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Abstract In this article, we have constructed an iterative method of third order for solving polynomial
equations with multiple polynomial zeros. We have combined two well known third order methods Chebyshev
and Halley for this construction purpose. We have proposed some local convergence theorems of this C-H
Combined Mean Method to establish the computation of a polynomial with known multiple zeros. For the
establishment of this local convergence theorem, the main role is performed by a function, termed as the
function of initial conditions. Here the initial conditions uses the information only at the initial point. We have
used the notion of gauge function which also plays an important role in establishing the convergence theorem.
Here we have used two types of initial conditions over an arbitrary normed field and established local
convergence theorems of the constructed C-H Combined mean method. The error estimations are also found in
our convergence analysis.
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l. Introduction

In the literature of iterative method for solving non-linear equations, Chebyshev and Halley method
are among the efficient methods in solving non-linear equation along with Newton’s and Super Halley
method. Recently Osada ([8]), Neta ([9]), Chun and Neta ([10]), Ren and Argyros ([11]) and many
others have studied iterative method for solving an equation of non linear type with multiple zero
Chebyshev iterative method for multiple zeros ([4], [2], [3]) as following

,_ p°glw) (3- (w) g"(w) .
Clw)= ¥~ T 7w (_pE + ) 7w ) » ig'(w) £0, (1)
w, otherwise.
Halley method for multiple zeros ([1], [2], [3]) is defined by
" "))
= |V (B - 45) i) 20 @)
w, otherwise.
The domain of the function H is Dy, defined as follows
Dy = {we F:g(w)£0=gw) £0, 22100 150 o) 3)

2p g(w) 2g'(w)

Here, we have combined the above two methods to construct the C-H Combined mean method.

Recently, Proinov [[5]. [6]] and later Ivanov [7] have introduced convergence theorems for the Picard
iterative scheme given as below

Wpey =1 wg, k=0,1,2,..., (4)
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where T : D — M is the function of iteration defined in a metric space M and D < M.

Here, we investigate the convergence of the C-H Combined mean method for polynomial zeros which
are multiple in nature with the help of the same initial conditions as in Proinov [[5], [6]] and Ivanov [7].
In this paper section 2 is devoted to the preliminaries, necessary in establishing our results. Construction
of our C-H Combined mean method is presented in section 3. We have devoted Section 4 in establishing
two types of local convergence analysis of the proposed C-H combined mean method.

2 Preliminaries

In this paper, J will be treated as an interval in the real line containing zero. Sj(u) is the polynomial
defined as

Si(u) =1+u+u?+...+u"L (5)
If I = 0, then here we take Sj(u) = 0. Here, we will use that 0° equal to 1.

Definition 2.1. (/5]) A function ¢ : J — Ry is called quasi-homogeneous of order r > 0 on J if there
erists a non decreasing function W : J — R, such that

plu) =u"U(u) forallu e J.
Following are some properties of above defined functions.

(P1) A funetion g is quasi-homogeneous function of degree » = 0 on J if and only if g is non-decreasing
on J.
(P2) If f and g are quasi-homogeneous functions of degree r > 0 and s > 0 on J, then fg is quasi-
homogeneous of degree r + s on J.

(P3) If two functions f and g are quasi-homogeneous of degree » > 0 on J, then f + g is also quasi-
homogeneous of degree r on J.

We will use these properties in proving Lemmas and Theorems in the later section.

Definition 2.2. ([6]) A function ¢ : J — Ry is called gauge function of order v = 1 on J if it satisfies
the following conditions:

(i) ¢ is quasi-homogeneous function of degree v on J.
(ii ) o(u) <u for allu < J.

A gauge function ¢ of order v on J is said to be a strict gauge function if the last inequality is strict
whenever u € J\ {0}.

Lemma 2.1. ([6]) If ¢ : J — R. is a quasi-homogeneous function of degree r > 1 on an interval J
and R € J\ {0} is a fired point of ¢, then v is a gauge function of order v on [0, R]. Moreover, if
r > 0, then v is a strict gauge function on [0, R).

Definition 2.3. (f5]) LetT : D c M — M be a map on an arbitrary set M. A function I : D — Ry
is said to be a function of initial conditions of T (with gauge function @ on J) if there exists a function
p:J— J such that

I(T(w)) < p(I(w)) withallw € DwithTxz e DandI(w) e J. (6)

Definition 2.4. (/5]) Let T : D ¢ M — M be a map on o arbitrary set M and I : D — Ry be a
function of initial conditions of T with gauge function on J. Then, a point w € D is said to be an
initial point of T if I(w) € J and all of the iterates T*w(k = 0,1,2,...) are well defined and belong to
D.

Definition 2.5. ([6/) LetT : D ¢ M — M be an operator in a normed space (M,|.|), and let
I:D — Ry be a function of initial conditions of T with gauge function on J. Then T is said to be an
iterated contraction with respect to I at a point ¢ € D (with control function ) if I({) € J and

[Tz — (| < d(I(w))|w — | for allw e DwithI(w)e J, (7)

where ¥ : J — [0,1) is a non-decreasing function.
We will use the following two theorems of Tvanov ([7]) to establish our result.
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where ¥ 1 JJ — [0,1) is a non-deereasing function.
We will use the following two theorems of Tvanov ([7]) to establish our result.

Theorem 2.1. ([7]) Let T : D c M — M be an iteration function, ( € F and I : F — R, defined by
(13). Suppose ¢ : J — I is a quasi-homogeneous function of degree p = 0 and for each w € F with
I(w) € J, the following two conditions are satisfied:

(i) w belongs to the set D;
(ii) [Tz — ¢ < $(I(w))|w —¢|.
Let also wo € F be an initial guess such that
I(wg) € Jand ¢(I(we)) < 1, (8)
then the following statements hold.
(i) Then the Picard iteration (4) is well defined and converges to ¢ with order r =p+ 1.

(ii) For all k = 0 , we have the following error estimates:
i1 — ¢l < p7" Jwg — ¢ and |wg — ¢| < pJwo — ],
where 1 = ¢(I(wg)).

(iii) The Picard iteration () converges to ¢ with Q-order r = p + 1 and with the following error
estimates:

[wis1 — €| < (Rd) " |wy, — | for all k >0,
where R is the minimal solution of the equation ¢(u) =1 in the interval J\ {0}.
Theorem 2.2. ([7]) LetT : D ¢ M — M be an iteration function. { € F and I : D ¢ F — R+

defined by (29). Suppose ¥ : J — R is a nonzero quasi-homogeneous function of degree p = 0 and for
each w € F with I(w) € J. the following two conditions are satisfied:

(i) w belongs to the set D;
(i) [Tz — ¢| < O(I(w))|w — Cl.
Let also, wg € F' be an initial guess such that
I(wg) € Jand (I (wy)) < ¥(I(wy)), (9)
where v is defined by
Plu) =1 —u(l+ Ju)).
Then the Picard iteration () is well defined and converges to { with the following error estimates:
w41 — €| < Qu’"k|wk — (| and |wy — ¢| < @Fps= lwy — ¢| for all k =0, (10)
(I (wo))

where 1 = FTwo)) and 8 = Y(I(wg)). In addition, if the second inequality in (9) is strict, then the
order of convergence of Picard iteration (4) is at least r = p+ 1

3 Recurrence relation for the method

Here, we have derived a relation of the C-H Combined Mean Method method combining the two third
order iterative method namely Chebyshev and Halley method. For g(w) # 0 and g'(w) # 0, we define
the C-H combined mean method as follows

T(w) = 2C(w) + 2 H(w)

P? g(w) (3—'p g(w) g"(w) 1 (P+ Lg'(w) 19”(%‘))_
4 g'(w) 2p g(w) 2g'(w)

-

P g gw)) 2
Thus our C-H combined mean method is of the following form

.

 pPow) (3—p , glw) g"(w)\ _ 1 prlg’w) 197G\ L . i e
T(w) — {u T ( s+ 3 ( 5 ) . ifg(w) and g'(w) # 0,

g’ (w) g'(w) g'(w) 2p g(w) g’ (w)
w, otherwise.

(11)
The domain of the C-H Combined Mean iteration function T" (11) is the set D, Which is defined below:

o e B - ol . p+1lg(w) 1g"(w)
D={weF:g(w)#0andg'(w) # 0= 2% gw) 29’(w)#0}' (12)
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4 Local Convergence of Combined Mean Method

Let assume that g € F[w] be a polynomial which having degree g(> 2), such that all the zeros of g are
in F, and also let { € F be a zero of the polynomial g, multiplicity being p.

Here (F,|.|) denotes a field having a norm and F'[w] is the ring of polynomial on the field F.

Here, we examine the convergence of C-H Combined mean method (11) with the help of function of
initial conditions I, which is a map from D to R, and is defined as follows:

I(w) = I(w) = 2=, (19)

here d represents the distance from the zero ¢ to the closest zero of g other than (; if ¢ is a only zero
of g then we set I(w) =

Lemma 4.1. Let g € Flw] be a q(> 2) degree polynomial having all zeros in F, where F is a field. If
C1y...,Cs, are the all zeros of g, multiplicity of the zeros being py,. .., ps, respectively. Then

(i) If w € F be such that for those w, g(w) # 0, then for any one of i = 1,..., s, we have the following

g'(w) _ pitry I
) = }::TC: where v; = (w — () Z

’-"CJ

(ii) If w € F' is not a zero of g and g, then for anyi=1,...,s, we have
g"(w) _ (pitr)® —(pitds) re §: = (w— )2 P
W) = (=t where 6 = (W —G) :%ﬁ-:ar Gy

Proof.

(i) From Q;:((E)) = Z ‘pj 5’ we have

’Lb —
=1

g(w Z

1

Pi Py
— & ;W—Cj
p2+.|'!. Pj
h. i = ' — (g .
=0 G , wherevy; = (w C). w-G

J#Fi

Which proves the first part of the lemma.
(ii)Using the above identity and the following two identities

g'(w) _g'(w) g(w) ~ p Pt
gw) ~ gw) (w)z(u—cj)ﬁ “”d;(-w—cj)f

(w—G)2

we get

g'(w) (i +7)?— (pi + &) ,
T~ Dy Uhere b= 0= Y s,

:r;fEz
O
Lemma 4.2. Letw, ( € F and y,...,(s € F be the list of all zeros of g which are other than (. then
for any of i = 1,..., s, the inequality listed below is accurate.
lw =Gl 2 (1 —I(w))d, (14)

where I : F — R is defined by (13).

Proof. According to the definition of d we have d < |( — (| forall j =1,...,s.
So using above and triangle inequality we have the following

lw—Gl=[-G+w—{2[(=§l—|w—-(=(1-I(w)d
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4.1 First Kind of Local Convergence theorem

Here, F[w] is the ring of polynomials over the field F. Let g be a polynomial of degree g(> 2), which
is in Fw]. In this section of the article we will establish the convergence of the C-H Combined mean
method (11) using the function of initial condition I : D — R, which is defined in (13).

Next, we define the functions ¢. and ¢p.

2(¢—p)’u+p(a—p)(3g—2p)(1—u) ,
O(u) = u-, 15
“ 2(p — qu)® (15)
ag—p) 2
9Gp— 9w — 2p(p+ Qu+2p?
Easily we can show that ¢, quasi-homogeneous on the clo-open interval [0, E) of degree 2. Clearly,

the function ¢y, is a quasi-homogeneous on the clo-open interval [0, 42-9—) of degree 2.
g+p++/(9—p}(59—p)
So, we can now define the function ¢ : [0, 4-9—) — R defined by

g+p+y/ (q—p}(59—p)

Onlu) = (16)

= Gelw) | dnw)
o=t

(17)

As ¢.(u) and ¢p(u) are both second degree quasi homogeneous function, so by property (P3), ¢ is also
-h f th d 2 in the ¢l terval [0, ——22

quasi-homogeneous of the same degree 2 in the clo-open interval [0, ey P p))

Lemma 4.3. Suppose that g(w) € F|w] be a q(> 2) degree polynomial which splits over F. and let
¢ € F be a multiple zero of g(w), multiplicity being p. Let w € F' satisfies the following
2
I(w) <m = L : (18)
qa+p++/(5¢—p)(a—p)
where I is defined by (13) and 7y is defined in (18). Then the following two statements (i) and (ii) are
true.

(i) wis in D, the domain of the C-H Combined mean method and is defined in (12).
(ii) | Tz — ¢|| < 6(I(w))]|w — C|l, where ¢ defined in (17).

Proof. Let w € F satisfy the inequality (18). If any of p = g or w = ¢ or both are true, then Tz = ¢ and
therefore both the statements of the lemma holds. So we assume that p # ¢ and w # (. Let {y,...,(
be the list of all distinct zeros of g with multiplicities p1, ..., ps, respectively. Let { = (i, p=pi,y =7
and & = J; for some 1 < i < s, where +; and §; defined in Lemma (4.1).

To provc thc ﬁrst part of the lemma we have to show that g(w) # 0 and g'(w) # 0 implies
ptlg(w) ('w} # 0.
2p _g(w) ? g’hb)

From Lemma (4.2) and equation (18), we get

lw—¢| =2 (1-I(w))d>0,a87 <1 (19)
for each j # i. Above assures g(w) # 0. Then, Lemma (4.1) gives the following

g'lw) _ p+~ . _Pi
— = , where vy w— 20
B e = =0T g @
Using the triangle inequality and equation (19), we have the following
(g —p)I(w)
< |w— =TT
|"\r" |'Ll'_, C'; |‘tb | i (1 —I(U.} deJ _ U.') (21)

Using the triangle inequality, equation(21) and as I'(w) < 71 < g—, we get the following

(g—pH(w) p—ql(w)

> p— = p— = :
p+alzp=hlzr— =705 T I(w) = ° (22)
Hence, p+ « # 0. This implies g'(w) # 0.
Then, from the Lemma (4.1), we have the following
g"(w)  (p+7)?—(p+4) - )
= , where § = (w — —E 23
7@~ @-0m+ w0 e &
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(q p)(w)?

) 24
I9ll < &= (24)
We will now prove that %7—5’; f-::')} — %7—5;{:{;’)) £0
p+lg(w) 1g"(w) 1 (p+ p+0) 1
2p g(w) 2g'(w) 2\ p+v/)w-¢
~(+55)
2p{p +7)) w—¢
1+
= C
2
7* +pd
where kp = —————
2p(p+7)
Now,
| = | L2 ‘ 112 + Pl 4(q —p)I(w)®
2p(p+7)1 7~ 2ol(p+7)] ~ 2p(1 — I(w))(p — ¢l (w))
So if we prove that 1+ kp # 0 our purpose will be completed.
Now,

q(q — p)I(w)® q(3p — @)I(w)* — 2p(p + q) I (w) + 2p
l4+ k| 21—|kpl 21— - = - - >0
R [ = () [P () (1L~ () (p — al(w)

This shows that 1 + k £ 0.
Therefore we can say that w € D Which proves (7).
From the construction of the Combined mean method, we have the following
Tr—¢cmw_¢_ P 9W (s—p ) g’*{ur)) 1 (p+1g*{w) B 1g”{w))*
4gw)\ p gy 2\ 2p gw) 2g(w)
—wo (w=0 [, _p3@+7)*—pp+9)] 1w—(
2 2 (p + 7)3 214k
_w—C K (w=02p+7)°=3pp+7)* +P*(p+9)
2 14Ky 2 2(p+ )3
_w—C ki 4 (w—20¢) [29° + 3,2 +p%6
2 14k 2 2(p+7)°3
= K(w — (),
where
i M on3 2, 2
. w3 I ek g ) (25)
2 \[T+#n 2(p+7)°
Using (21) and (22), we now estimate || and is as follows.
FE 1 i 293 4+ 3py? + p%d
-2 1+ kg 2{'}34-’}')3
<1 ({ A } N {2I”r|3 +3p|yf? +p2|5ID
= 2\ |1 —|kn| 2/(p+v)°
o1 9(g —p)I(w)?
~ 24(3p— @)1 (w)? = 2p(p + 9T (w) + 2p?
X 2 ((ql_p)(jﬂ)) +3p (fq p}ffu}) +p? chj_p)féu)
3
4 [ p—al(w)
4 (pl.—qff_ul} )
1., .
= 5 [Pn(I(w)) + ¢c(I(w))]
= 6(I(w)).
Which proves (ii). H
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Theorem 4.1. Let g € Flw] be a polynomial of degree q > 2 that splits over F, and let ( € F be a
zero of g such that the multiplicity of ¢ is p. Let wy € F satisfies the following initial condition

I(wy) <7 and ¢(I(wp)) < 1, (26)

where I : D — Ry is defined in (13) and ¢ is defined in (17). Then the following three statements are
true.

(i) Iterative sequence (11) of the C-H Combined mean method is defined and converges to ( having
order of convergence 3.

(ii) Error estimates are as follows
[Wins1 = < 1" [wm — ¢| and [wn, — | < p&" /2 |wo — |, for allm > 0, (27)
where g = ¢(I(wg)).

(iii) A posteriori error estimate given below

1
| w1 — €] < (U—d}""wm — C|3,fo-r allm = 0, (28)

where U € (0,7) is the unique solution of ¢(t) =1 in (0,7) .

Proof. Lemma (4.3) and theorem (2.1) gives the proof. H

4.2 Second Kind of Local Convergence theorem

Let assume that g € F[w] be a polynomial which having degree g(> 2), such that all the zeros of g are
in F, and also let { € F be a zero of the polynomial g, multiplicity being p.

Here (F,|.|) denotes a field having a norm and F'[w] is the ring of polynomial on the field F.

Here, we examine the convergence of C-H Combined mean method (11) with the help of function of
initial conditions I, which is a map from D to R4 and is defined as follows:

I(w) = I(w) = ME (29)

plw)

here p(w) represents the distance from the zero w to the closest zero of g other than (; if ¢ is a only
zero of g then we set I(w) = 0.
Now, we define two real functions 9. and ., for ¢ > p = 1, by

2(q — p)*u® + p(q — p)(3q — 2pp°
2(p— (g —p)u)? '

Ve(u) = (30)
and

_ q(q — p)v’
) = S - Pu—qa =P (1)

Clearly, the functions ¥, and ¥}, are quasi-homogeneous functions of degree 2 on [0,7;], where 75 is
defined by

2p
T = (32)
q+Va¢*+4(g—p)*
Now, we can define a function ¥ : [0,72) — R, defined by
d(u) = 22 | Ih(w) (33)

2 2

As both the functions 9,(u) and 95 (u) are quasi-homogeneous, therefore by property (P3) we can say
that ¥ is quasi-homogeneous of degree 2 in the interval [0, 72).

Lemma 4.4. Let g € F[w] be a polynomial of degree q(> 2) which splits over F', and let { € F be a
zero of g with multiplicity p. Let w € F' be such that

I(w) < T3, (34)

where the function I is defined by (29). Then:
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(i) wis in D, the domain of the C-H Combined mean method and is defined in (12).
(ii) |Tx — (| < I(I(w))|w — ¢|, where ¥ is defined in (33).

Proof. Let w € F satisfy the inequality (18). If any of p = g or w = ( or both are true, then Tz = ¢ and
therefore both the statements of the lemma holds. So we assume that p £ g and w #£ (. Let {4, ..., (s
be the list of all distinet zeros of g with multiplicities pq, ..., ps, respectively. Let ( = (. p=pi, v =
and 6 = ¢; for some 1 < i < s, where +; and d; defined in Lemma (4.1).

To prove thc ﬁrst part of the lemma we have to show that g(w) # 0 and g'(w) # 0 implies

p+1l g'(w) _lg
2p glw) 2g

lw— | = p(w) >0 (35)

# 0. Clearly we can write the following

for each j # i. This assures that g(w) # 0. Then, Lemma (4.1) gives the following

g'(w) _p+7 " — (0 _Pi
o(w) _TU—C wherey = (w — C); o (36)

Using the triangle inequality and (35), we have the following:

b <=0 Y e < Bl Son = (a- i) (37)

J# J#e
Using the triangle inequality, equation (37) and I(w) < 72, we have the following:
P+l zp—I|7lzp—(g-p)(w) >0. (38)

Hence, p++ # 0. This implies g'(w) # 0.
Then from the Lemma (4.1), we have the following

g'(w) _(p+¥)°-(p+0o . . ,
Q’('w} - (u — C)(p_‘_,.” , where & = (ﬂ» - C)zgi (wf_'fg} iR (39)

Now, by triangle inequality and (35), we have the following

18] < (g — p)I(w)% (40)

We will now prove that &— QP g{u) — %gr;{{zf) 0.

p+19’('u»‘)_19”(w)_1(p+ﬁ p+€>) 1
2p glw) 2g'(w) 2\ p p+y/w-—(

w—C
1+ K
= w=¢
where
A;_Z +P5
Kp = ——m8.
2p(p +1)
Now,
2 : 2 . N2
|Kh|:| ) ‘< NP +pl8| . alg—p)I(w)

2p(p+7)| = 2pl(p+7)| ~ 2p(p — (g —p)I(w))
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So if we prove that 1 + & # 0 our purpose will be completed.
Now,

gla—pIw)? _ 2" =2p(g=pI(w) —gl¢—pIw)
2p(p — (¢ — p)I(w))) 2p(p — (g — p)I(w))

|1+r{h|21—|h‘-h|21—

This shows that 1 + kp &£ 0.
Therefore we can say that w € D. Which proves (7).
From the construction of the Combined mean method, we have the following

P g(w) (3 —p  g(w) g"(w)) 1 (p+ 1g'(w) 19”(w))‘1
49(w)\ p g'(w) g'(w) 2p g(w) 2g'(w)

Ter—(=w- 5

- @=9 {1_23(% ".*')Z—p(p”)} _lw—¢

- 5 L 21+ rn
_w=C m_ (w=02p+1)*-3p(p+1)?+p(P+9)
T2 1+rn 2 2(p+1)°
_w—=( Kp (w—20) [29° +3py* +p%0
2 14k 2 2(p+7)°?
= I{(T_U - C}-
where
1 K 293 + 3py? + p%s '
<=3l ) @

‘We now use the estimates (37), (38) and (40) to estimate |k| and is given as following
{2"}'3 +3py? + pzé}

Iﬁlgl(H”hHJr , )
2 1+ Ky 2(p+)3

1 || 2[y° + 3ph* + P71
([ + e )
_ 2((@=p)I(w)* +3p((a = p)(w))* + p*(q = p)I (w)?
- 4(p— (g-p)(w)®
N q(g —p)I(w)*

2p? - 2p(q — p) (w) — q(g — p)I (w)*
_ 2(g=p)*I(w)* + p(g — p)(3¢ — 2p) [ (w)?

2(p—(g—p)(w))?
L q(q — p)I(w)?
2p? —2p(q — p)I(w) — q(q — p)I(w)?

_ dc(fg(u-‘)) N ﬂh(‘; (w)) _ I(I(w)).

Proof of the lemma is therefore completed.

Next, we state the convergence theorem second type.

Theorem 4.2. Let g € Flw] be a polynomial of degree q = 2 which splits over F', and let ( € F be a
zero of g such that the multiplicity of ( is p. Let wy € F satisfies the following initial conditions

Iwg) < 12 and 9(I(wp)) < (I (wp)), (42)
where the function I is defined in (29) and the function v is defined below as

P(u) =1 — u(l+ J(u)). (43)
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Then, the C-H Combined mean method is defined and converges to ¢ having the following error estimates

[Wins1 — €| < 0% [wy — ¢| and [wpi1 — €| < 0™ pE" D2 |wg — (| forall m > 0, (44)
] V(I (w
where 8 = (I (wo)) ond p = S4(22
Proof. Lemma (4.4) and Theorem (2.2) guarantees the proof. 0

5 Conclusion

In the first part of this study, we combine the Chebyshev and Halley methods to create a method
for solving nonlinear equations. Secondly, we have demonstrated the method’s local convergence for
multiple polynomial zero of a polynomial f over any normed field F.
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