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Abstract:  In this article the problem of solving the nonlinear heat equation is raised, this is one of many of 

which a solution can be found by making a change of variable, or by making a Taylor development around a 

point to work on, in our In the case it is a transport phenomenon whose equation is non-linear, the reason for 

being non-linear corresponds to the thermal conductivity of the material, which is a function of the temperature, 

which is what is generally found in all real cases, since few materials are one hundred percent pure. For this 

type of case in particular, a method is used which consists of modifying the thermal conductivity function using 

the Gustav Robert Kirchhoff transform, which has the purpose of reducing the nonlinear equation to a linear 

one. 
Background:In 1859, Gustav Robert Kirchhoff (1824-1887) obtained, from the second law of Thermodynamics, 

that objects cannot be differentiated by their thermal radiation at a given temperature. In 1860 Kirchhoff 

established the definition of the black body as capable of absorbing all the incident radiation, he even modeled 

it as a chamber with a small hole for the radiation to enter. 

Materials and Methods: The Gustav Robert Kirchhoff transformation is used to linearize the nonlinear 

equation, this nonlinearity occurs when the thermal conductivity depends on the temperature, an analytical 

solution of the linear equation is obtained, to make a graphic comparison with the nonlinear one. This will be 

applied to a bar of length0 ≤ 𝑥 ≤ 𝐿 = 10 𝑐𝑚, which is initially at a uniform temperature 𝑇 0, 𝑡 = 0 oC  and 

for x=L;𝑇 𝐿, 0 = 100o
C, where it is assumed that the thermal conductivity depends on the temperature 

linearly: 𝐾 𝑇 = 𝐾0(1 + 𝛽𝑇). 

Results: It is observed that the difference between the linear equation with the non-line where there are changes 

between them in temperature, another approximation could be made when the degree of non-linearity is 

increased. 

Conclusion:It is perceived that there is a significant increase in temperature in the nodes. Considering the 

temperature values, an indication is noted that the system is going to stabilize. For the case in which the 

conductivity is highly nonlinear, but K(T) admits a Taylor series expansion, the Kirchhoff transform is more 

complicated and the substitution in the nonlinear equation leads again to a nonlinear equation. 
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I. Introduction 
 There are an infinity of nonlinear partial and ordinary differential equations in which it is difficult to 

find a transformation or perform a Taylor expansion around a point in question to take it to a linear form and 

thus be able to solve it. 

 

II. Methodology 
The Gustav Robert Kirchhoff transformation is used to linearize the nonlinear equation, this 

nonlinearity is presented when the thermal conductivity depends on the temperature, you get analytic solution of 

the linear equation, to perform a graphical comparison with the nonlinear. 

 

We want to find numerically the integral in an interval given by Equation (1) 
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The equation that models the phenomenon of heat transfer with variable thermal conductivity is found in [1-5] 

and is given by: 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝛻 𝐾(𝑇)𝛻𝑇 + 𝑔           (1) 

 

where 𝜌, 𝐶𝑝 ,  Kdensity, specific heat and thermal conductivity, which are functions of temperature, and the term 

source of heat generation is independent of temperature g = g 𝑟 , 𝑡 . 
 

In order to solve this problem, we proceed as follows. The transformation K(T) is defined using the property 

given in [5]: 

 

𝑈 = 𝑈(𝑇) =  
𝐾(𝑇 ′ )

𝐾0

𝑇

0
𝑑𝑇 ′       (2) 

T = T 𝑟 , 𝑡 ,where 

Ko is the value of thermal conductivity for t=0. 

 

Equation (2) is called the Gustav Robert Kirchhoff transformation. Where K(T) is a function of temperature then 

Equation (1), can be written as: 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝐾(𝑇)𝛻2𝑇 + 𝛻𝐾(𝑇)𝛻𝑇 + 𝑔       (3) 

 

where it is obtained from 

𝛻𝐾(𝑇) =
𝑑𝐾(𝑇)

𝑑𝑇
𝛻𝑇                 (4) 

 

Substituting Equation (4) in Equation (1), is obtained: 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝐾(𝑇)𝛻2𝑇 +

𝑑𝐾(𝑇)

𝑑𝑇
 𝛻𝑇 2 + 𝑔       (5) 

 

In order to simplify Equation (5) using Equation (2) and Equation (4), for the function U(T) from K(T) we 

proceed as follows, from the Leibnitz rule we have 

 
𝑑

𝑑𝑡
  𝐹(𝜉, 𝑡)𝑑𝜉

𝑔(𝑡)

𝑓(𝑡)
 =  

𝜕𝐹(𝜉,𝑡)

𝜕𝑡

𝑔(𝑡)

𝑓(𝑡)
𝑑𝜉 + 𝑔′(𝑡)𝐹(𝑔(𝑡), 𝑡)) − 𝑓 ′(𝑡)𝐹(𝑓(𝑡), 𝑡)     (6) 

 

applying it Equation (6) to Equation (2) we have 

 
𝑑

𝑑𝑡
𝑈(𝑇) =

𝑑

𝑑𝑡
  

𝐾(𝑇 ′ )

𝐾𝑜
𝑑𝑇 ′𝑇

0
 =

1

𝐾𝑜
 

𝜕𝐾(𝑇 ′ )

𝜕𝑡

𝑇

0
𝑑𝑇 ′ +

𝐾(𝑇)

𝐾𝑜

𝑑𝑇

𝑑𝑡
− (0)

𝐾(0)

𝐾0
                                     (7) 

 

where  
𝑑𝐾(𝑇)

𝑑𝑡
= 0 then 

𝜕𝑈(𝑇)

𝜕𝑡
=

𝐾(𝑇)

𝐾𝑜

𝑑𝑇

𝑑𝑡
               (8) 

 

and from the fundamental theorem of integral calculus we obtain: 

 
𝑑

𝑑𝑡
  

𝐾(𝑇 ′ )

𝐾𝑜
𝑑𝑇 ′𝑇

0
 =

𝐾(𝑇)

𝐾𝑜
                                                           (9) 

resulting 

𝛻𝑈(𝑇) =
𝑑𝑈(𝑇)

𝑑𝑇
𝛻𝑇 =

𝐾(𝑇)

𝐾𝑜
𝛻𝑇                      (10) 

 

𝛻2𝑈(𝑇) = 𝛻  
𝐾(𝑇)

𝐾𝑜
𝛻𝑇 =

1

𝐾𝑜
 𝛻𝐾(𝑇)𝛻𝑇 + 𝐾(𝑇)𝛻2𝑇     (11) 

 

after Equation (4) we have 

𝛻2𝑈(𝑇) =
1

𝐾𝑜
 
𝑑𝐾(𝑇)

𝑑𝑡
𝛻𝑇 𝛻𝑇 + 𝐾(𝑇)𝛻2𝑇                 (12) 

 

𝛻2𝑈(𝑇) =
1

𝐾𝑜
 
𝑑𝐾(𝑇)

𝑑𝑡
 𝛻𝑇 2  + 𝐾(𝑇)𝛻2𝑇     (13) 
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and substituting Equation (8) and Equation (7) in Equation (5), we obtain 

 

𝜌𝐶𝑝
𝐾𝑜

𝐾(𝑇)

𝜕𝑈(𝑇)

𝜕𝑡
= 𝐾𝑜𝛻

2𝑈(𝑇) + 𝑔                (14) 

 
𝜌𝐶𝑝

𝐾(𝑇)

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛻2𝑈(𝑇) +

𝑔

𝐾𝑜
                       (15) 

 
1

𝛼

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛻2𝑈(𝑇) +

𝑔

𝐾𝑜
                            (16) 

 

𝛼 =
𝐾(𝑇)

𝜌𝐶𝑝
 finally remaining 

 
1

𝛼

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛼𝛻2𝑈(𝑇) +

𝛼

𝐾𝑜
𝑔           (17) 

 

where the thermal diffusivity α is a function of temperature [5]. Equation (11) is a simpler equation in 

its structure, since it is assumed that the variation of thermal diffusivity, with respect to temperature, is 

negligible, therefore it is an almost linear equation that can be solved without major problems. 

 

For example, taking the values of𝛼 = 𝑐𝑡𝑒; 𝛼 = 10 cm
2
/seg, with g = 0we have the problem in normal form, and 

using the given Gustav Robert Kirchhoff transform we have: 

 
1

𝛼

𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2 0 ≤ 𝑥 ≤ 10          (18) 

 

under frontier conditions 

 

𝑇(0, 𝑡) = 𝑇𝑜 = 0𝑜𝐶t>0            (19) 

 

𝑇(10, 𝑡) = 𝑇1 = 100𝑜𝐶t>0           (20) 

 

and initial condition 

 

𝑇(𝑥, 0) = 0𝑜𝐶fort = 0   (21) 

 

 

On the other hand, solving Equation (12) by the method of separation of separable variables we have [6-10]: 

 

𝑇(𝑥, 𝑡) = 100  

𝑥

10
+

2  
 −1 𝑛

𝑛𝜋
𝑠𝑒𝑛  

𝑛𝜋𝑥

10
 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1

        (22) 

 

For the second case when g=0 and α the thermal diffusivity varies linearly with respect to the temperature 

Equation (11), we have: 

 
1

𝛼

𝜕𝑈

𝜕𝑡
=

𝜕2𝑈

𝜕𝑥2 0 ≤ 𝑥 ≤ 10                  (23) 

 

under frontier conditions 

 

𝑈(0, 𝑡) = 𝑈𝑜 = 00𝐶                      (24) 

 

𝑈(𝐿, 𝑡) = 𝑈1 = 100 +
𝛽

2
 100 2 = 100(1 + 50𝛽)       (25) 

and initial condition 

 

𝑈(𝑥, 0) = 0𝑜𝐶                          (26) 

whose solution is: 
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𝑈(𝑥, 𝑡) = 100  

𝑥

10
 1 + 50𝛽 + 2 1 + 50𝛽 

 
 −1 𝑛

𝑛𝜋
𝑠𝑒𝑛  

𝑛𝜋𝑥

10
 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1

       (27) 

 

then the transformation from 𝑈(𝑥, 𝑡) to 𝑇(𝑥, 𝑡) will be given as follows [5]: 

 

𝑇(𝑥, 𝑡) =
1

𝛽
  1 + 2𝛽𝑈(𝑥, 𝑡) − 1  

 

𝑇(𝑥, 𝑡) =
1

𝛽

 
 
 
 
 

 

1 + 200𝛽

 
𝑥

10
 1 + 50𝛽 + 2 1 + 50𝛽  

 
 −1 𝑛

𝑛𝜋
𝑠𝑒𝑛  

𝑛𝜋𝑥

10
 𝑒

−𝑛2𝜋2𝑡

10∞
𝑛=1

− 1

 
 
 
 
 

     (28) 

 

For a particular case, the values of =10, =0.1 are taken, these are substituted in Equation (21), we have the 

expression of the temperature as 

 

𝑇(𝑥, 𝑡) = 100  
𝑥

10
+ 2  

 −1 𝑛

𝑛𝜋
𝑠𝑒𝑛  

𝑛𝜋𝑥

10
 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1     (29) 

 

 

III. Evaluations 
The following tables are shown evaluating Equation (21), for times t=2,2.4,6. 

 

Table no 1: Temperature distribution for t=2 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 7.2742 

2 14.8133 

3 22.569 

4 31.5995 

5 41.1567 

6 51.5826 

7 62.8344 

8 74.7908 

9 87.2604 

10 100 

 

 
Fig. 1.Shows the solution of the linear equation for t=2 seconds 
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Table no 2: Temperature distribution for t=2.4.  
Distance in cm Temperature in degrees 

0 0 

1 8.1601 

2 16.4998 

3 25.1815 

4 34.3343 

5 44.0412 

6 54.3314 

7 65.1769 

8 76.4952 

9 88.1572 

10 100 

 

 
Fig. 2. Shows the solution of the linear equation for t=2.4 seconds 

 

Table no 3: Temperature distribution for t=6 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 7.2742 

2 14.8133 

3 228569 

4 31.5995 

5 41.1567 

6 51.5826 

7 62.8344 

8 74.7908 

9 87.2604 

10 100 

 

 
Fig. 3. Shows the solution of the linear equation for t=6 seconds 

 

For the case when the thermal conductivity is variable, we have the series (13) up to the first three terms: 
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𝑇(𝑥, 𝑡) =
1

𝛽

 
 
 
 
 

 

1 + 200𝛽

 
𝑥

10
 1 + 50𝛽 + 2 1 + 50𝛽  

 
 −1 𝑛

𝑛𝜋
𝑠𝑒𝑛  

𝑛𝜋𝑥

10
 𝑒

−𝑛2𝜋2𝑡

10∞
𝑛=1

− 1

 
 
 
 
 

      (28) 

 

The tables are shown below using Equation (15), for times t=2, 2.4,6. 

 

Table no 4: Temperature distribution for t=2 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 21.1915 

2 33.3313 

3 43.3182 

4 52.3826 

5 60.9846 

6 69.309 

7 77.4078 

8 85.2633 

9 92.8166 

10 100 

 

 
Fig. 4. Shows the solution of the linear equation for t=2 seconds 

 

Table no 5: Temperature distribution for t=2.4.  
Distance in cm Temperature in degrees 

0 0 

1 22.8513 

2 35.6068 

3 45.8729 

4 54.9624 

5 63.3822 

6 71.362 

7 79.0013 

8 86.3298 

9 93.3386 

10 100 
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Fig. 5. Shows the solution of the linear equation for t=2.4 seconds 

 

Table no 6: Temperature distribution for t=6.  
Distance in cm Temperature in degrees 

0 0 

1 25.9677 

2 39.8795 

3 59.6913 

4 59.8608 

5 67.9713 

6 75.326 

7 82.1056 

8 88.4275 

9 94.3728 

10 100 

 

 
Fig. 6. Shows the solution of the linear equation for t=6 seconds 

 

Comparison between linear and nonlinear equation 

A comparison of the linear and non-linear equation will be made. 

 

Table no 7: Shows the results of Equations 27-28 for t=2 seconds.  
Distancein cm Equation 27 Equation 28 

0 0 0 

1 7.2742 21.1915 

2 14.8133 33.3313 

3 22.569 43.3182 

4 31.5995 52.3826 

5 41.1567 60.9846 

6 51.5826 69.309 

7 62.8344 77.4078 

8 74.7908 85.2633 

9 87.2604 92.8166 
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10 100 100 

 

The graphs of the linear and non-linear equation are shown to observe their behavior. 

 
Fig. 7. Temperature distribution from Equation 27-28 for t=2 seconds 

 

Table no 8: Shows the results of Equations 27-28 for t=2.4 seconds.  
Distance in cm Equation 27 Equation 28 

0 0 0 

1 8.1601 22.8513 

2 16.4998 35.6068 

3 25.1815 45.8729 

4 34.3343 54.9624 

5 44.0412 63.3822 

6 54.3314 71.362 

7 65.1769 79.0013 

8 76.4952 86.3298 

9 88.1572 93.3386 

10 100 100 
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Fig. 8. Temperature distribution from Equation 27-28 for t=2.4 seconds 

 

Table no 9: Shows the results of Equations 27-28 for t=6 seconds.  
Distance in cm Equation 27 Equation 28 

0 0 0 

1 9.9473 25.9677 

2 19.8997 39.8795 

3 29.8619 59.6913 

4 39.8377 59.8608 

5 49.8294 67.9713 

6 59.8377 75.326 

7 69.862 82.1056 

8 79.8997 88.4275 

9 89.9473 94.3728 

10 100 100 
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Fig. 9. Temperature distribution from Equations 14-15 for t=6 seconds 

 

IV. Results and Discussion 
In Fig. 7, 8 and 9 it is clearly shown how the difference that exists in the linear equation with the non-

line where there are changes in temperature between them, another approximation could be made when the 

degree of non-linearity is increased. 

 

V. Conclusion 
From the graphs it can be seen that there is a significant increase in temperature in the nodes. 

Observing the temperature values shows an indication that the system is going to stabilize. For the case in which 

the conductivity is highly nonlinear, but K(T) admits a Taylor series expansion, the Kirchhoff transform is more 

complicated and the substitution in the nonlinear equation leads again to a nonlinear equation. 

 

𝐾(𝑇) = 𝐾0  𝛽𝑛 𝑇 − 𝑇0 

𝑛

𝑛=0

𝑛

 

It remains as a case study when K(T) is of higher order than the first. 
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