝑓 𝑥𝑖−1 +  𝑓 𝑥𝑖   ∆𝑥 
𝑛
𝑖=1      

 Where 𝑛 is the number of sub-intervals of equal length. 

 

………………………………………………………………………………………………………………………

……….... 

 

Summary: 

 

 
Fig.6 

 

 From Fig.6, we clearly see that  

Total length of interval from 𝑥0  to 𝑥𝑖−1 = 𝑥𝑖−1 − 𝑥0  

  =>        ( 𝑖 − 1)∆𝑥 =  𝑥𝑖−1 − 𝑥0              

Where,    (𝑖 − 1) =  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑥0  𝑡𝑜  𝑥𝑖−1 

  =>         (𝑖 − 1)∆𝑥 =  𝑥𝑖−1 − 𝑎            Since,  𝑥0 = 𝑎 

              𝑥𝑖−1 = 𝑎 +  𝑖 − 1 ∆𝑥 
 

Total length of interval from 𝑥0  to 𝑥𝑖  = 𝑥𝑖 − 𝑥0 

=>        𝑖∆𝑥 =  𝑥𝑖 − 𝑥0             Where,  𝑖 =  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑓𝑟𝑜𝑚 𝑥0  𝑡𝑜  𝑥𝑖  
  =>         𝑖∆𝑥 =  𝑥𝑖−1  −  𝑎            Since,  𝑥0 = 𝑎 

              𝑥𝑖 = 𝑎 + 𝑖∆𝑥 

 

……………………………………………………………………………………………………………………… 

 

Worked Example: 

 

Evaluate:  𝑥 𝑑𝑥
𝑏

𝑎
   

Solution:    Let  𝑓 𝑥 =  𝑥 

 

Now, 

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

    𝑓 𝑥𝑖−1 +  𝑓 𝑥𝑖   ∆𝑥 
𝑛
𝑖=1   

 

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

 𝑓 𝑥𝑖−1 
𝑛
𝑖=1 ∆𝑥 +  

1

2
lim
𝑛→∞

 𝑓 𝑥𝑖 
𝑛
𝑖=1 ∆𝑥  

 

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

 𝑓 𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 +  

1

2
lim
𝑛→∞

 𝑓 𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥  

 

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 +  

1

2
lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥  

 

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 +  

1

2
lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥  

 

Here,  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
  𝑎∆𝑥 +  𝑖 − 1 ∆𝑥2 𝑛

𝑖=1    

 

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
  𝑎∆𝑥 +  𝑖 − 1 ∆𝑥2  𝑛

𝑖=1     

 

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
 𝑎∆𝑥𝑛

𝑖=1 + lim
𝑛→∞

  𝑖 − 1 ∆𝑥2𝑛
𝑖=1   
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lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
𝑛𝑎∆𝑥 + lim

𝑛→∞

𝑛(𝑛−1)

2
∆𝑥2       Since  ∆𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    

 

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎 lim

𝑛→∞
𝑛∆𝑥 + lim

𝑛→∞

𝑛(𝑛−1)

2
∆𝑥2  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎 lim

𝑛→∞
(𝑏 − 𝑎) + lim

𝑛→∞

𝑛(𝑛−1)

2
 
𝑏−𝑎

𝑛
 

2

                        Since    ∆𝑥 =
𝑏−𝑎

𝑛
     

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) + lim

𝑛→∞

(𝑛2−𝑛)

2

 𝑏−𝑎 2

𝑛2   

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) + lim

𝑛→∞

 𝑛2−𝑛 

2𝑛2 (𝑏2 − 2𝑎𝑏 + 𝑎2  )  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) +

1

2
lim
𝑛→∞

 𝑛2−𝑛 

𝑛2 (𝑏2 − 2𝑎𝑏 + 𝑎2 )  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) +

1

2
lim
𝑛→∞

 1 −
1

𝑛
 (𝑏2 − 2𝑎𝑏 + 𝑎2  )  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) +

1

2
  1 −

1

∞
 (𝑏2 − 2𝑎𝑏 + 𝑎2  ) 

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) +

1

2
 1 − 0 (𝑏2 − 2𝑎𝑏 + 𝑎2  )  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎(𝑏 − 𝑎) +

1

2
(𝑏2 − 2𝑎𝑏 + 𝑎2 )  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

𝑏2

2
− 𝑎𝑏 +  

𝑎2

2
   

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 =

𝑏2

2
+  

𝑎2

2
− 𝑎2   

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 =

𝑏2

2
− 

𝑎2

2
  

lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 =

1

2
(𝑏2 − 𝑎2 )    

 

And  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
  𝑎∆𝑥 + 𝑖∆𝑥2 𝑛

𝑖=1    

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
 𝑎∆𝑥 + lim

𝑛→∞
 𝑖∆𝑥2𝑛

𝑖=1
𝑛
𝑖=1   

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = lim

𝑛→∞
 𝑛𝑎∆𝑥 + lim

𝑛→∞

𝑛(𝑛+1)

2
∆𝑥2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎 lim

𝑛→∞
 𝑛∆𝑥 + lim

𝑛→∞

𝑛2+𝑛

2
∆𝑥2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎 lim

𝑛→∞
 (𝑏 − 𝑎) + lim

𝑛→∞

𝑛2+𝑛

2
 
𝑏−𝑎

𝑛
 

2

  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎 (𝑏 − 𝑎) + lim

𝑛→∞

𝑛2+𝑛

2𝑛2
 𝑏 − 𝑎 2    

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

1

2
lim
𝑛→∞

 1 +
1

𝑛
  𝑏 − 𝑎 2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

1

2
 1 +

1

∞
  𝑏 − 𝑎 2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

1

2
 1 + 0  𝑏 − 𝑎 2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

1

2
 𝑏 − 𝑎 2  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

1

2
 𝑏2 − 2𝑎𝑏 + 𝑎2      

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 = 𝑎𝑏 − 𝑎2 +

𝑏2

2
− 𝑎𝑏 +

𝑎2

2
   

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 =

𝑏2

2
+

𝑎2

2
− 𝑎2   

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 =

𝑏2

2
−

𝑎2

2
  

lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆𝑥 =

1

2
 𝑏2 − 𝑎2      

Thus  

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
lim
𝑛→∞

  𝑎 +  𝑖 − 1 ∆𝑥 𝑛
𝑖=1 ∆𝑥 +  

1

2
lim
𝑛→∞

  𝑎 + 𝑖∆𝑥 𝑛
𝑖=1 ∆  

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
 

1

2
 𝑏2 − 𝑎2 + 

1

2
  

1

2
 𝑏2 − 𝑎2   

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

4
 𝑏2 − 𝑎2  + 

1

4
 𝑏2 − 𝑎2   

 𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

2

4
 𝑏2 − 𝑎2    

          𝑓 𝑥 𝑑𝑥
𝑏

𝑎
=

1

2
 𝑏2 − 𝑎2            



Area Under A Curve 

DOI: 10.9790/5728-1902014652                                  www.iosrjournals.org                                            52 | Page 

Conclusion:- 

In this manuscript, we have obtained interesting result on solving Definite Integral by summation .We have 

shown that the end result is very useful to solve the system of Definite Integral. 
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