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In memory of the great professor, the physicist and mathematician, Moshé Flato.
I- INTRODUCTION, RECALL, NOTATIONS AND DEFINITIONS

Prime numbers [See 4, 5, 6, 7, 8] are used especially in information technology, such as public-key
cryptography which relies on factoring large numbers into their prime factors. And in abstract algebra, prime
elements and prime ideals give a generalization of prime numbers.

In mathematics, the search for exact formulas giving all the prime numbers, certain families of prime numbers
or the n-th prime number has generally proved to be vain, which has led to contenting oneself with approximate
formulas [8].

Recall that Mills' Theorem [8]: "There exists a real number A, Mills' constant, such that, for any integer n > 0,

o
the integer part of A isa prime number" was demonstrated in 1947 by mathematician William H. Mills [11],
assuming the Riemann hypothesis [4, 5, 6,7] is true. Mills' Theorem [8] is also of little use for generating prime
numbers.

The purpose of this article is to to give a new proof of the Riemann hypothesis [4]. by y introducing § a new
extension of the of the Riemann zeta function

Theorem :The real part of every nontrivial zero of the Riemann zeta function is 1/2.

The link between the function ¢ and the prime numbers had already been established by Leonhard Euler with
the formula [5], valid for R(8)>1 .
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where the infinite product is extended to the set P of prime numbers. This formula is sometimes called the
Eulerian product.

— (1_ nl-s
And since the Dirichlet eta function can be defined by n(s)=(1-2"7)¢(s) where :
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We have in particular :

Let S XHY yith 0<R(9)<1
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1£$ (8)=0 then and since the non-trivial zeros of ¢ (9= 0 are

X=1

symmetric with respect to the line 2 pecause the zeta function satisfies the functional equation [ 4, 6] :

(9= 2Sn5‘1sjn("7s)r(1— 9){ (1- 9)

1 1 .
X=Z+d s'==-a+iy .
then 2 andif 2 then § (8')=0
1 |—| 1 -0
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But the function (1+e )+(e ) is increasing in [0,1] . SO (1+e ) +(e )
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is holomorphic : because :
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as we have :

with A=1=1 50g B==17 1 and both
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But( see Lemma 1 [6]) :

f
We deduce that the series Z pl FI converges normally on any compact of
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p , Where K is a positive real constant.
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consequently PP 1~ Alp is holomorphic in 2
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In the same way

|fa¢0

, then the holomorphic function

is holomorphic in

1
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=

will be null (because null on is
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null in 27 Let's show that this is impossible:
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. So for the same reason as above, the application:

1
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is holomorphic in the open quasi-disc with
2€C\{1}, R(2)= %

Let's extend the function § by setting:

For zeC\{1}%(2)> 2 and V S€E Rwiths <Osuch asR(s+2)=0

ScCia)=[]

P s
P 1- C/(q P) (where q is a prime number, and C is such that ICI= \b )

In particular we have :

A=

P
- A/(q pz) (where q is a prime number)

z€{zE R\{1}, 7>}
But for 2 we have :

[oer

It follows that :
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8A/q)=0
50 -AX)=0,v XeD

And consequently :

§D(D=¢()=0 ¥ ze{zeC\{1}, %(2)>3)

which is absurd, so 9 = 0 , hence the Riemann hypothesis.
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