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ABSTRACT  
In this chapter, we investigate non-invariant submanifolds of almost para-contact Riemannian manifolds, we 

establish a necessary and sufficient condition for a sub manifold immersed  in an almost Para contact 

Riemannian manifold to be invariant and show further properties of invariant sub manifolds in almost para-

contact Riemannian manifolds.    

Now we shall recollect an almost  r-para-contact Riemannian manifold and treat the relations between this 

manifold and an almost product Riemannian  manifold. Next, we study an invariant sub manifold  immersed in 

an almost r-para contact Riemannian manifold and show that there exist the invariant sub manifolds of the three 

types in the almost r-para contact Riemannian manifold. 

The purpose of the present note is to give a necessary and sufficient condition for a sub manifold M3 of a 

conformally flat space to be conformally flat.  

In this note, we generalize this result to K-contact Riemannian manifold and also study an invariant submani 

fold V immersed in almost paracontact Riemannian manifold  to show that the V admits either an almost 

paracontact Riemannian structure or an almost  product Riemannian structure (,g) excepting the case where  

is trivial. 
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I. An Almost Para-contact Riemannian Manifold: 

 Let M  be an m-dimensional manifold. If there exist on M  a (1,1) tensor field  a vector field  and 

a 1-form  satisfying   

(1.1)  () =1,   2 = I-, 

where I is the identity, then M  is said to be an almost para contact manifold [3]. In the almost para contact 

manifold, the following relations hold good. 

(1.2)  = 0,      =0,  rank () = m-1  

Every almost para contact manifold has a positive definite Riemannian metric G such that  

(1.3)  ( ) ( , ),X G X  

(1.4) G X Y G X Y X Y X Y Mx( , ) ( , ) ( ) ( ), ,      c g 

where  x M( )  denotes the set of differentiable vector fields on  M . In this case,  we say that M  has an 

almost para contact metric structure (,ξ ,, G) and  M  is said to be an almost para contact Riemannian 

manifold. Form (1.3) and (1.4), we can easily get the relation 

(1.5) G X y G X Y( , ) ( , )   

Here after, we assume that  M  is an almost para contact Riemannian manifold with a structure (,ξ 

,, G) . It is clear that the eigen values of the matrix () are 0  and 1, where the multiplicity of 0 is equal to 1. 

Let M be an n-dimensional differentiable manifold (S= m-n) and suppose that M is immersed in the 

almost para contact  Riemannian manifold  M  by the immersion i:  M  M .  We denote by i*  the 

differential of the immersion i. The induced Riemannian metric g  of M is given by  

g (X,Y) =G ( i* X,  i* Y),             X, Y  x   (M) 

where  x  (M) is the set differentiable vector fields on M. We denote by Tp(M) the tangent space of M 

at PM, by TP(M) the normal  space of M at P and by { N1, .N2,…..,NS} an orthonormal basis of the normal 
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space TP(M). If  TP (M) TP (M) for any point P  M, then M is called an invariant submanifold.  If TP (M) 

TP (M) for any point P  M, then M is called an anti-invariant submanifold.  

The transform  i* X of X  TP(M) by  and Ni of Ni by  can be respectively written in the next 

forms:  

(1.6)  i X i X u X N X M
i

S

i i x* * ( ) , ( ),   
1

 

(1.7) 
 N i U Ni i

j

S

ji j  


* ,
1

 

where , ui, Ui and ji are respectively a (1,1)-tensor, 1-forms, vector field and functions on M and Latin indices 

take values 1,2,……,S. And the vector field  can be expressed as follows:  

(1.8)    


i V N
i

S

i i* ,
1

 

where V and i are respectively a vector field and functions on M, from these equations we have [6]. 

(1.9) g ( X,Y)=g (X, Y) 

 ui (X) = g (Ui, X),         ij = ji 

 If M is  an invariant sub manifold, then we have Ui =0 . However, in the paper, we treat mainly a non-

invariant sub manifold.  

 

II. Sub Manifolds of an Almost  Para Contact Riemannian Manifold  Satisfying  i*
0x : 

Let M be a sub manifold  of an almost para contact Riemannian manifold  M  with a structure (,, 

,, G). Now we suppose that  i x*
 0  holds good along M. then from (a) and (b) 

(a)       

      RST
UVW

i X X
i

i i
i

i i

i
i X i

i
ij j

j
ij j i

i Y i Y u y H X h X y U

h X y u y X u y h X Y N

* * *
( ) ( ) ( , )

( , ) ( )( ) ( ) ( ) ( , ) ,

 

  

c h { }  

(b)          RST
UVW

      

i i X i i
j

ij j
j

ij j

j
j i i j ij

k
ik kj

k
jk ki j

N i U H X X U H

h U h X U X X N

* *
( ( )

( , ) ( , ) ( ) ( ) ,

X

X

X

X

   

    

c h

{ }

 

we have 

(2.1)      X
i

i i
i

i iy u y H X h X Y Ub g ( ) ( , ) ,0  

(2.2) h X U h X U X X
j i i j X ij

k
ik kj

k
jk ki

( , ) ( , ) ( ) ( )         0  

from (2.1), we know that if M is totally geodesic, then an equation X  = 0 holds good. Conversely, we have 

the following theorem  

Theorem 2.1:  

Let  M  be an almost para contact Riemannian manifold  with a structure  (,,, G) and M a sub 

manifold of  M  satisfying  ixX 0 , if  Ui (i=1,2,.....,S) is linearly  independent and X  =0, then M is 

totally geodesic. 

Proof: 

If   X  =0, then we have from (2.1) 

  
i

i i
i

i i
u Y H h Y U( ) ( , ) .X X 0

 
from which, 

   
i

i i
i

i i
u Y h Z u Z h Y X Y Z Mx( ) ( , ) ( ) ( , ) , , , ( )X X 0

 
that is  
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  
i

i i
i

i i
u Y h Z u Z h Y( ) ( , ) ( ) ( , )X X

 
Thus, we know that iui (Y) hi (X,Z)  is symmetric and at the same time skew symmetric in X,Y. 

Therefore we have iui (Y) hi (X,Z) =0 and consequently we get hi (X,Z) =0 because Ui (i=1,2,....,S) are linearly 

independent. Let {e1,e2,....,en} be an orthonormal basis of TP(M) at any point PM. Then a trace of the matrix 

() is given by an equation 

T g e er

n

( ) ( , ), 


  
1  

where Greek indices takes values 1,2,.....,n. 

Theorem 2.2: 

XTr () = Tr (X), 

Proof: 

   

    

    

X XT g e e

g e e g e e

T g e e

r

X X

r X X

( ) ( , )

( , ) ( , )

( ) ( , ).

 

 

 


 


   


 

b gm r2

2
 

Now we get 

 


  


 e f e e l e  , ,X

 
Then we can see easily that f  = f , l + l = 0 hold good. Therefore  

    F
H

I
K  


 

 
  

 
  

 
 

 g e e g f e l e f l f l
V

V V
V

V V
( , ) ,

X
0

 
thus we get x Tr ()= Tr(x). 

 

III. Submanifolds of a P-Sasakian Manifold: 

Let M  be an m-dimensional Riemannian manifold, G be a positive definite metric and   be the 

operator of Covariant differentiation. We suppose that there exists on M  a vector field  and a 1-form  

satisfying. 

(3.1)      () =1,             ( ) ( , ),X G X
                        

X Mx ( )  

when equations, 

(3.2) G Y G X X Y M
X y

x( , ) ( , ), , ( ),       

(3.3)       
X y z

G X Y G Y X X Y      ( , ) ( , ) ( ) ( ) ,2  

Where  Z Y
X

  ,  holds good , M  is said to be a P-Sasakian mani fold. If we suppose that  is a 

(1,1) tensor field, which represents a linear mapping : x M X X( ) ,    that is, 

(3.4)  X X  ,  

then, equation (3.2) and (3.3) become 

(3.5) G X Y G X Y( , ) ( , ),   

(3.6)     

      

X
Y G X Y G Y X X Y

X X Y G X Y X Y

     

     

c h
m r m r

( , ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( )

2  

respectively, [4]. Differentiating  ()=1 covariantly, we have   =0. Further more, differentiating this  

equation covariantly , we get   2 X X X  ( ) ,  from which  we have (1.4) 
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Theorem 3.1: 

Let  M  be a P-Sasakian manifold admitting a vector filed  and a 1-form   which satisfy (3.1). If we 

denote by  a(1,1) tensor field which represents  a linear mapping : x M X X  ,  then (,,,G) is an 

almost para contact metric structure.  

Hereafter, in the P-Sasakian manifold M . Let M be a sub manifold of dimension n (m - n=S) 

immersed in the P-Sasakian manifold  M  and g  be the induced metric.  from (3.4) and (1.6), we have 

(3.7)    i X
i

i ii X u X N
* * ( ) , 

 
Therefore from, 

       
RST

UVWi X X
i

i i
j

j X j
i

i ij ji V H X h X V X N
* *( ) ( , ) ( )    

 
we get 

(3.8)  X V H X X MX
i

i i x  , ( ),  

(3.9) u X h X V Xj j X j
i

i ij( ) ( , ) ( ).      

Making use of (3.9), we have 

Theorem 3.2: 

Let M be sub manifold of an almost para contact Riemannian manifold  M  with a structure (,,,G)  

satisfying (3.4). If M is totally geodesic and  is tangent to M, then M is invariant. 

from (3.6) we have. 

    

       

i X

i
i i

i Y G i X i Y i Y i X i X i Y

i g X Y V Y X v X v Y V g X Y v X v Y N

* * * * * * * *

*

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( , ) ( ) ( )

     

 

c h
k p k p

2

2 2
 

therefore from 

      

      RST
UVW

i x X
i

i i
i

i i

i
i X i

j
ij j

j
ij j i

i Y i Y u Y H X h X Y U

h X Y u Y X u Y h X Y N

* * *
( ) ( , )

( , ) ( )( ) ( ) ( ) ( , ) ,

 

  

c h b g{ }

 
we get 

(3.10)         
X

i
i i

i
i i

Y u Y H X h X Y U g X Y V g V Y X v X v Y Vb g ( ) ( , ) ( , ) ( , ) ( ) ( ) .2  

Similarly, because  we have from (3.6) 

     i X i i
i

i j jN i X v X V v X N* * ( ) ( ) ,   c h k p2 2
 

We find 

(3.11) h X U h X U X X v Xj i i j X ij
k

ik kj
k

jk ki i j( , ) ( , ) ( ) ( ) ( )          2  

by 

       RST
UVW

      

i X i X i i
j

ij j
j

ij j

j
j i i j X ij

k
ik kj

k
jk ki j

N i U H X X U H X

h X U h X U X X N

* *
( )

( , ) ( , ) ( ) ( )

   

    

c h

{ }
 

Now, we put 

(3.12) 
~( , ) ( , ) ( , ) ( ) ( ) X Y Y g X Y V g V Y X v X v Y V

X
     b g k p2  

then from (3.10) we have 

(3.13) 
~ ( , ) ( ) ( , ) X Y u Y H X h X Y U

i
i i

i
i i

    

When ~ ( , ) X Y  0  we have the following theorem:  
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Theorem 3.3: 

Let M  be a p–Sasakian manifold with a structure (,,,G), M be a sub manifold immersed in M  
and  be not tangent to M. If Ui (i=1,2,.....,S) are linearly independent and  

(3.14) (X) Y = - g (X,Y) V-g (V,Y) X + 2v (X) v (Y) V.  

Then M is totally geodesic  

Proof :  

From (3.13) and (3.14) we have 

  
i

i i
i

i i
u Y H X h X Y U( ) ( , ) ,0

 
From which, we find hi(X,Y) =0 (See proof of theorem 2.1) 

Note :  

When    X j i i ij X   ( ) ,0 If M is  totally geodesic, then we have uj(X)=0  by virtue of 

(3.9) therefore in this case, theorem (3.3) is not true. 

 

IV. Submanifolds of SP-Sasakian Manifolds: 

Let M  be an m-dimensional Riemannian manifold. We suppose that there exist on M  a  vector field 

 and a 1-form  satisfying (3.1) When an equation 

(4.1)      
X

X X X Mx    ( ( ) ) ( ), ( )1  

holds good,  M  is said to be an SP- Sasakian manifold. Since from (4.1) we can get (3.2) and (3.3), an SP-

Sasakian manifold is a P-Sasakian manifold. if we suppose that a (1,1) tensor field  satisfies (3.4), then 

(,,,G) is an almost Para contact  metric structure. In this section, we suppose that  M  is an  SP-Sasakian 

manifold admitting a(1,1) tensor field  which satisfies (3.4). 

from (4.1) we have 

     
RST

UVWi X
j

j ji X i X i X v X V v X N
*

( ( ) ) ( ( ) ) ( )* * *     

 
By mean of (3.7), we get 

(4.2)  X =  (X-v (X) V), 

(4.3) uj (X) =-  j v(X), 

 

V. Linear Independence  of Vector Fields Ui: 

Let M be a sub manifold immersed in an almost paracontact Riemannian manifold  M  with a 

structure (,,,G). We transform the orthonormal basis {N1, N2,......,NS} of TP(M) to another orthonormal   

basis N N NS1 2, ,.....,m r of TP(M) [7]. We put  

(5.1) N K Nl
j

S

jl j 
1

 

Then, (Kjl) is an orthogonal matrix and we have 

N K Nj
l

S

jl l 
1

 

making use of N N NS1 2, ,.....,m r , we get  

(5.2) 

 

 

 

i X i X u X N

N i U N

i V N

l
l l

l l
h

lh h

l
l l

* *

*

*

( ) ,

,

,

 

  

  
 

Where  

U X K u X U k U k k kl
i

il i l
i

il i lh
i j

il ij jh l
i

il i( ) ( ), , , ,
,

        
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By a suitable transformation of the orthonormal basis {N1, N2,....,NS}, we can get 

  ij i ij ,
 

Where  i are eigen values of the matrix (ij). In this case, we have 

(5.3)  N i U Nl l l l * ,  

(5.4) u Uj j j jd i  1 2 2  ,  

(5.5)  u U k j
k j k jc h    ( )  

 

VI. Anti Invariant Submanifolds of an Almost Paracontact Riemannian Manifold: 

Let M  be an anti invariant sub manifold immersed in an almost paracontact Riemannian manifold M . 

Then since, we have  =0, from 

2

1

X X v X V u X U
i

S

i i   


( ) ( ) ,  we get 

X v X V u X U
i

i i  ( ) ( ) .0
 

From which 

g X X v X u X
i

i( , ) ( ) ( ) ,  2 2 0
 

Substituting X = e and summing up in , we get 

(6.1) 
( )

,

S n
j

j
i j

ij    1 2 2 2 
 

by virtue of  

u U v Vk j kj k j
i

S

ki ji
i

S

i( ) , ( ) ,      
 

     
1 1

21and
 

Thus we have   S+1, 

When  n = S+1, from (6.1), we have  

ij =0,               j = 0 

Consequently, we have TP (M)  TP(M) and  is tangent to M. Thus, by means of  

u U u V
k j kj k j

i

S

ki ji i
j

S

j ji
( ) , ( ) ,      

 

      
1 1

0 and v V
i

S

i( ) ,  


1
1

2  we know that Ui 

(i=,1,2.....,S), V are mutually orthogonal unit vector fields. 

In an almost para contact Riemannian manifold M , when the equation   

(6.2)  X X   

holds good, M  is a said to be a special para contact Riemannian manifold [4], If M is an anti-invariant 

submanifold  of dimension  n =S+1, then we have  

  X j jV u X h X V0 , ( ) ( , )
 

 

VII. Transformation of the Orthonormal Basis {Ni} of T(M): 

Let M be a sub manifold immersed in an almost para contact Riemannian manifold M  and {N1, 

N2,.....,NS} be an orthonormal basis of the normal space TP(M) at P M [7]. We assume that 

N N NS1 2, ,.....,m r is the another orthonormal basis of TP(M) and put  

(7.1) N k Ni
l

S

li l 
1

 



A Study Of Submanifolds In A Contact Riemannian Manifold 

DOI: 10.9790/5728-1904014054                                 www.iosrjournals.org                                             46 |Page 

By means of  G N N k k k ki j l
S

li lj l
S

li lj ij( , ) , ,    1 1we have   from which   

 h
S

ih jh ijk k1  . Consequently a matrix (kij) is an orthonogonal matrix. Thus from (7.1), we have 

N k Nj l
S

jl l  1 .  

Making use of (7.1), equations (1.6), (1.7) and (1.8) are respectively written in the following forms: 

(7.2) 

 

 

 

i X i X u X N

N i U N

i V N

l

S

l l

l l
h

S

lh h

l

S

l l

* *

*

*

( ) ,

,

,

 

  

  







1

1

1

 

where 

(7.3) u X k u X U k Ul
i

S

il i l
i

S

il i( ) ( ), ,   
 1 1

 

(7.4) 
   

 

lh
i j

S

il ij jh lh hl

l
i

S

il i

k k

k

  

 





,

, ,
1

1

 

By virtue of  (7.3), the linear independence of vectors Ui (i =1,2,.....,S) is invariant under the 

transformation (7.1) of  the orthonormal basis {N1, N2,....,NS}. 

Further  more, because ij is symmetric  in i and j, from (7.4) we can find that under a suitable 

transformation (7.1) ij reduces to    ij i ij , where i (i = 1,2,...,s) are eigen values of matrix (ij). In this 

case (7.2) and  

u Uk j kj k j
i

S

ki ji( ) ,   


    
1

are respectively written in the next forms:  

(7.5) 

 

     

N i U N

u U

l l l l

k j kj k j k j kj

 

  

* ,

( ) ,  

from which we have  

u U and u U k jj j j j k j k j( ) ( ) ( )     1 2 2   
 

 

VIII. Invariant Submanifolds of an Almost Paracontact Riemannian Manifold : 

Let M be a sub manifold immersed in an almost paracontact  Riemannian manifold  M . If  TP(M)  

TP(M) for any point P M, then M is called an invariant submanifold.  In an invariant submanifold M, equations 

(1.6), (1.7) and (1.8) are written in the following forms: 

(8.1)  i X i X X Mx* * , ( ),   

(8.2) 
 N Ni

j

S

ij j 
1

,
 

(8.3)    


i V N
i

S

i i* ,
1

 

Lemma 8.1: 

In an invariant submanifold M which is immersed in an almost paracontact Riemannian manifold M , 

the following equations hold good.  

(8.4) 2 = 1- v  V, 

(8.5) i V = 0. 
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(8.6)     kj k j
i

S

ki ji   
1

0.  

(8.7)  V =0 

(8.8)  
i

S

i ij
1

0  ,  

(8.9) v V
i

S

i( ) ,  


1
1

2  

(8.10)

  
g X Y g X Y v X v Y X Y Mx( , ) ( , ) ( ) ( ), , ( ).    

 

From (8.5) and (8.9), we get the following two cases: When V =0 (or  i i
2 1 ), that  is,  normal to M, 

since from (8.4) and (8.10) we have 2= I, g(X, Y) = g (X,Y), (,g) is an almost  product metric  structure 

when ever  is non-trivial. 

when  V  0 (or i = 0),  that is,  is tangent  to M, by  means of (8.4), (8.9), (8.10) and v(X) = g(V,X), (, V, v,g) 

is an almost  para contact metric  structure. Thus we have 

Theorem 8.1: 

Let M be an invariant sub manifold  immersed in an almost  para contact Riemannian manifold  M  with  a 

structure (, , , G). Then one of the following cases occurs T. Miya Zawa[6]. 

Case (I) :   is normal to M. In this case, the induced structure (, g) on  M is an almost  product metric 

structure when ever  is non-trivial.   

Case (II):   is tangent  to M. In this case, the induced structure  (,V,v,g) is an almost  para contact  

metric structure. 

Furthermore, we have the following theorems: 

Theorem 8.2: 

In order that, in an almost para contact. Riemannian manifold M with a  structure (, , , G) the 

submanifold  M of  M  is invariant, it is necessary and sufficient  that the induced structure (,g) on M is an 

almost product metric structure when ever  is non-trivial or the induced structure (, V,v,g) on M is an almost 

paracontact metric structure.    

Proof: 

From theorem 8.1, the necessity  is evident conversely, we first  assume that the induced structure (,g) 

is an almost  product metric  structure. Then from equation (c) 

(c)   2

1

2

1

X X v X V u X U or I v V u U X M
i

S

i i
i

S

i i x          
 

( ) ( ) , ( )  

We have v(X)V + i ui (X) Ui =0  from which  g(v(X) V+iui(X)Ui ,X)=0  that is  v(X)2 + iui (X)2= 0. 

Consequently, since we get v(X) = ui (X) = 0 (i=1,2,....,s) the submanifold M is invariant and  is normal to M.  

Next, we assume that the induced structure (, V,v,g)  is an almost  para contact  metric structure. 

Then, from Equation (c) we have iui (X)Ui =0,  from which ui (X) = 0 (i =1,2,...,s) and from Equation (d). 

(d) u X u X v Xj
i

S

ji i j( ) ( ) ( )     
1

0  

We get i =0, thus M is invariant  and  is tangent to M.  

 

IX. Paracontact Riemannian Manifolds and P-Sasakian Manifolds: 

Let M be an almost paracontact Riemannian manifold with a structure (,,,G) . If we put  

( , ) ( , )X Y G X Y  for X Y Mx, ( ),  then from (1.5) we have  ( , ) ( , )X Y Y X . 

We denote by X
the operator of covariant differentiation with respect to G along the vector field 

X . For  a vector fieldY  , the covariant derivative X
Y  of  Y , has local components X Y



 ,  where  

X Y 
and  are the local components of  X Yand respectively and Greek indices , ,v take values 

1,2,.....,m. 

When the equation 
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(9.1) 2( , ) ( ) ( ) ( )( )X Y Y X
X y

      

holds good, M  is called a Para contact Riemannian manifold and (,,,G) a Para contact metric structure. 

Especially, If the equation ( )( ) ( )( )  
X Y

Y X   holds good, then we have 

( , ) ( )( )X Y Y
X

    

Consequently, 

G X Y Y Y G Y Y G Y
X X X X X

( , ) ( ) ( ) ( , ) ( ) ( , )            
 

Thus we find 

(9.2)  X X   

when the above equation holds good,  M  is called a special paracontact Riemannian manifold  and (,,,G) 

is referred as a special contact metric structure [1]. 

Now, we assume that  M  is a special  paracontact Riemannian  manifold. If the equation 

(9.3) ( ) ( , ) ( , ) ( ) ( ) ,   
X

Y G X Y G Y X X Y     2  

holds good where G y y( ) ( ),   then M  is called a P-sasakian (or para Sasakian) manifold . By using 

local Components  (9.2) and (9.3) are written as follows:  

         












 

  


         , ( )

v v v v v
G c h

 

where   
 

 , , and G are local  components  of , , and G respectively, moreover, in a special para 

contact Riemannian manifold M ,  if the equation  

(9.4)          X X X IX        ( ( ) ) ( ), , ( )1 i.e.  

holds good, then M  is called an SP-Sasakian (or special para Sasakian) manifold. It is clean that (9.4) satisfies 

(9.3). 

 

X. An Almost r-paracontact Riemannian Manifold: 

Let M  be  an m-dimensional Riemannian manifold with a positive definite metric  G. If there exist a 

(1,1)-tensor field  on M , r vector fields 1,....,r (r < m), r 1-forms 1,...,r such that  

(10.1) X (Y) = xy (X,Y =1,....,r) 

(10.2)   2

1

   


I
x

r

x x ,  

(10.3)  x xX G X( ) ( , ),  

(10.4) G X Y G X Y X Y
X

r

X X
( , ) ( , ) ( ) ( ),     

1

 

where X Y, are any vector fields on M , then (, 1...,r,1,...r,G) is said to be an almost r-paracontact 

Riemannian structure on M  and  M an  almost r-paracontact Riemannian manifold, [5]. This structure is 

written (, x, x,G) for short. 

Theorem: 

In an almost r-para contact Riemannian  manifold  with  the structure  (, x, x,G), the following 

equations hold good: 

(10.5) (a)  X = 0 (b)    =0, 

(10.6)  ( , ) ( , ) ( , )X Y G X Y G X Ydef     

Proof : 

(10.5) (a) using (10.4), we get 

G GX X X X
y

y X y X( , ) ( , ) ( ) ( ) ,          0

 
 From which, we have x =0 

(10.5) (b) using (10.2) for     2 2( ) ( ),X X  we have  



A Study Of Submanifolds In A Contact Riemannian Manifold 

DOI: 10.9790/5728-1904014054                                 www.iosrjournals.org                                             49 |Page 

      X X X Xx X X X  ( ) ( ( ) ),
 

from which, we obtain     
x X

X( ) 0 Virtue  of (10.5) (a) Since 1, ....,r are linearly independent , we 

have   
x

X( ) , 0 that is  
x
  0  (10.6) Using (10.2) and (10.4) for G X Y( , ), 2

 the equation 

(10.6) is easily verified. 

It is obvious  that  satisfies 3_ =0. Because of (10.1) and (10.5) a), r vector fields 1,....,r are the 

mutualy orthogonal  eigen vectors of a matrix () and their eigen values are all equal to 0. Since a matrix () is 

symmetric, the eigen values of the matrix () are all real. If we denote by  the eigen vector orthogonal to X 

(X=1,....,r) and by a its eigen value, then we have  =   therefore, we get 2- 2. Accordingly, we see that 

the eigen values of () are 0, 1, where the multiplicity of 0 is equal to r and hence rank () = m   r. 

If we denote by  a Riemannian  connection, then the torsion tensor N  for  may be expressed as 

follows [5],[9]. 

(10.7) N X Y X Y Y X

X Y

y X X y

X
X y X

X
X X X

( , ) ( ) ( ) ( ) ( )

( ) ( )

       

    

 
     

   

 

when the torsion tensor  for  vanishes, the almost r-para contact Riemannian  manifold, or its structure is said 

to be normal.   

 

XI. Conformally flat submanifolds: 
Let Mm (m>3) be a Riemannian manifold covered by coordinate neighbourhoods (U,xh) the indices 

h,i,j,k.... running over the range 1,2....,m. Let   g K kij h kji
h

ji, , , and R denote the metric tensor, the 

Riemannian  connection, the curvature tensor, the Ricci tensor and the scalar curvature of Mm respectively. Let 

Mn (n  3) be a submanifold of Mm and be covered by a system of coordinate neighbourhoods (V,ua) the indices 

a,b,c,.... running over the range 1,2,....,n. The immersion  of Mn in Mm  is locally given by Xh = Xh (ua). Let gab, 

b denote  the metric tensor and the Riemannian connection of Mn induced from those of Mm. We have 

g g B Bcb ij c
j

b
i   when B

X

u
b

i

i

b




Let K Kdcb

a
cb, and K denote the curvature tensor, the Ricci tensor and 

the Scalar curvature of Mn respectively.  

We choose m-n orthogonal unit normal vectors Cx
h , (the indices x,y,z running over the range (n+1, 

n+2,...,m) in such a way that B Ca
h

x
h,d i from a positively oriented frame of Mm along Mn . The equations of 

Gauss and Weingarten are given by.  

(11.1)      c b
h

cb
x

x
h

c x
h

cx
a

a
hB H C C H B, ,   

where H H H g gcb
x

bx
c

ba
y ac

yxand   and  are the second fundamental  tensors of Mn with respect to the 

normal  C gx
h

yx, being the metric tensor of the normal bundle. The equation of Gauss for Mn are   

(11.2) K B B B B K Akijh d
k

c
j

b
i

a
h

dcba dcba  ,  

where we set 

(11.3) A H H H Hdcba cb
x

dax db
x

cax   

Theorem A: 

Let  Mn (n >3) be a submanifold  of a conformally  flat Riemannian  manifold  Mm (m>3). Then Mn is 

conformally flat if and only if 

(11.4) Adcba – (gdaAcb- gdbAca + Adagcb- Adbgca)/(n-2) 

 + A(gdagcb – gdbgca)/ (n-1) (n-2) =0, 

where Adcba is given by (11.3) and  

(11.5) Ada = gcb Adcba  A= gdaAda 

Theorem B: 

Let Mn (n >3) be a totally umbilical submanifold of a conformally flat Riemannian  manifold  Mm 

(m>3) then Mn is conformally  flat.  
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XII. The Main Theorem and its Applications: 
If Mm (m>3) is conformally flat, then the Weyl conformal curvature tensor Ckjih = 0 and we have 

(12.1) j Cih - i Cjh = 0 

where Cih = - kih/ (m-2) + Rgih/2(m-1) (m-2). we set 

(12.2) Ccba = cCba - bCca 

where Cba is defined  by a formula similar to the one for Cij in (12.1) 

Theorem 12.1: 

Let Mn (n  3) be a submanifold of a Conformally flat Riemannian manifold Mm (m>3). Then 

(12.3) Ccba = (bAca - cAba)/(n-2) – {(b A)gca – (cA) gba}/2(n-1)(n-2)  

 
 L H L Hbx ca

x
cx ba

xd i,
 

where Aca is given by (11.5) and  

(12.4) L C B Ccx ji c
j

x
i  

Proof: 

Since Mm is conformally flat, we have 

(12.5) Kkjih= ghj Cki –ghk Cji + Chj gki -Chk gji 

Transvecting (12.5) with B B B Bd
k

c
j

b
i

a
h  and using (11.2) we get  

(12.6) Kdcba = Adcba + gca Pdb – gdaPcb + Pcagdb – Pda gcb, 

where we have set P B B Cca c
j

a
h

jh .Transvecting (12.6) with gda and the resulting equation with gcb we get 

(12.7)  Kcb = Acb + (2-n) Pcb – Pgcb, K =A +2(1-n)P, 

where  P = gcbPcb from (12.7) we get   

Ccb = Pcb – Acb/ (n-2) + Agcb /2 (n-1) (n-2) 

Hence  

(12.8) Ccba = c Pba - b Pca – {cAba - b Aca} /(n-2) 

       +{(cA)gba –(bA)gca}/2(n-1)(n-2) 

Now transvecting (12.1) with B B Bc
j

b
i

a
h  we obtain  

(12.9)    
c ba b ca bx ca

x

cx ba

xp p L H L H  

where Lcx is defined by (12.4) from (12.8) and (12.9), we obtain (12.3) 

 

XIII. K-Contact  Riemannian Manifold: 
An n-dimensional K-contact Riemannian manifold M is a differentiable manifold with a contact metric 

structure (,,, g) such that  is a killing vector filed. Therefore, with respect to an arbitrary coordinate 

neighbourhoods of M, we have  the following conditions: 

            

 

 





 

   






      1 0 0 2, , , , , )

v v v
g

 

where the matrix  
e j is of rank n-1. Hereafter, we write  instead of . It is well-known that a K-contact 

Riemannian manifold  is orientable and odd dimensional. 

On a K-contact  Riemannian manifold the following identities hold good . 

(13.1)       


   
   ( ) , ,n Rv v1 0  

(13.2)  R g R nv v v 
 

  


        , ( ) ,1  

where  is the covariant derivative with respect to the metric g and Rv and R denote the Riemannian 

curvature  tensor and the Ricci tensor respectively. 

Next, the exterior differential du and co differential u of p-form u are given by 

( ) ......  ..... , ,

( ) , ,

( ) ........ ,

, ,

.... ......

.......... ,

du u u P

du u P

u u P

u P

p p

p p

i

P

i i

i

p      

 

 



 








1 1

2 2

1

1

0

1

0 0

  

 

  

 


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The Laplacian is given by  = d + d. for a p-form u we have explicitly 

u u R u R u P
p

i

P
i

j i

Pi

P

i
j i

P

j
a f

 



   



    
   





1 1
1 11

2
....... ......

.....  ..... ....... ..  ..... ,

,      
   





u u R u P

f f P

a f



  







    

   

, ,

, ,

1

0
 

 

XIV. Invariant Submanifolds in a k-contact Riemannian Manifold: 
Theorem 14.1: 

For an invariant submanifold M of a k-contact Riemannian manifold M , if the vector field X on M is 

orthogonal to x, we have  

   R N X R N XA A, , .d i d i 
 

Proof: 

First, we calculate  N A
X2d iand find  

          N N N N N NA A A A A A
X X X X X X         2 2d i d i c hd i d i d i d i

 
Using  

          0 1 2, , ,di I
 

g X Y g X Y X Y g X Y d X Y X g X       , , ( ) ( ), ( , ) ( , ), ( ) ,c h c g d i   
 

for any vector fields  X  and Y on M . 

M is called a k-contact Riemannian manifold, if   is a killing vector field. Then, we have 

 X X  and  

R X Y YX( , ) ,  c h
 

We have 

        
N A A N NA A A

X g X R N X R N X X g X( , ) , , ,       d i d i d i d i
 

which implies that 0    R N X R N X g XA A N A
( , ) ( , ) ,     d i  

on the other hand, by the assumption, we have 

g X g X g X NN N AA A
( , ) ( , ) , .      d i c h 0 Consequently,  

we obtain 

   R N X R N XA A, , .d i d i 
 

Theorem 14.2:  

Any invariant submanifold M of a k-contact Riemannian manifold M is minimal.   

Proof: 

First, using   
X X

A
A A

Y Y h X Y N( , )   we calculate X
Y( )  and find  

        
X X

A
A A X X

A
A A

Y Y h X Y N Y Y h X Y N( ) ( ) ( , ) ( ) ( ) ( , )     
And 

we have 

            

     

X X X X X X
B

B B

X X
B

B B

Y Y Y Y Y Y h X Y N

Y Y h X Y N

( ) ( ) ( ) ( ) ( ) ( ( , ) )

( ) ( ) ( , )

     

  
By 

the definition of k-contact Riemannian manifold, we get 
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( ) ( , ) ( , ) ( , ) ,    
X

A
A A

B
B B

Y h X Y N R X Y h X Y N    from which, 

h X Y g R X Y N h X Y g N N
C C

B
B B C

( , ) ( ( , ) , ) ( , ) ( , )    
 

Replacing Y by Y, we find, 

h X Y g H X Y g R X Y N g H X Y g N N
C C C

B
B B C

( , ) , , , , ,     2 2   c h d ie j b gc h
 

using, HA =0 

we have 

   g H X Y g R X Y N g H X Y g N N
C C

B
B B C

( , ) , , , ,   d ie j b gc h
 

 Here taking a  -basis (, E1, E1, E2,E2,....,Em, Em) we have 

     

    

 

 

trH g R E E N g R E E N tr H g N N

g R E E N g R E E N tr H g N N

c
i

m

i i C
i

m

i i C
B

B B C

i

m

i i C
i

m

i i C
B

B B C

1 1

2

1 1

, , , , ,

, , , , ,

      

     

d ie j d ie j b gc h

d ie j d ie j b gc h
How

ever, since  is skew-symmetric and HA is symmetric trHB vanishes identically and hence, we get  

   

  





trH g R E E N g R E E N

g R E E N g R E E N

C
i

m

i i C i i C

i

m

i i C i i C

1

1

( ( , ) , ) ( ( , ) , )

( ( , ) , ) ( ( , ) , )

   

   
 

By virtue of the Bianchi’s identity, we get  

trH g R E E NC
i

m

i i C 
1

( ( , ) , ) 
 

On the other hand, from theorem 14.1, we have 

g R E E N g R N E E g R N E E

g R N E E g R E E N

i i C C i i C i i

C i i i i C

( ( , ) , ) ( ( , ) , ) ( ( , ) , )

( ( , ) , ) ( ( , ) , )

     

   

  

 
 

Therefore we get g R E E Ni i C( ( , ) , )   0 , Hence we obtain trHC=0 

 

XV. Invariant Submanifolds Immersed in an Almost Paracontact Riemannian  Manifold: 
An n-dimensional differentiable manifold M of class C is called  an almsot paracontact Riemannian 

manifold [9], if their exist in M a tansor field 
[ ],2

 a positive  definite Riemannian metric g and vector 

fields  and  satisfying. 

(15.1) (a)   =1, (b)     









    

  = g,   g g 





       ,  

The set  ( , , ,  
 

 gd iis called an almost  paracontact Riemannian structure. 

In the manifold M, the following relations hold good [3]. 

(15.2)  (a)    
 

 
 0 0, ,  

 (b)        
 ( )g  

We consider an m-dimensional  Riemannian  manifold V with  local coordinates {Yh} immersed in the 

almost  paracontact Riemannian manifold M with local co-ordinates {X} and denote the immersion by X = X 
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(Yh). We put B X Y
i

i   / .  The induced  Riemannian metric is given by g g B Bji j i 
 

. We denote 

by N n mx
   mutually orthogonal unit normals to V. 

We assume that the submanifold  V of M is  invariant, then we have. 

(15.3)  
  B Bi i

t
t ,  

Where i
t

is a tensor field on V. It follows from (15.3) that 
 N Bx i  0  which implies that, 


 Nx  is normal  to V. Thus, we put:  

(15.4) 
a
 

where xy are functions on V. The vector  can be expressed as follows: 

(15.5) 
     t

t
x

X XB N
 

where t and x are a vector field and functions on V respectively 

Contracting (15.3) and (15.5) with  B g Bj j 
( ) respectively and making use of (15.2) b), we get 

(15.6)     
 

ji j i ij ji it j
tB B g  d i,  

(15.7)  


 
h h h ht

tB B g B d i 

from(15.4) and (15.5), we have 

    


 





 



X Xy X y y X X X X
N N N N g N   , c h

 

Contracting (15.3), (15.4) and (15.5) with 


  respectively and using (15.1) b), (15.2)a), (15.4), 

(15.5), (15.7) and the above  equations, we find 

(15.8) (a)       t
h

i
t

i
h

i
h

i it
tg  ( ),  

 (b)  x i  0  

XVI. An Invariant Submanifold Immersed in an Almost Paracontact Riemannian Manifold 

with Vanishing Torsion Tensor: 
Differentiating (15.3) and (15.5) covariantly along V respectively  and making use of Gauss and 

Weignarten’s equations  

  

 

     

j i
X

jiX X

j X jX
t

t
y

jXy y jX
t ti

jiX

B h N

N h B l N h g h

 

  d i,
 

Where j denotes covariant differentiation with respect to gji hjiX IjXY are the  so-called  second and third 

fundamental tensors respectively and satisfy  

hjiX = hijX, IjXY =-IjyX, 

we obtain.  

( ) ( ) ( ( ) ,    
j i j i

s

s
Y

i

s

jsy
x

jiX XY y
B B h h N   



     

(16.1)        
F
HG

I
KJj j

S

x
X jX

S
S

y
j y

S
jsy

X
X jXy yh B h I N       ( ) ( ( ) ,  

We now assume that the so-called torsion tensor Nv introduced by I. Satō  [9] vanishes. Then we have 

(16.2) Nv v v v v v
 

 


















                  d i d i 0  

Where  denotes covariant differentiation with respect of g. Contracting (16.2) with B Bj
v

i


 and 

using (16.3), (16.7), (16.8) a) and (16.1), we obtain  
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(16.3)          

     

  





j

t

i i

S

i t

S

i

t

t j

S

j t

S

i j

S

j i

S

X
X i jX

S

j iX

S

S
Y

i j Y
X

X jXY

j i Y
X

X iXY Y

h h B l

l N

( ) ( )

( ) ( )

( )

        

      

    

m
} {

} 0

 

first consider the case (I). In this case, from (16.3), we find 

     j
t

t i
S

i t
S

i
t

t j
S

j t
S( ) ( )      0

 

that is, the Nijenhuis tensor of i
h

vanishes  

we next consider the case (II). In this case, from (16.3), we find 

         j
t

t i
S

i t
S

i
t

t j
S

j t
S

i j
S

j i
S( ) ( )          0

 
that is the torsion  tensor of V vanishes.  

 

XVII. Invariant Submanifold  Immersed in a Paracontact Riemannian Manifold 

An almost  Paracontact  Riemannian manifold M with structure   
 

 , , , gd i  is called a 

paracontract Riemannian  manifold [10] if the following relation holds good.  

2  =   +  

We assume that M is a Paracontact Riemannian manifold Contracting the above equation with  

B Bj i
 

 
using.  (15.3) and (16.1), we can find  

2 2   ji j i i j
X

X jiXh    ( )
 

Hence, we observe that 

 is normal to V. In this case, V admits an almost Product Riemannian structure ( , )i
h

jig whenever 

i
h

 is non-trivial. 

We get 

 ji
X

X jiXh  and using,
 

 is normal to V. In this case, V admits an almost Paracontact Riemannian structure 

( , , , )  i
h h

i jig  

We get 

2ji = j i + i j  

 

References 
[1]. Adati, T.  : Suibmanifolds Of An Almost  Product Riemannian  Manifold, Kodai Math., J., 4 (1981), 327-343. 

[2]. Adati, T.  : Conditions For Invariant  Submanifolds  Of An Almost  Para Contact Riemannian Manifold, Tensor, N.S. 38 (1982), 41-

52. 

[3]. Adati, T.  And Miyazawa, T.  : On Paracontact Riemannian Manifolds, TRU Math., 13-2 (1977), 27-30. 

[4]. Andrzej, G.: On Totally Umbilical Submanifolds M A Conformally Flat Riemannian Manifold, Demanst Ratio Math., 6 (1973), 

641-646. 
[5]. Bucki, A : Invariant Submanifolds  Of A Almost R-Para Contact Manifold, Tensor, N.S., 41 (1984), 261-269. 

[6]. Miyazawa, T.   : An Invariant Hypersurface Immersed In An Almost  Para Contact Riemannian Manifold, II. TRU Math. 14-2 

(1978), 27-30, 15-2 (1979), 9-20.  
[7]. Miyazawa, T.  : Invariant Submanifolds Of An Almost  Para Contact Riemannian  Manifold, Tensor  N.S., 34 (1980), 205-210. 

[8]. Pujar, S.S.  And Kirshna Amur : On Conformally  Flat, Totally  Real Submanifolds Of A Kaehlerian Manifold  , To Appear. 

[9]. Satō, I.  : On A Structure Similar To The Almost  Contact Structure, I, II, Tensor, N.S., 30 (1976), 219-224, 31 (1977), 199-205. 
[10]. Tanno, S.: Isometric Immersions Of Sasakian Manifolds  In Spheres, Kōdai Math. Sem. Rep., 21 (1969), 448-458. 

[11]. Yano, K.  And Ishihara, S.: Invariant Submanifolds  Of An Almost  Contact Manifold,  Kōdai Math. Sem. Rep., 21 (1969), 350-

364. 

 


