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Some new characterizations on Abel rings
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Abstract. In this paper, some characterizations of Abel rings are introduced such as a ring R is an Abel ringif and
onlyifforanye,g E(R),eRE Rg=gR Re. Al3o, using the related decompositions of idempotent, we show that
R is an Abel ring if and only if every idempotent of R can be written uniquely the difference of an idempotent and
an involution. And, in term of the solutions of certain equation, we prove that R is anAbel ring if and only for any
e, g €E(R) and ¢ €R, when exg = ¢ has a solution, there is ¢ = gce. Finally, with the inner inverse of regular, we
show that R is an Abel ring if and only if for e € E(R), e(1) = {c —ec +e|c €R}.
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. Introduction

Let R be an associative ring with identity. The symbols E(R), N(R) and C(R) stand respectively for the
set of all idempotent elements, the set of all nilpotent elements and the center of R. If E(R)  C(R), then R is
called an Abel ring. Lee proved that reduced rings and semicommutative rings are both Abel ringsfl]. Liu et al.
showed that a rigid rings are reduced rings, so a  rigid rings are also Abel rings[2]. Wei and Li showed that a
ring R is an Abel ring if and only if R is a quasi-normal left idempotent reflexive ring[3]. Literature [4-6] have
showed some other rings associated with Abel rings. So Abel rings are very importantin ring theory. In recent
years, there already have been many characterizations of Abel rings. Han et al. showed that a ring R is an Abel
ring if and only if every idempotent of R is left semicentral[7]. Zhou et al. proved that a ring R is an Abel ring if
and only if ae = 0 implies ea = 0 for each e € E(R), a € N(R)[8]. Zhou
et al. proved that a ring R is an Abel ring if and only if 1 —xy € GPE(R) implies 1 — yx € GPE(R) for each
X, y € R[9]. In this paper, some new characterizations of Abel rings are given.

1. Properties of Abel rings

ag ap  ai a1n

(1 0 a0 axs - am )
Let R be a ring and Va(R) = 0 0 a o amlgoa;eR1<i<j<n _Then, with the usual
0 0 0-ipeeea

addition and multiplication of matrices, Va(R) forms a ring.
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e 00 0 )
Theorem 2.1. R is an Abel ring if and only if E(Vx(R)) = 0 0 e =
0 0 0
Proof. == Assume that R is an Abe,l ring. We use induction on n., 1
! ! 5 !
e e en e°  een + ene .
If n = 2, then for any E = 0 . CEEVAR), onehas , , = E=E= 0 &2 , this gives
¢ = eand e = eew + eve. Since R is an Abel ring and e € E\(R),e € C(R), it follows ez = 2ee1z and so
e 0
ee12 = 2een, this leads to eerz = 0. Hence ez = 0and E = 0 . withe€ L(R)
e 0 0 - 0
0 e 0 0 . E(R)
Now we assume that n > 2 and E(Va-i(R)) = 0 0 e 00. ¢ Set E =
0 0 O ............ e
6? €12 e13 ' Eln-1) E1n
€ By o Eppyy €y
0 0 e - em-1 em €EV R)).
n— n
0o 0 o0 0 D
| Qe dncfbosed=(ef e vy | erw-n  emw).
e €23 ' €m-1) €2n
0 e v ey, e
(n—1)
0 0 0 n
Ei=, 0 e e € Vui(R).
00 e UR) : !
o Noting that E2 = E. Then e a & e +2c:E1 , this gives
_ e2=e 0 E:
Then E = e« 0 E 1
0 Ea
a = ea+ aE:
E? = E
Hencee € E(R) € C(R) and E1 € E(Vu-1(R)).
e 0 0 0
. . . 0 e 0 0
By induction hypothesis, E1 = 0 0 . 0 I, a=ea+ aF1 = (ee1z  ee1s een) +
0 0 0-tieeep
e12e  e1ze |, ee), elj = eeyj +eye, | = 2,3, ,n Since e e15 = 0,7 =23, ,n, this
( ) j=23 Si c E(R) ¢ C(R) 0,j =23 hi
implies a = 0. -
e 0 0 0
| 0 e 0 0 o
HenceE= ¢ 0 0 0 e 0 |. We are done.
0 E1 = _
0 0 O ........... e
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e 0 0 - 0. )
( e 0 - 0 . Eg
<= Assume that E(V«(R)) = 0o 0 e - 0. ¢ .Foranye € E(R) and a € R, let
0 0 o e
e 0 0o - g—e
e o - 0
g = e+(l—e)ae. Theneg = ¢;ge = gand g2 = & ChooseE= 0 0 e 0 . ThenE € E(V«(R)),
0 0 0 ............ e

this implies g — e = 0 by hypothesis, it follows that (1 — e)ae = 0 for any a € R. Therefore R is Abel. I
Corollary 2.2. R is an Abel ring if and only if Vu(R) is an Abel ring.

Proof. It is an immediate corollary of Theorem 2.1. O

Theorem 2.3. R is an Abel ring if and only if eR N gR = eRg for any e,g € E(R).

Proof. == Assume that Ris an Abei ring and e, g € E(R). Then ¢, g € C(R), one obtains eRg = geR S eR N gR.
Now for any x € eR N gR, wehavex = ex = gx = xg = exg € eRg, which implies eR N gR < eRg Hence
eR N gR = eRg.
<= For any e € E(R), we have eR N (1 — )R = eR(1 —e), this gives eR(1 —e) = 0. Hence R is an Abel ring.
O

It is well known that R is an Abel ring if and only if eR = Re, for each e - E(R). Hence we have the
tfollowing proposition.

Proposition 2.4. R is an Abel ring if and only if for any e, g € E(R),eR N Rg = gR N Re.

Proof. The necessity is clear.

THe sufficiency: Let e € E(R) and a € R. Then g = e+(1—e)ae € E(R). By hypothesis, one has eRNRg = gRNRe.
Noting that g = ge and e = eg. Then g € gR N Re = eR N Rg, it tollows that g = eg = e. Hence (1 — e)ae = 0 for
any @ € R, which implies R is an Abel ring. O

Theorem 2.3 and Proposition 2.4 give the following corollary.
Corollary 2.5. R is an Abel ring if and only if for any e, g € E(R),eR N gR = gRe.

For any ¢, g € E(R), we have eg — ege € N(R). As for Abel rings, we can say more.
Proposition 2.6. R is an Abel ring if and only if for any e, g € E(R), eg — ege € E(R).

Proof. == It is obvious because eg — ege = 0 for any e, g € E(R).

<= Suppose thate € E(R)anda € R. Setg = e +ea(l — ¢). Then eg = g;ge = ¢ and g € E(R). By hypothesis,
we have eg — ege € E(R), that is, ea(1 —e) = g — e € E(R). However ea(1 —¢) € N(R). Hence ea(1 —¢) =0
frany a € R. Thus R is Abel[]

Proposition 2.7. R is an Abel ring if and only if e + xe — exe € C(R) for each e € E(R) and x € N(R).

Proof. == It is obvious because e + xe _exe = e cC(R) forany x R and e ¢ E(R).

<= Let e ¢ E(R) and @ € R. Then, by hypothesis, we have e + ((1 —e)ae)e —e(1 —e)ae)e ¢ C(R), that is,
+ (1 - e)ae e C(R). It follows that e + (1 —e)ae = e(e + (1 —e)ae) = e. Hence (1 —e)ae = 0 for each a ¢ R, this

shows that R is Abel. [

Let R be a ring and write CE(R) = {x ¢ R|xe = ex for each e ¢ E(R)}. Clearly, CE(R) is a subring of R and
C(R) c CE(R). Evidently, R is an Abel ring if and only if CE(R) = R. Observing the proof of Proposition 2.7,
we have the following corollary.

Corollary 2.8. R is an Abel ring if and only if e + xe — exe € CE(R) for each ¢ € E(R) and x € N(R).
Observing e + xe — exe = (e + xe — ex)e, this implies us to give the tollowing proposition.
Proposition 2.9. R is an Abel ring if and only if e + xe — ex € CE(R) for each e € E(R) and x € N(R).

Proof. == Itis evident by Corollary 2.8.

<= Assume that e+xe—ex € CE(R) for eache € E(R) andx € N(R), Then e+xe—exe = (e+xe—ex)e = e(e+xe—ex),
it follows that xe — exe = exe — ex. Multiplying the equality by e on the left. One has exe — ex = exe — exe =
OHence ex = exe, this gives e + xe — exe = ¢ + xe — ex € CE(R). By Corollary 2.8, we have R is Abell]

Let g € E(R) and choose x = (1 —e)ge. Then x € N(R) and ex = 0, it follows thate+xe —ex = e+ (1 —e)ge =
(e + g — eg)e. Hence Proposition 2.9 leads to the following corollary.
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Corollary 2.10. R is an Abel ring if and only ife + g — eg € CE(R) for any e, g € E(R).
Corollary 2.10 implies us to give the following proposition.
Proposition 2.11. R is an Abel ring if and only ife + g — eg € E(R) for any e,g € E(R).

Proof. == Tt is routine.

<= Assume thate € E(R)anda € R. Setg=1—e+ea(l —e). Theneg = ea(l —¢), ge = 0 and = g By
g

hypothesis, g + e~ ge = E(R), which implies eg = 0. Hence ea(l —e¢) = 0 for each a ¢ R, this shows R is

Abel. O

LetRbearing ande, g c E(R). Definee 4g = e+g _eg ItRis an Abel ring, thene yg - E(R) by Proposition
2.11. Hence we have the following corollary.

Corollary 2.12. R is an Abel ring if and only if (E(R), *) is a semigroup.

3. decompositions of idempotents

Theorem 3.1. R is an Abel ring if and only if every idempotent of R can be written uniquely the difference of an
idempotent and an involution.

Proof. == Assume that R is an Abel ring and e € E(R). Then e = (1 — ¢) — (1 — 2¢) is the differenced
an idempotent and an involution. Now let e = g — u, where gis idempotent and « is involution. Then
g—u=e=é€e=(g—uf=g—gu—ug+ u’=g— gu— ug+ 1. Since Ris Abel, gu = ug, it follows
that u = 2gu— 1, thisgives 2g— lju=l,u=(2g—1)'=2g—l,soe=g—u=g—(2g—1)=1—g
Henceg=1-—e¢

andu=2g—1=2(1—-¢)—1=1-—2e.

&= Suppose that e € E(R). Fora € R. Set g = ¢ — ea(l — ¢). Then eg = g, ge = e,g = g Since
(ea(l —e)+1 _2e)* = 1,ea(l —e) +1 —2eisinvolution. Since (1 —g) {1 2g)=g=(1 eL (ea(l e+1 2e),
by hypothesis, wehavel —g=1 —eand 1 —2g = ea(l —e) + 1 —2e. Hence ea(1 —e) = 0 for any a ¢ R, it
follows that R is Abel. O

Theorem 3.2. R is an Abel ring if and only if every idempotent of R can be written the product of uniquely idempotent
and an involution.

Proof. == Assume that R is an Abel ring and e g E(R). Then e = e(2e —1), where 2e —1 is an involution.
Now let e = gu, where g2 = g, u>=1. Thenge = g2u = gu = e. Sinceeu = gu’> =gl = g eg = ¢’u = eu = g.
Noting that R is an Abelring. Thene € C(R)and g =eg = ge = e.

«<=Supposethate € E(R). Fora € R. Setg = e—ea(1—e). Theneg = g,ge = ¢, = & Since(2e—1—ea(l—e)y> = 1,
g

s02e — 1 — ea(1 — e) is involution. Since g = e(2e — 1 — ea(1 — ¢)) and g = g(2g — 1), where 2g — 1 is indin
By hypothesis, we have g = e . Hence ea(1 — ¢) = 0 for any a € R, it follows that Ris Abel. [

Let Rbe aring and u ¢ R. If there exists an integer n > 1 such that ™ = 1, then u is called a generalized
involution of R.

Theorem 3.3. R is an Abel ring if and only if every idempotent of R can be written uniquely the sum of a generalized
involution and an idempotent .

Proof. == Assume that R is an Abel ring and e cE(R). Thene = (1 —e¢) + (2e— 1), where 1 e s idempotent
with (2e 1)> = 1. Now lete = g+ u, whereg? =g, u" = 1. Theng+u =e = ¢ = (g+ u)’ = g+ 2gu + u? thatis
(1 2gu=1thus(l 29u*'=u"=1 Hencew*'=1 2gandl=u"=(1 2gu Thusu=1 2ge=
g+ru=g+llg=lgg=leu=121le =21 — —

«= Suppose that ec E(R). Forany ac R. Setg = e ea(l-¢). Then (L. g)+(2g— 1) = g = (L e)+(2e— 1 _ea(l_¢))
is two decompositions ot g. Thus

l—g=1—¢
2g—1=2¢e—1—ea(l—¢)
. Hence ea(1 — ¢) = 0 for any a € R, it follows that R is Abel. O

Let R be a ring and e,g ¢ E(R). Assume thate +g = 1 and eg = ge = 0, then e, g are called a pair of
orthogonal idempotents of R.
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Theorem 3.4. R is an Abel ring if and only if for any e, g of a pair of orthogonal idempotents and x € R, When x* = 0
and (e + x)(g — x) = 0, thereis x = 0.

Proof. == Since 0 = (¢ + x)(g —x) = eg —ex + xg —x? = _gx + xg, that is ex = xg. By hypothesis, R is Abel, so
ex = e(ex) = (ex)e =xge = 0. Hencexg=0andx =xl =x(e + g) =xe + xg = ex + xg = 0.

<= Suppose thate € E(R),a € Rand (e + ea(1 — ¢))(1 — e — ea(1 — ¢)) = 0. eand 1 — ¢ are a pair of abverd
idempotents of R with (ea(1 — €))*> = 0. By hypothesis, ea(1 — e) = 0, it follows that R is Abel. O

4. Solutions of equation

Theorem 4.1. R is an Abel ring if and only for any e, g € E(R) and ¢ ¢ R, when exg = c has a solution, there is
c = gee.

Proof. == Assume that exg = ¢ has a solution x = d, then ¢ = edg, hence ecg = c. By hypothesis, R is Abel,
soe, g € C(R). Hence ¢ = ecg = gce.

<= Suppose that e € E(R),a € R. Set ¢ = ea(l — ¢), then the equation ex(1 — €) = ¢ has a solution x = a. F
hypothesis, ¢ = (1 — e)ce = (1 —e)ea(l — e)e = 0. Hence ea(1 —e) = 0 for any a € R, it tollows that R is Abell

Corollary 4.2. R is an Abel ring if and only for any e, g, f € E(R), when exg = f has a solution, there is f = gfe.

Proof. == Tt tollows from Theorem 4.1.

<= Suppose that e € E(R),a € R. Setg=e+ea(l —e), theneg = g ge = ¢ and g2 = g. Since the equation

exg = g has a solution x = ¢, by hypothesis, g = gge = g¢ = e. Hence ea(1 _ €) = 0 for any a ¢ R, it follows
that Ris Abel. O

Theorem 4.3. Ris an Abel ring if and only if xy — yx € ZE(R) forany x,y € R.

Proof. == Assume that R is an Abel ring, then ZE(R) = R, hence xy — yx € ZE(R) for any x,y € R.
?ﬁé@%’f":t!}ﬁﬁ"—f Eﬂ%ﬂfs%fyééifatl}?%ﬁfé%\rs—ﬂﬁﬁa%@ﬂba.EDD— (a(l — e))e € ZE(R). Hence ea(l — &
e e)e a

Theorem 4.4. R is an Abel ring if and only if for e € E(R) and x € R, there exists an integer n = 1 such that
ex" — x"e = 0.

Proof. == Tt is obvious.
<= Suppose that e € E(R). Foranya € R, setg = e —ea(l — €). Theneg = g,ge = ¢, = g. By hypothesis,

there exists an integer n = 1 such that eg* — g*e = 0. Hence g = eg = eg* = g'¢ = ge = e. Thus ea(1 — ) =0
tor any a € R, it follows that R is Abel. 1

Let Rbe aring and a € R. If there exists & € R such that a = aba, then a is called a regular element of R.

Seta(l) = {x € Rlaxa = a}. Suppose thate € E(R), theneisaregularelement of R ande(1) = {c—ece+elc € R}
Theorem 4.5. R is an Abel ring if and only if for e € E(R), e(1) = {c — ec + e|c € R}.
Proof. == Itis obvious.
_ 2 = Since
<= Suppose that e € E(R). Foranya € R, set g = e + ea(l — ). Then eg = g,ge = ¢ &

o8¢ = gé = e, then g € e(1). By hypotliesis, e(lj ={c—ec+elc € R} thatisg=c —ec +e, whé’rge ¢ € R. Hence
g=eg=e(c—ec+e) =e Thusea(l —e) = 0 for any a € R, it follows that R is Abel. [
1
Theorem 4.6. R is an Abel ring if and only if for any e, g € E(R), when ; is a regular element, then ge = eg.
!
Proof. == Assume that (x,y) € ; (1). Then
! ! !
e e exe + eyg

L .
g g @ ) g T gxe + gyg

Thus
e = exe + eyg
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§ = gre + gig
eg = exeg + eyg
By hypothesis, R is an Abel ring, then e, g € C(R). Theretore
eg = gxe + eyg
ge = gxe + eyg
Thus
€g = ge

<= Suppose thate € E(R). For anya € R, setg = ¢ + (1 — e)ae. Then

eg=e¢
ge=8

, gl:g

N ) 1 ]

€0 ° _ ¢ _ ¢
g ge g

By hypothesis, ge = eg, thus g = e, this gives (1 — e)ae = 0 for any a € R. Hence R is Abel. [
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