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Abstract 
Background: Mobile phone service providers operate in an oligopolistic market structure and are experiencing 

high churn rates. Consequently, the service providers invest heavily in market research trying to develop precise 

ways of predicting customer churn. Building models to predict customer churn in the mobile phone industry when 

competing risks are confounded with time-dependent covariates has been the center of focus for many studies 

recently. 

Materials and Methods: This paper develops a Bayesian model (Gamma model) using a gamma prior, a penalized 

likelihood, and a posterior gamma to model churn confounding competing risks with time-dependent covariates 

and uses data from three mobile phone service providers in Mombasa and Kilifi Counties in Kenya to analyze 

and evaluate the performance of the model. 

Results: The paper establishes that the Bayesian model (Gamma model) is a better model for predicting 

subscriber survival probabilities when competing risks are confounded with time-dependent covariates.  

Conclusion: The Gamma model can be used to predict subscriber survival probabilities when competing risks 

are confounded with time-dependent covariates. 
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I. Introduction 
The telecommunications industry has undergone major changes over the past decades such as the 

addition of new services, technological advancements, and increased competition due to deregulation (Huang, 

Huang, and Kechadi, 2011). Despite these changes, customer churn remains a serious issue of concern for most 

mobile phone service providers. Predicting customer churn has become critical for service providers to protect 

their loyal customer base, drive business growth, and enhance customer relationship management (Idris and Khan, 

2012). The service providers organize a variety of research and campaigns to predict the churners before they 

churn since it is more cost-effective to retain a subscriber than to acquire a new one. Therefore, the ability to 

predict whether a subscriber is at high risk of churn is an important additional potential revenue stream for service 

providers. (Customer Churn Prediction & Prevention Model, 2021, December 22).   

Bayesian models have been used to understand subscriber behavior and attributes that indicate the risk 

and timing of a customer's churn because of their ability to estimate the likelihood of occurrences. Two Bayesian 

algorithms; Bayes Naive and Bayes networks have been used extensively in the literature to model churn in the 

telecommunications industry.  

Shyam (2003) used the Naive Bayes classifier on a data set containing 2000 customers, the model showed 

68% accuracy. The main limitation of the model is the feature independence assumption. The technique also 

                                                           
1Mathematics and Computer, Pwani University, Kenya 
2 Mathematics and Computer, Pwani University, Kenya 
3 Mathematics and Computer, Pwani University, Kenya 
4 Mathematics and Physics, Technical University of Mombasa, Kenya 



Bayesian modelling of churn confounding competing risks with time-dependent .. 

 

DOI: 10.9790/5728-1902024654                            www.iosrjournals.org                                                  47 | Page 

builds algorithms with low variance, as it is fairly immune to data fluctuations (Heckerman, Geiger Chickering, 

1995). Thus, making the predictions to be less accurate than high-variance models. 

Brandusoiu and Toderean (2013) compared three data mining techniques: Bayesian networks, logistic 

regression, and k-nearest neighbors. The Bayesian network provided acceptable accuracy and was very close to 

the accuracy produced by the other two algorithms. Bayesian networks (Heckerman 1997) appeared at the 

intersection of artificial intelligence, statistics, and probabilities, and constituted a representation formalism for 

the data mining process (Pearl 1988). Bayesian networks too have practical limitations on the nature of the 

distribution and the form of statistical dependence and are not ideal for computing small probabilities. In addition 

to the above limitations, Bayes naïve and Bayesian networks cannot model churn when competing risks are 

confounded with time-dependent covariates. 

This paper develops a Bayesian model of churn when competing risks are confounded with time-

dependent covariates. Mobile phone service providers can use the model to determine the propensity of churn 

precisely and predict customer churn. The paper also adds up to the existing literature on modeling churn when 

competing risks are confounded with time-dependent covariates and application in other areas such as employee 

turnover within a business, the lifetimes of components and equipment, duration of unemployment, and cause of 

death among patients when competing risks are confounded with time-dependent covariates.  

The paper is organized into five sections: section one gives the introduction, section two the material and methods, 

section three explains the results, and the discussion and conclusion are presented in sections four and five 

respectively. 

 

II. Material And Methods 
The paper develops a Bayesian model of churn (Gamma model) to determine customer propensity to churn as 

well as predict future customer churn when competing risks are confounded with time-dependent covariates.  

In developing the model, we assume that customer churn~𝐺𝑎𝑚𝑚𝑎(𝑥; 𝜃). The probability distribution function 

for the Gamma distribution is 

𝑓(𝑥|𝛼, 𝜆) =
𝜆𝛼𝑥𝛼−1

𝛤(α)
𝑒𝑥𝑝(−𝜆𝑥); 𝑥 > 0,      [1] 

and 𝜃 = (𝜆, α) is the vector of unknown parameters. 𝛼 > 0 and 𝜆 > 0 are the shape and scale parameters 

respectively. Its cumulative distribution function (CDF) is given by 

𝐹(𝑥|𝜃) = ∫
1

𝛤(α)

𝜆𝑥

0
𝑤𝛼−1𝑒−𝑤𝑑𝑤 = 𝛾 (α;

𝜆𝑥

𝛤(α)
)      [2] 

where 𝛾(𝑦, 𝑥) = ∫ 𝑤𝑦−1𝑒−𝑤𝑑𝑤
𝑥

0
 is called lower incomplete gamma function. The survival function is given by 

𝑆(𝑥|𝜃) = 1 − 𝐹(𝑥|𝜃) = 1 − ∫
1

𝛤(α)

𝜆𝑥

0
𝑤𝛼−1𝑒−𝑤𝑑𝑤 = 1 −

Γ(α,𝜆𝑥)

𝛤(α)
    [3] 

where Γ(𝑦, 𝑥) = ∫ 𝑤𝑦−1𝑒−𝑤𝑑𝑤
∞

𝑥
 is the upper incomplete gamma function. The hazard function is given by 

ℎ(𝑥|𝜃) =
𝑓(𝑥|𝜃)

𝑆(𝑥|𝜃)
=

𝜆𝛼𝑥𝛼−1

𝛤(α)
𝑒𝑥𝑝(−𝜆𝑡)

Γ(α,𝜆𝑥)

𝛤(α)
 

=
𝜆𝛼𝑥𝛼−1𝑒𝑥𝑝(−𝜆𝑥)

Γ(α,𝜆𝑥)
     [4] 

Assuming conditional independence across individuals, the full likelihood is the product of [4], across all 

customers 𝑖 = 1, … ,6000.  

The functional form for 𝐹𝑗(𝑥𝑗| ∙) is a Gamma distribution, parameterized such that 𝜃𝑗 = [𝛼𝑗 , 𝜆𝑗], 𝑗 =

(𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐ℎ𝑢𝑟𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐ℎ𝑢𝑟𝑛, 𝑝𝑟𝑖𝑐𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐ℎ𝑢𝑟𝑛, 
𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑐ℎ𝑢𝑟𝑛, 𝑓𝑟𝑎𝑢𝑑 𝑐ℎ𝑢𝑟𝑛) represents competing risks. Under this parameterization, 𝛼𝑗 is 

the shape parameter, 𝜆𝑗 is the scale parameter, and Γ is the gamma function which has the formula  

𝛤(𝑥𝑗) = ∫ 𝑠𝑗
𝑥𝑗−1

∞

0

𝑒−𝑠𝑗𝑑𝑠𝑗   

The shape parameter, 𝛼𝑗, that affects duration dependence and tail behavior and the scale parameter, 𝜆𝑗 , represents 

customer’s mean “churn time” attributable to risk 𝑗, that is, 𝛼1 = 15 and 𝜆1 = 5 reflects a belief that from a total 

of 15 respondents there were on average 5 churners due to network quality per week. The parameters 𝜆𝑗  and 𝛼𝑗  

are the only model parameters that require an explicit declaration of prior knowledge.  

Assuming that the scale and the shape parameters have gamma priors and are independently distributed, we 

perform a penalization in the likelihood function of 𝛼𝑗 and 𝜆𝑗 using a modified Jeffreys prior (Jeffreys, 1946) as 

a penalization term of [1] to overcome the difficulty in finding the MLEs of 𝛼𝑗 and 𝜆𝑗 and improve the estimates. 

The penalized likelihood function of 𝛼𝑗 and 𝜆𝑗 is given by 

𝐿𝑝𝑗
(𝛼𝑗 , 𝜆𝑗|𝑥𝑗) = |√𝛼𝑗

2[𝛹′(𝛼𝑗)]
2

− 𝛹′(𝛼𝑗) − 1| (∏ 𝑥𝑗

5

𝑗=1

(𝛼𝑗−1)

) 𝛼𝑗(𝜆𝑗)
5𝛼𝑗−1

(𝛤(𝛼𝑗))
−5

𝑒𝑥𝑝 (−𝜆𝑗 ∑ 𝑥𝑗

5

𝑗=1

) 

           [5]  

https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
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The joint posterior distribution for 𝛼𝑗 and 𝜆𝑗, is given by 

𝑃(𝛼𝑗 , 𝜆𝑗) ∝
|√𝛼𝑗

2[𝛹′(𝛼𝑗)]
2

−𝛹′(𝛼𝑗)−1)|

𝛼𝑗𝜆𝑗
(∏ 𝑥𝑗

5
𝑗=1

(𝛼𝑗−1)
) (𝜆𝑗)

5𝛼𝑗(𝛤(𝛼𝑗))
−5

𝑒𝑥𝑝(−𝜆𝑗 ∑ 𝑥𝑗
5
𝑗=1 )  

𝑃(𝛼𝑗, 𝜆𝑗)

=
1

𝑑1(𝑥𝑗)
|√𝛼𝑗

2[𝛹′(𝛼𝑗)]
2

− 𝛹′(𝛼𝑗) − 1| (∏ 𝑥𝑗

5

𝑗=1

(𝛼𝑗−1)

) (𝛼𝑗)
−1

(𝜆𝑗)
5𝛼𝑗−1

(𝛤(𝛼𝑗))
−5

𝑒𝑥𝑝 (−𝜆𝑗 ∑ 𝑥𝑗

5

𝑗=1

) 

Where 𝑑1(𝑥𝑗) is the posterior density and is given by 

𝑑1(𝑥𝑗)

= ∫ |√𝛼𝑗
2[𝛹′(𝛼𝑗)]

2
− 𝛹′(𝛼𝑗) − 1| (∏ 𝑥𝑗

5

𝑗=1

(𝛼𝑗−1)

) (𝛼𝑗)
−1

(𝜆𝑗)
5𝛼𝑗−1

(𝛤(𝛼𝑗))
−5

𝑒𝑥𝑝 (−𝜆𝑗 ∑ 𝑥𝑗

5

𝑗=1

) 𝑑𝜃
𝐴

 

Where 𝜃 = (𝛼𝑗 , 𝜆𝑗) and 𝐴 = {(0, ∞) × (0, ∞)} is the parameter space of 𝜃. 

The full conditional posterior distributions for 𝛼𝑗 and 𝜆𝑗 are given as follows: 

𝑃𝑀(𝜆𝑗|𝛼𝑗 , 𝑥𝑗) =
∏ 𝑥𝑗

𝛼𝑗5
𝑗=1

∑ 𝑥𝑗
5
𝑗=1

 

𝑃𝑀(𝜆𝑗|𝛼𝑗, 𝑥𝑗) = (√𝛼𝑗
2[𝛹′(𝛼𝑗)]

2
− 𝛹′(𝛼𝑗) − 1)

𝛤(5𝜙𝑗)

(𝛤(𝜙𝑗))
5

∏ 𝑥𝑗
𝛼𝑗5

𝑗=1

∑ 𝑥𝑗
5
𝑗=1

 

𝑃𝑀(𝜆𝑗|𝛼𝑗, 𝑥𝑗) = 𝑔𝑎𝑚𝑚𝑎(𝛼𝑗 , ∑ 𝑥𝑗
𝛼𝑗5

𝑗=1 )     [6] 

The posterior parameters are 𝛼̂𝑗 = 𝛼𝑗 and 𝜆̂𝑗 = ∑ 𝑥𝑗
𝛼𝑗5

𝑗=1  

The Bayesian algorithm specified, we set specific priors for the parameters and determine the posterior estimates 

of the parameters. The posterior distribution can then be used to determine customer propensity to churn as well 

as predict future customer churn when competing risks are confounded with time-dependent covariates. 

To analyze and evaluate the performance of the model, a churn dataset with 5-time dependent variables 

(age, marital status, occupation, education level, and residence) and 5 competing risks (network quality, service 

quality, price sensitivity, carrier responsiveness, and fraud) from November 2003 to July 2019 are used. The 

weekly churn rate for this period is used to determine the extent of customer churn in Safaricom PLC, Airtel 

Networks Limited, and Telkom Kenya Limited.  

The population size for the study included all present and past active mobile subscriptions in Kenya. The 

sample size (6000) was calculated by using the stratified sampling technique as well as the random sampling 

method of Yamane, (1967). The latest national census data of 2019 was used as a sampling frame to identify the 

subscribers.  

Secondary data was gathered through close-ended questionnaires to find out if subscribers churned based 

on; subscriber, residence, age group, marital status, occupation, and education. The customers were followed up 

for 830 weeks. The minimum follow-up time was 0 weeks and the maximum was 830 weeks.  

 

III. Result 
1128 subscribers (18.80%) churned during the follow-up time with 678 (60.11%), 956 (84.75%), and 1093 

(96.90%) churns occurring within 207 weeks, 265 weeks, and 623 weeks of line activation, respectively. 70% 

(4200 respondents) of the data set, randomly selected, was used as the training data set, and 30% (1800 

respondents) of the data set to analyze the performance of the model, as the testing data set to evaluate the 

performance of the model. 

The gamma prior parameters were set to 𝛼 = 5 and 𝜆 = 150. Figure 1 shows that the distribution of churn is 

possibly the gamma distribution, with parameters 𝛼 = 3.918 and 𝜆 = 159.36.  

 



Bayesian modelling of churn confounding competing risks with time-dependent .. 

 

DOI: 10.9790/5728-1902024654                            www.iosrjournals.org                                                  49 | Page 

 
Figure 1 Culley and Frey Graph for the churn data 

In addition, figure 2 fit for the gamma also shows that the churn data set could be well fit using a gamma 

distribution. 
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Figure 2 Fit for the churn data set 

 

Using the Bayes algorithm, [5] and [6], we have the training dataset posterior 

𝑔𝑎𝑚𝑚𝑎(4.1379,154.0832). In Figure 3, the empirical and theoretical probability densities and the cumulative 

densities as well as the Q-Q and P-P plots of the fit for the training dataset posterior shows that 

𝑔𝑎𝑚𝑚𝑎(4.1379,154.0832) fits the training dataset well and can be used to model customer churn. 

Empirical and theoretical dens.

Data

D
e
n
s
it
y

0 500 1500 2500

0
.0

0
0
0

0
.0

0
0
6

0
.0

0
1
2

0 500 1500 2500

0
1
0
0
0

2
0
0
0

 Q-Q plot

Theoretical quantiles

E
m

p
ir
ic

a
l 
q
u
a
n
ti
le

s

0 500 1500 2500

0
.0

0
.4

0
.8

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

P-P plot

Theoretical probabilities

E
m

p
ir
ic

a
l 
p
ro

b
a
b
ili

ti
e
s



Bayesian modelling of churn confounding competing risks with time-dependent .. 

 

DOI: 10.9790/5728-1902024654                            www.iosrjournals.org                                                  51 | Page 

 
Figure 3 Fit for the training dataset posterior 

 

The maximum likelihood estimates of the parameters 𝛼 and 𝜆 are 𝛼̂𝑀𝐿𝐸 = 4.1379 and 𝜆̂𝑀𝐿𝐸 = 154.0832 

with the corresponding asymptotic variances as 0.00603 and 1.5952 × 10−8, respectively. Using these 

asymptotic variances, we obtain the 95% credible intervals for 𝛼 and 𝜆 as (4.0602, 4.2156) and 

(151.14, 157.14), respectively. 
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Figure 4 Comparison plots for the training data, Prior and Posterior 

 

Figure 4 shows a comparison of the graphs of the training churn data set, prior and posterior. The graphs reveal 

that the Bayesian model developed is a best-fit model for churn when competing risks are confounded with time-

dependent covariates.  

To validate the performance of the model, we run the model on the test data. Figure 5 shows a comparison of the 

graphs of the test churn data set, prior and posterior. 
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Figure 5 Comparison plots for the test data, Prior and Posterior 

 

Table 1 shows that the Bayesian model is the best model for fitting customer churn when competing risks are 

confounded with time-dependent covariates since its log-likelihood test statistic is maximum and the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) test statistic is minimum. 

 

Table 1 Test statistics for the churn data, Prior and Posterior 
Test statistic Churn data Prior Posterior 

Log-likelihood -42492 -42972 -42404 

AIC 84989 85949 84811 

BIC 85003 85962 84824 

 

The model can also be used to predict the propensity of churn. Table 2, shows the probabilities of customer churn 

for network quality confounding time-dependent covariates. 

 

Table 2 Customer churn for network quality at different times 
Time (weeks) Probability of network quality churn at the specified time 

260 92.15% 

520 59.28% 

780 27.92% 

 

The table shows that 92.15%, 59.28%, and 27.92% of network quality churns will occur within 5 years, 

10 years, and 15 years of line activation. The model can also be used to determine the propensity of churn within 

a given interval, for example, the probability of network quality churn between 300 weeks and 450 weeks of line 

activation is 19.10%. 
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IV. Discussion 
Customer churn in the mobile telecommunications industry when competing risks are confounded with time-

dependent covariates can be modeled using a Bayesian model, a gamma prior, 𝑓(𝑥|𝛼, 𝜆) =
𝜆𝛼𝑥𝛼−1

𝛤(α)
𝑒𝑥𝑝(−𝜆𝑥); 

𝑥 > 0,  a penalized likelihood function given by 

𝐿𝑝𝑗
(𝛼𝑗 , 𝜆𝑗|𝑥𝑗) = |√𝛼𝑗

2[𝛹′(𝛼𝑗)]
2

− 𝛹′(𝛼𝑗) − 1| (∏ 𝑥𝑗
5
𝑗=1

(𝛼𝑗−1)
) 𝛼𝑗(𝜆𝑗)

5𝛼𝑗−1
(𝛤(𝛼𝑗))

−5
𝑒𝑥𝑝(−𝜆𝑗 ∑ 𝑥𝑗

5
𝑗=1 ) and a 

posterior density, 𝑃𝑀(𝜆𝑗|𝛼𝑗 , 𝑥𝑗) = 𝑔𝑎𝑚𝑚𝑎(𝛼𝑗 , ∑ 𝑥𝑗
𝛼𝑗5

𝑗=1 ). 

The Gamma model was only used to predict the probabilities of customer churn for network quality, the model 

can also be used to determine the probabilities of customer churn for other competing risks. 

The mobile phone service providers should worry more about network quality churn and be regressive in their 

customer retention efforts and campaign in the first 5 years of line activation of a customer and invest 

comparatively less to customers who have been with the operator for 15 years since line activation. This is because 

the probabilities in the earlier years of line activation are higher compared to the later years. 

 

V. Conclusion 
We assert that the Bayesian model (Gamma model), with a 95% credible interval, is a better model for 

predicting subscribers’ survival probabilities when competing risks are confounded with time-dependent 

covariates since the log-likelihood test statistic is maximum and the AIC and BIC test statistics are minimum and 

the posterior fitted well both for the training data and the test data. 
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