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ABSTRACT

In this chapter, we investigate non-invariant submanifolds of almost para-contact Riemannian manifolds, we
establish a necessary and sufficient condition for a sub manifold immersed in an almost Para contact
Riemannian manifold to be invariant and show further properties of invariant sub manifolds in almost para-
contact Riemannian manifolds.

Now we shall recollect an almost r-para-contact Riemannian manifold and treat the relations between this
manifold and an almost product Riemannian manifold. Next, we study an invariant sub manifold immersed in
an almost r-para contact Riemannian manifold and show that there exist the invariant sub manifolds of the three
types in the almost r-para contact Riemannian manifold.

The purpose of the present note is to give a necessary and sufficient condition for a sub manifold M? of a
conformally flat space to be conformally flat.

In this note, we generalize this result to K-contact Riemannian manifold and also study an invariant submani
fold V immersed in almost paracontact Riemannian manifold to show that the V admits either an almost
paracontact Riemannian structure or an almost product Riemannian structure (¢,g) excepting the case where ¢
is trivial.
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l. An Almost Para-contact Riemannian Manifold:

Let M be an m-dimensional manifold. If there existon M a (1,2) tensor field ¢ a vector field & and
a 1-form n satisfying
(1.1) n@=1 ¢ = I-®Eg,
where | is the identity, then M is said to be an almost para contact manifold [3]. In the almost para contact
manifold, the following relations hold good.
(1.2) & =0, n o ¢ =0, rank (¢) = m-1

Every almost para contact manifold has a positive definite Riemannian metric G such that

(13) n(X) =G (&, X),
(L4) G (9X,0Y) = G(X,Y)-n(X)n(¥V), XY ex @1 (
where -X( l\_/l) denotes the set of differentiable vector fields on M . In this case, we say that M has an

almost para contact metric structure (¢,& ,n, G) and M s said to be an almost para contact Riemannian
manifold. Form (1.3) and (1.4), we can easily get the relation

(15) G X,y) =G(X,9Y)
Here after, we assume that M is an almost para contact Riemannian manifold with a structure (¢,

.M, G) . Itis clear that the eigen values of the matrix (¢) are 0 and +1, where the multiplicity of 0 is equal to 1.
Let M be an n-dimensional differentiable manifold (S= m-n) and suppose that M is immersed in the

almost para contact Riemannian manifold M by the immersion i: M — M . We denote by I« the
differential of the immersion i. The induced Riemannian metric g of M is given by
g (X,Y) =G (ixX, 1Y), X, Ye X (M)

where -X (M) is the set differentiable vector fields on M. We denote by T,(M) the tangent space of M
at PeM, by Tp(M)* the normal space of M at P and by { N1, .N,.....,Ns} an orthonormal basis of the normal
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space Tp(M)*. If @Tp (M) =Tp (M) for any point P € M, then M is called an invariant submanifold. If ¢Tp (M)
cTp (M)* for any point P € M, then M is called an anti-invariant submanifold.

The transform ¢ 1« X of X € Tp(M) by ¢ and @N; of N; by ¢ can be respectively written in the next

forms:
S
(1.6) e X =l yX +2 UL(X)N;, X eX(M),
i=1
) S
where v, ui, Uj and A are respectively a (1,1)-tensor, 1-forms, vector field and functions on M and Latin indices
take values 1,2,...... ,S. And the vector field & can be expressed as follows:
S
(1.8) E=1V +2 o;N;,
i=1

where V and o, are respectively a vector field and functions on M, from these equations we have [6].

(1.9) g9 (v X,Y)=g X,y Y)
ui (X) = g (Ui, X), ij = Aji
If M is an invariant sub manifold, then we have U; =0 . However, in the paper, we treat mainly a non-
invariant sub manifold.

I1.  Sub Manifolds of an Almost Para Contact Riemannian Manifold Satisfying ?i @ =0:

Let M be a sub manifold of an almost para contact Riemannian manifold M with a structure (9,€,
.M, G). Now we suppose that ﬁ NOES 0 holds good along M. then from (a) and (b)

@ Gkl =i v, vy -ZumHx-Th o}

+;$(x,\uy)+<vxui><y>—;ui,-(><)u,-<y>—;%,-h,-(x,Y)M/
(b) ®i*x(phi = i*$xui +yH X _zj:uij(x)uj _gxinjXM/

+Z{hj (X1Ui)+hi(X’Uj)+vx7\‘ij +Zk:7\'ik“kj(x)+Zk:7\'jk“ki(x)}Nj1

we have
@) O,vg-Zu(yHx -Zh (X, V)U; =0
(2.2) h; (X,U;) +h (X, U;) + VA +Zk:xikukj(x)+;Kjk“ki(x) =0

from (2.1), we know that if M is totally geodesic, then an equation Vx v = 0 holds good. Conversely, we have
the following theorem
Theorem 2.1:

Let M be an almost para contact Riemannian manifold with a structure (¢,&m, G) and M a sub

totally geodesic.
Proof:
If Vxwy =0, then we have from (2.1)

Yu (Y)HX+Xh(X,Y)U, =0.

from which,

U (V)R (X, Z) +Zu ()R (X,Y) =0, X,Y,Z eX(M)

that is
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2.4 ()h(X,2) ==2u(2)h (X,Y)

Thus, we know that Xiui (Y) hi (X,Z) is symmetric and at the same time skew symmetric in X,Y.
Therefore we have Xui (Y) hi (X,Z) =0 and consequently we get hi (X,Z) =0 because U; (i=1,2,....,S) are linearly
independent. Let {es,ey,....,.en} be an orthonormal basis of Tp(M) at any point PeM. Then a trace of the matrix
(w) is given by an equation

T.(w) =2 g(ve,,e,),
A=1

where Greek indices takes values 1,2,....., n.
Theorem 2.2:

VxTr (v) = Tr (Vxy),

Proof:
VT (v) = Vx%g(\vex,ex)
= %mxwg'ex) +29(Wexavxex)r
=T, (Vxv) +2%9(Wewvxex)-
Now we get
Ve, =2 fkueu’ vXeK :ZIXHeH’
u 0

Then we can see easily that fay = fu, I + Lo = 0 hold good. Therefore
; a(ve,,Vye,) :% g - fxuewgllxvev k%%; fMtIKVSHV :%% fMLIMl =0
thus we get Vx Tr (w)= T(Vxy).

I11.  Submanifolds of a P-Sasakian Manifold:

Let M be an m-dimensional Riemannian manifold, G be a positive definite metric and § be the

operator of Covariant differentiation. We suppose that there exists on M a vector field & and a 1-form n
satisfying.

31) n© =1, n(X) = G(, X), X eX(M)
when equations,

(3.2) G(V, & Y)=G(V,E X), XY eX(M),

(33) V, V,E-V,E=-G(X,Y)E-G(E,Y) X +2n(X)n(Y)E,

Where Z = giY_, holds good , M s said to be a P-Sasakian mani fold. If we suppose that ¢ is a
(1,1) tensor field, which represents a linear mapping : -X( M) S )?—)6)7@, that is,

(3.4) oX = V&,

then, equation (3.2) and (_C%.Blbecome o

(3.5) G(eX,Y)=G(X,0Y),

66 € of=-6(X.V)e-6(E )X +2n(X)n(V)e

=-AX +n(X)em) + AB(X,Y) + n(X)n(¥)IE
respectively, [4]. Differentiating n (§)=1 covariantly, we have ¢ & =0. Further more, differentiating this
equation covariantly , we get (p2 X=X- n()?)&, from which we have (1.4)
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Theorem 3.1:
Let M be a P-Sasakian manifold admitting a vector filed £ and a 1-form m which satisfy (3.1). If we

denote by ¢ a(1,1) tensor field which represents a linear mapping : XM > )?I—>§X EN then (¢,&,m,G) is an
almost para contact metric structure.
Hereafter, in the P-Sasakian manifold M Let M be a sub manifold of dimension n (m - n=S)

immersed in the P-Sasakian manifold M and g be the induced metric. from (3.4) and (1.6), we have
1

Therefore from,

Vix&=k(VyV —ZaiHiX)+Z$(X,V)+Vx0€j +Zaiuij(x)M/
i i i

we get
(3.8) yX =V, V -Ya;HiX, X eX(M),
1
(3.9) u;(X)=h;(X,V) +Vyo; + 2o (X).
1
Making use of (3.9), we have
Theorem 3.2:

Let M be sub manifold of an almost para contact Riemannian manifold M with a structure (9,E1,G)

satisfying (3.4). If M is totally geodesic and § is tangent to M, then M is invariant.
from (3.6) we have.

G0kl =—G(i.X,iLY)& = n(i.Y)i. X + 2n(i. X)n(iLY)E
= i*kg(X,Y)V —v(Y)X +2v(X)v(Y)VpZocikg(X,Y)+2v(X)v(Y)pli

therefore from

&*xcpli]( = L{bxwg—;ui (Y)H,X ~Zh (X ,Y)Ui}
+Zi:$(x ’WY) + (qui)(Y) _Zj:}’tij(x)uj(Y) _Zj:x’ijhj(x 1Y)Mi/

we get
3.10) 0,y @-Zu (V)H X = Zh (X, Y)U, ==g(X,Y)V = g(V,Y) X +2v(X)V(Y)V.
Similarly, because we have from (3.6)
Cixol; =io KX +2v(X VD 2Z 0y v(X)N;,
|

We find
(3.11)hj(X1Ui)+hi(X1Uj) + VA +%}"ikukj(x) +%7¥ijki(X) = 20CiOCjV(X)

by

G...olf, =i B0, < wh x - zu,000, 22,1 X\

2 U R 0OGU )+ 9,0 + Dy () + S, O,

Now, we put

(3.12) T(X V)= R w@-Kg(x.Y)V —g(v.v) X +2v(X)v(Y)V
then from (3.10) we have
(3.13) \TJ(X,Y)zzi:Ui(Y) HiX+Zi:hi(X’Y)Ui

Wheny (X,Y) = 0 we have the following theorem:
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Theorem 3.3:

Let M be a p—Sasakian manifold with a structure (¢,£,n,G), M be a sub manifold immersed in M
and & be not tangent to M. If U; (i=1,2,.....,S) are linearly independent and
(3.14) (Vxy) Y =-g (X,Y) V-g (V,Y) X+ 2v (X) v (Y) V.

Then M is totally geodesic
Proof :

From (3.13) and (3.14) we have

22U (Y)H X+2h(X,Y)U, =0,
i i
From which, we find hi(X,Y) =0 (See proof of theorem 2.1)
Note :
When VXOLJ- + Zi Ol L (X) =0,1fMis totally geodesic, then we have uj(X)=0 by virtue of
(3.9) therefore in this case, theorem (3.3) is not true.

V. Submanifolds of SP-Sasakian Manifolds:

Let M be an m-dimensional Riemannian manifold. We suppose that there exist on M a vector field
& and a 1-form n satisfying (3.1) When an equation

(4.1) V,&=e(X -n(X)&) (e =£1), X eX(M)
holds good, M s said to be an SP- Sasakian manifold. Since from (4.1) we can get (3.2) and (3.3), an SP-
Sasakian manifold is a P-Sasakian manifold. if we suppose that a (1,1) tensor field ¢ satisfies (3.4), then

(¢,£,m,G) is an almost Para contact metric structure. In this section, we suppose that M is an SP-Sasakian
manifold admitting a(1,1) tensor field ¢ which satisfies (3.4).
from (4.1) we have

m&=s(i*><—n(i*><)a>=s$x—v(X)V)—§a,-v(><)N,-§

By mean of (3.7), we get
(4.2) y X=¢g (X-v(X)V),
(4.3) Uj (X) =- € 0 V(X),

V.  Linear Independence of Vector Fields Ui:

Let M be a sub manifold immersed in an almost paracontact Riemannian manifold M with a
structure (9,&,1,G). We transform the orthonormal basis {Ni, Na,......,Ns} of Tp(M)* to another orthonormal

basis (W), N,....., Ng [ of ToM)* [71. We put

. S
(5.1) N, = _lejl N;
J:
Then, (Kj) is an orthogonal matrix and we have
S _
N J = |§|_ Kjl N|

making use of m,ﬁz, ..... ,Nsr,we get
Qi X =hyX + 20, (X)Nj,
[
(pN| :i*LT| +lehﬁh1
(5.2) "
QZI*V +Za|N|,
|
Where B
U|(X) :Zi:Kilui(X)' U, ZianUh My :%kn}”ijkjh’al :Zi:kilai'
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By a suitable transformation of the orthonormal basis {N1, Na,....,Ns}, we can get

Xij =A; 85,
Where A are eigen values of me matrix_(xij). Int_his case, we have
(53) (PN| :i*U| +7\.|N|,
(5.4) o djl-1-
65 0,0,A-aa, (k=)

V1. Anti Invariant Submanifolds of an Almost Paracontact Riemannian Manifold:

Let M be an anti invariant sub manifold immersed in an almost paracontact Riemannian manifold M .
Then since, we have y =0, from

S
WX = X —v(XWV —_glui(X)ui, we get

From which

g(X, X) =v(X)* =Xy (X)* =
Substituting X = ex and sur:1ming up in A, we get
6.1) (S+1)—n:2%oc?+%7ﬁj

by virtue of
Uk (U ) Skj OLkOL z%kl?\,“, and V(\/) 1- ZOLI ,

Thus we have n< S+1,
When n =S+1, from (6.1), we have
7\.ij =0, OLJ'=0
Consequently, we have ¢Tp (M)* < Tp(M) and & is tangent to M. Thus, by means of

S S V(V) _ 1 i 2
u (U;) =3, -o,a; _gi}‘kixji’ u (V) +jZ::10Lj}\’ji =0, and - izlai » we know that U
(i=,1,2.....,S), V are mutually orthogonal unit vector fields.
In an almost para contact Riemannian manifold | , when the equation
62) PX = Vg&

holds good, M is a said to be a special para contact Riemannian manifold [4], If M is an anti-invariant
submanifold of dimension n =S+1, then we have

ViV =0, ui(X)=h(X\V)

VII.  Transformation of the Orthonormal Basis {Ni} of T(M)*:
Let M be a sub manifold immersed in an almost para contact Riemannian manifold M and {Nj,
Nz,....,Ns} be an orthonormal basis of the normal space Tp(M)' at Pe M [7]. We assume that

, N2 . ] S r is the another orthonormal basis of Tp(M)* and put

(7.1) Ni = Izlkli N,
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from which

By means of G(N;, Nj) =3 Kiikij, we have ¥ kiikyj =83,

Zﬁzl kihkjh :Sij,Consequently a matrix (ki) is an orthonogonal matrix. Thus from (7.1), we have
s _
NJ ZZ|:1kj| N|.
Making use of (7.1), equations (1.6), (1.7) and (1.8) are respectively written in the following forms:
S _
el X =LyX +20,(X)N,,
1=1

(7.2) s
oN, =1U, +£7\‘IhNh’
S _
E=1LV +ZG|N|,
=1
where
S s
(7.3) U|(X)=§1kilui(x)1 U, :Elkilui’
_ s _ _
(7.4) 7‘|h :iélkﬂ}\‘ijkjh' 7\‘Ih = 7\‘hl’
S
a, = 2ko

By virtue of (7.3), the linear independence of vectors U; (i =1,2,.....,S) is invariant under the
transformation (7.1) of the orthonormal basis {N1, N2,....,Ns}.
Further more, because A is symmetric in i and j, from (7.4) we can find that under a suitable

transformation (7.1) % reduces to A; = A0
case (7.2) and

i ,where A (i = 1,2,...,5) are eigen values of matrix (A;). In this

S
U (U j ) :6kj ST iglkki}‘«ji rare respectively written in the next forms:
(PN| = |*tT| +7\.| N| ,
(7-5) Uk (Uj) = Skj —akaj _}\’kx’jSKj’

from which we have

u;(U;)=1-a} -25 and G, (U;) = -a,a;(k = j)

VIII. Invariant Submanifolds of an Almost Paracontact Riemannian Manifold :

Let M be a sub manifold immersed in an almost paracontact Riemannian manifold M . If oTp(M) <

Tp(M) for any point P €M, then M is called an invariant submanifold. In an invariant submanifold M, equations
(1.6), (1.7) and (1.8) are written in the following forms:

(8.1) i X =yX, X eX(M),

S
(le :Z 7\'IJNJ’
j=1

(8.2)
. S
Lemma 8.1:

In an invariant submanifold M which is immersed in an almost paracontact Riemannian manifold M ,
the following equations hold good.
(8.4) W=1-v®V,
(8.5) aiV=0.
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(8.6) Oyj —OK QL _é M ji =0.
(8.7) v V=0
(8.8) é ajri =0,
S
(8.9) v(V)=1-2% of,
(8.10) -

gwX,wY) =g(X,Y) -v(X)v(Y), X.,Y eX*(M).
From (8.5) and (8.9), we get the following two cases: When V =0 (or Zi ociz =1), that is, £ normal to M,

since from (8.4) and (8.10) we have y?= I, g(yX, yY) = g (X,Y), (v,0) is an almost product metric structure
when ever v is non-trivial.

when V =0 (or o = 0), thatis, & istangent to M, by means of (8.4), (8.9), (8.10) and v(X) = g(V,X), (v, V, v,0)
is an almost para contact metric structure. Thus we have

Theorem 8.1:

Let M be an invariant sub manifold immersed in an almost para contact Riemannian manifold M with a
structure (o, &, m, G). Then one of the following cases occurs T. Miya Zawa[6].

Case () : & is normal to M. In this case, the induced structure (y, g) on M is an almost product metric
structure when ever v is non-trivial.
Case (11): & is tangent to M. In this case, the induced structure (y,V,v,g) is an almost para contact

metric structure.
Furthermore, we have the following theorems:
Theorem 8.2:
In order that, in an almost para contact. Riemannian manifold M with a structure (o, &, n, G) the

submanifold M of M is invariant, it is necessary and sufficient that the induced structure (y,g) on M is an
almost product metric structure when ever v is non-trivial or the induced structure (v, V,v,g) on M is an almost
paracontact metric structure.
Proof:

From theorem 8.1, the necessity is evident conversely, we first assume that the induced structure (y,g)
is an almost product metric structure. Then from equation (c)

S S
© Y2X = X =v(XV =2 u(X)U; or y?2 =1-v®V - > u ®U;, X eX(M)
i=1 i=1

We have v(X)V + Zi ui (X) Ui =0 from which g(v(X) V+Ziui(X)Ui ,X)=0 that is v(X)? + Ziu; (X)?= 0.
Consequently, since we get v(X) = u; (X) = 0 (i=1,2,....,s) the submanifold M is invariant and & is normal to M.

Next, we assume that the induced structure (y, V,v,g) is an almost para contact metric structure.
Then, from Equation (c) we have Ziu; (X)Ui =0, from which u; (X) =0 (i =1,2,...,s) and from Equation (d).

S
1=
We get o =0, thus M is invariant and & is tangent to M.

IX.  Paracontact Riemannian Manifolds and P-Sasakian Manifolds:
Let M be an almost paracontact Riemannian manifold with a structure (¢,£n,G) . If we put

O(X,Y) =G(eX,Y)for X,Y eX(M), then from (1.5) we have d(X,Y) = d(Y, X).

We denote by §X the operator of covariant differentiation with respect to G along the vector field

va va vV A YU VA
X . For avector fieldY , the covariant derivative VY of Y , has local components XHVHY v where

X*and Y " are the local components of X and Y respectively and Greek indices A, pv take values

When the equation
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(9.1) 20(X,Y) = (V,m) (V) +(V,n)(X)
holds good, M is called a Para contact Riemannian manifold and (9,E,m,G) a Para contact metric structure.
Especially, If the equation (VXT[)(Y_) = (VVT])(X) holds good, then we have
D(X,Y) = (Vi)(Y)
Consequently, o - - - -
G((PX Y ) = VxT](Y) _T](VXY) = VXG(&’Y ) - n(va ) = G(V)?(i,Y)
Thus we find o
(9.2) PX = Vg&
when the above equation holds good, M s called a special paracontact Riemannian manifold and (¢,&,n,G)
is referred as a special contact metric structure [1].
Now, we assume that M is a special paracontact Riemannian manifold. If the equation
(9-3) (V@)Y =—G(X,Y)E-G(E,Y) X +2n(X)n(Y)E,
holds good where G(&Y) =1(Y), then M is called a P-sasakian (or para Sasakian) manifold . By using
local Components (9.2) and (9.3) are written as follows:

A v e ENA v A A A
¢, =V, Vg =(-G,+nn)e + G5 +ng R,
A
where @, gu m and GM are local components of @, & and G respectively, moreover, in a special para
contact Riemannian manifold M , if the equation
94 oX =V, &= (X-n(X)E) (e==xl),ie, op=¢e(l —M®E)
holds good, then M is called an SP-Sasakian (or special para Sasakian) manifold. It is clean that (9.4) satisfies

(9.3).

X.  An Almost r-paracontact Riemannian Manifold:
Let M be an m-dimensional Riemannian manifold with a positive definite metric G. If there exist a
(1,1)-tensor field y on M, r vector fields &1yeens&r (r <m), r 1-forms ny,...,nr such that

(10.2) nx (Ey) = dxy (X,Y =1,....,1)

(10.2) vy’ =1 _élnx ®Ey,

(10.3) Ny (X) =G(&y, X),

(10.9 G(yX,w¥) =G(X,Y) = = n, (X)ny (¥),

where )?,Y_ are any vector fields on M , then (v, &1...,&r,M1,..Mr,G) is said to be an almost r-paracontact

Riemannian structure on M and M an almost r-paracontact Riemannian manifold, [5]. This structure is
written (y, &x, Mx,G) for short.
Theorem:

In an almost r-para contact Riemannian manifold with the structure (v, &, MxG), the following
equations hold good:

(10.5) @ we=0 () noy =0,
(10.6) O(X, V) =G(yX,Y) =G(X,yY)
Proof :

(10.5) (a) using (10.4), we get

G(wEx wEx) =G (&x @x)‘%%(ix)ny(ix) =0,

From which, we have y&x =0

(10.5) (b) using (10.2) for w2 (WX) =y (y?X), we have
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YX =2, (WX)Ex = w(X = Zny (X)&x),
from which, we obtain an (\Ij)z)ax = QVirtue of (10.5) (a) Since &3, ....,& are linearly independent , we

have M, (WX) =0, that is M, oW =0 (10.6) Using (10.2) and (10.4) for G(wX,y?Y), the equation

(10.6) is easily verified.

It is obvious that v satisfies -y =0. Because of (10.1) and (10.5) a), r vector fields &;,....,&r are the
mutualy orthogonal eigen vectors of a matrix (y) and their eigen values are all equal to 0. Since a matrix (®) is
symmetric, the eigen values of the matrix (y) are all real. If we denote by ¢ the eigen vector orthogonal to &x
(X=1,....,r) and by a its eigen value, then we have y( = a § therefore, we get y?¢- a®C. Accordingly, we see that
the eigen values of (y) are 0, +1, where the multiplicity of 0 is equal to r and hence rank (y) =m — .

If we denote by V/ a Riemannian connection, then the torsion tensor | for y may be expressed as
follows [5],[9].

(10.7) N (X,Y)=(V, ,w) X = (Vaw)yY = (Vw)Y +(V y)yX
+§nx ()?)§y€x B %nx (Y_)§xﬁ,x

when the torsion tensor for y vanishes, the almost r-para contact Riemannian manifold, or its structure is said
to be normal.

XI.  Conformally flat submanifolds:
Let M™ (m>3) be a Riemannian manifold covered by coordinate neighbourhoods (U,x") the indices

h,i,j,k.... running over the range 1,2...,m. Let gij1vh’Kl?ji’kjia”d R denote the metric tensor, the

Riemannian connection, the curvature tensor, the Ricci tensor and the scalar curvature of M™ respectively. Let
M" (n > 3) be a submanifold of M™ and be covered by a system of coordinate neighbourhoods (V,u?) the indices
a,b,c,.... running over the range 1,2,....,n. The immersion of M" in M™ is locally given by X" = X" (u?). Let g,

Vi denote the metric tensor and the Riemannian connection of M" induced from those of M™. We have
i

_ J i i = — a HY
Jop = gij BC Bb when Bb PG Let chb’ ch and K denote the curvature tensor, the Ricci tensor and

the Scalar curvature of M" respectively.
We choose m-n orthogonal unit normal vectors C;‘, (the indices x,y,z running over the range (n+1,

n+2,...,m) in such a way that G;,CQ I from a positively oriented frame of M™ along M" . The equations of
Gauss and Weingarten are given by.
h X (~h h a nh
(11.1) VeBy = Hyp, G, VG =—HyBy,
where Hé(b and ng = Hg’agacgyx and are the second fundamental tensors of M" with respect to the

normal CQ , gyx being the metric tensor of the normal bundle. The equation of Gauss for M" are

kpipniph _
(11.2) Kkijh Bd Bc BnBa - chba - Adcba’
where we set
X X
(11.3) Adcba = ch Hdax - Hdb |_Icax
Theorem A:

Let M" (n >3) be a submanifold of a conformally flat Riemannian manifold M™ (m>3). Then M" is
conformally flat if and only if
(11-4) Adcba — (gdaAcb' OdbAca + Adalch- Adbgca)/(n'z)

+ A(9daGeb — Gavdea)! (N-1) (n-2) =0,

where Agepa IS given by (11.3) and
(11.5) Ada = ng Adcba A= gdaAda
Theorem B:

Let M" (n >3) be a totally umbilical submanifold of a conformally flat Riemannian manifold M™
(m>3) then M" is conformally flat.
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XIl.  The Main Theorem and its Applications:
If M™ (m>3) is conformally flat, then the Weyl conformal curvature tensor Cyjin = 0 and we have

(12.1) ViCih-ViCih=0
where Cih = - Kin/ (M-2) + Rgin/2(m-1) (m-2). we set
(12.2) Ceba = VcCha - VbCea

where Cpa is defined by a formula similar to the one for Cjj in (12.1)
Theorem 12.1:
Let M" (n > 3) be a submanifold of a Conformally flat Riemannian manifold M™ (m>3). Then
(12.3) Ceba = (VbAca - VcAba)/(n'z) — {(Yb A)gca - (VCA) gba}/z(n'l)(n'z)
X X
+ dox Hca - ch Hba I’

where A, is given by (11.5) and

_ ic

(12.4) Lex = C;i B Cx
Proof:

Since M™ is conformally flat, we have
(12.5) Kijin= gnj Cki =9k Cji + Chj 9ki -Cnk Gji

Transvecting (12.5) with Bcli( BCJ B[')BQ and using (11.2) we get
(12.6) Kacha = Adcba + Jea Pab — JdaPeb + PcaQab — Pda Jcb,
where we have set P, = BCJ B: C jn-Transvecting (12.6) with g** and the resulting equation with g* we get
(127) ch = Acb + (2'n) Pcb - chb, K :A +2(l'n)P,

where P = g®Pg, from (12.7) we get
Ceh = Py — Ach/ (n-2) + Agcb 12 (n-l) (n-2)
Hence
(128) cha =V. Pba - Vb PCa - {VcAba - Vi Aca} /(n-2)
+H(VeA)dba~(VbA)dea}/2(n-1)(n-2)
Now transvecting (12.1) with BCJ B['JB: we obtain

(129) VC pba _vb pca = be HC); - LCX bea
where L is defined by (12.4) from (12.8) and (12.9), we obtain (12.3)

XIll.  K-Contact Riemannian Manifold:
An n-dimensional K-contact Riemannian manifold M is a differentiable manifold with a contact metric
structure (¢,&,m, g) such that & is a killing vector filed. Therefore, with respect to an arbitrary coordinate
neighbourhoods of M, we have the following conditions:

g, =L¢.E" =0,¢'m, =0,¢'¢L =8, +n,&",0,.8" =n,.”

where the matrix @“ is of rank n-1. Hereafter, we write n instead of &. It is well-known that a K-contact

Riemannian manifold is orientable and odd dimensional.
On a K-contact Riemannian manifold the following identities hold good .

(13.2) V,oi =(n=-Dn,,  V,0, +Ryun® =0,
(132) Ruwe WM =0y —MuMys RN’ =(n=Dn,,

where Vy is the covariant derivative with respect to the metric g and Reyun and Ry denote the Riemannian
curvature tensor and the Ricci tensor respectively.
Next, the exterior differential du and co differential du of p-form u are given by

(du)y, ., =Vl o —évkiuM ...... ﬁ ..... Ay P>1,
(du), =V, u, P=0,
(BU), ene. b= viu, - P>1,
du=0, P=0,
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The Laplacian is given by A = dd + &d. for a p-form u we have explicitly

P
aut =-V'Vu, +XRU ,  +XR P22,
1op N T Aenbdhp < JK- x PG,
Al - —vev,u +Ru,  P=1
Af = -VOV_ T, P=0,

XIV. Invariant Submanifolds in a k-contact Riemannian Manifold:
Theorem 14.1:

For an invariant submanifold M of a k-contact Riemannian manifold M , if the vector field X on M is
orthogonal to x, we have

N X =—RE N, fox.

Proof: )

First, we calculate gNA @2 X | and find

Vi, @x1=@l, 516 x + 36y, Gx NG, 3lox + 56y, 1 + 526y, X1
Using i B

ge=0n@l-15=-1+n®E,

g@X 6 R g&, Y G H()M(Y), 90X, V) = dn(X, V), (X) = g@ X

for any vector fields X and Y on M .

M is called a k-contact Riemannian manifold, if g is a killing vector field. Then, we have

d)Xand

-G,

dX+g(X 5el=rRA, zlox + 3R A, 2Ix -V, x +3@, x.EE
whichimpnesthatO:R(NA,&,)(])X+¢R(NA,§)X+ngAX,§|§

on the other hand, by the assumption, we have

g(VN X,&)= VN d(x ‘i)l 9@ d)NAh 0. Consequently,
we obtain i
RAN I =—REA N, I5x.

Theorem 14.2:

Any invariant submanifold M of a k-contact Riemannian manifold M is minimal.
Proof:

First, using €XY =V,.Y +2h,(X,Y)N, we calculate gx (6Y) and find
Vi (0Y) =V (9Y) + Zhy (X,0Y)N, = (V)Y +6(VY) + Zh, (X,0Y)N,

X
(

eh

1S o «i
><| ml

(Y]

And
we have

Vi (8Y) =V (8Y) = Vi (@0Y) + 0(VY) = (Vxd)Y + 0(V,Y + Zhy (X, Y)N,)
= (V@)Y +(VY) + Zh (X, Y)4N,

By
the definition of k-contact Riemannian manifold, we get
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(Vi)Y +2h, (X, ¢Y)N, = R(X,&)Y +Zhy (X,Y)9N, from which,

he (X,9Y) = G(R(X,E)Y, Ne) +Zhy (X, V)G (0N, Ne)
Replacing Y by ¢Y, we find, . .
n(x.0%) = 0@, x4 [ g @ A Elov N+ ZalB X v @GN, N, |

using, Ha& =0
we have

_g(HcX’Y) = g@digid)Y’ ch_ %9'&4BX,Y@@|\|B’ th

Here taking a ¢ -basis (&, Ei1, ¢E1, E2,0Eo,....,Em, 0Em) we have

—trH, :i%ggcﬂi’gid)Ei’NCj+i%g®¢i’gi¢2Ei’NCj_%bd)HB @@NB, th
:i%§®@,Ei¢Ei,ch - ég@@i,gia,ch—%bq)HBg@NB, N h

How
ever, since ¢ is skew-symmetric and Ha is symmetric tr¢Hg vanishes identically and hence, we get
m o _ _ —
~trHe =2 9(R(E;, £)9E;, Nc) - 9(R(9E; §)E;, Ne)|
1=
m o _ =
= 2[0(R(E;,£)9Ei, Nc) - 9(R(E,4E))E;, Ne)|
1=
By virtue of the Bianchi’s identity, we get
m o _
trHc = _zlg(R((I)Ei E;)& Nc)
1=
On the other hand, from theorem 14.1, we have
g(R(OE; E)E N¢) =g(R(E,Nc)oE;, Ej) =—g(¢R(E,Nc)E;, )
= g(R(& Nc)E;, 0E;) = (R (E;,0E; )&, N¢)
Therefore we get J(R(QE;, E;)&, N¢) = 0, Hence we obtain trHc=0
XV. Invariant Submanifolds Immersed in an Almost Paracontact Riemannian Manifold:
An n-dimensional differentiable manifold M of class C is called an almsot paracontact Riemannian

2
manifold [9], if their exist in M a tansor field (PLK ]

, a positive definite Riemannian metric g,» and vector
fields & and n» satisfying.

1) @ onerel ®  ghe) =5, -8

M= grak’, gBa(PEL(P% =0~ MM

Aog I . .
The set dJM ' E,. YNy s gM IIS called an almost paracontact Riemannian structure.
In the manifold M, the following relations hold good [3].

(15.2) @  9uE“=0, m,0%=0,
(b) @ =P (P = gm(Pﬁ)

We consider an m-dimensional Riemannian manifold V with local coordinates {Y"} immersed in the
almost paracontact Riemannian manifold M with local co-ordinates {X*} and denote the immersion by X* = X*
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(Y"). We put Bik = OX" /OY'. The induced Riemannian metric is given by 9ji = Opa B? B . We denote

by an — M mutually orthogonal unit normals to V.
We assume that the submanifold V of M is ¢ invariant, then we have.

(153) 0B = ¢iBY,
Where (p} is a tensor field on V. It follows from (15.3) that (PB(XNEBiOL =0 which implies that,

(PB Nx is normal to V. Thus, we put:

(15.4)
a
where yy, are functions on V. The vector £* can be expressed as follows:
A tpA A
(15.5) §" =8B +§0€x'\|x

where &' and ax are a vector field and functions on V respectively
Contracting (15.3) and (15.5) with Bjx (: U)o le) respectively and making use of (15.2) b), we get

(15.6) Qji =Ppo, B?Bia =Qjj dji = git(Ptj ,
(15.7) " =BE” dﬂ = 9" B |

from(15.4) and (15.5), we have

— BN — _ B _ Py
yxy _(pBaNXNy _ny1 OLx - ng& ®x5 - ngNx t

Contracting (15.3), (15.4) and (15.5) with (p& respectively and using (15.1) b), (15.2)a), (15.4),
(15.5), (15.7) and the above equations, we find
h t h h t
(15.8) (@) P 0; =8 —ni& (M = Gi&),
(b) o, =0
XVI.  An Invariant Submanifold Immersed in an Almost Paracontact Riemannian Manifold
with Vanishing Torsion Tensor:

Differentiating (15.3) and (15.5) covariantly along V respectively and making use of Gauss and
Weignarten’s equations

v;B' :§hjix N%

Where V; denotes covariant differentiation W|th respect to gji hjix ljxy are the so-called second and third
fundamental tensors respectively and satisfy
hiix = hijx, lixy =-ljyx,
we obtain.

(V'(P)»)B'a (V (P )BK +Z((P| sy Z(hjixy XY)N}L

(161)ﬁ§ =(V;&° Z x5 ) B¢ +Z(V joty +Ehyg +z(°‘X JXV)RY’
We now assume that the so-called torsion tensor Nwlntroduced by I. Satd [9] vanishes. Then we have
w62y N =08 Claol —viok - 02 Bl,0} - v,k l+n, v 8" -V, 8" =

Where V, denotes covariant differentiation with respect of g... Contracting (16.2) with B}/ Bi‘LL and
using (16.3), (16.7), (16.8) a) and (16.1), we obtain
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w3y ¥V —V,0)) -0l (V.0 -V p)) +nV £° -,V E°
_élax(nihjsx —M; IX)}B7‘ -I—Z{T] (V oLy +ZOLX|JXY)

—M; (Via, + gaxlixy)}NYx =0
first consider the case (). In this case, from (16.3), we find
0} (Vo7 —Vior) —0; (V@] =V jp7) =0
that is, the Nijenhuis tensor of (pih vanishes
we next consider the case (Il). In this case, from (16.3), we find

t S S t S S S S
@ (Vio7 = Vior) =i (Vi9] —=V07) +miV;&° —n; Vi =
that is the torsion tensor of V vanishes.
XVII. Invariant Submanifold Immersed in a Paracontact Riemannian Manifold

An almost Paracontact Riemannian manifold M with structure d & nk,gMI is called a

paracontract Riemannian manifold [10] if the following relation holds good.
2 Q.= Vuma+ Viny
We assume that M is a Paracontact Riemannian manifold Contracting the above equation with

BJHBik using. (15.3) and (16.1), we can find
205 =(Vjm;i +Vin;) —2§axhjix
Hence, we observe that

& is normal to V. In this case, V admits an almost Product Riemannian structure ((P|h 9 ) whenever
(pih is non-trivial.
We get

?ji =—§ocxhjiX and using,

€ is normal to V. In this case, V admits an almost Paracontact Riemannian structure
((Pih’ahinhgji)

We get
205 = Vimi + Vin;
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