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In memory of the great professor, the physicist and mathematician, Moshé Flato. 
 
I- INTRODUCTION, RECALL,  NOTATIONS AND DEFINITIONS 

Prime numbers [See 4, 5, 6, 7, 8] are used especially in information technology, such as public-key 

cryptography which relies on factoring large numbers into their prime factors. And in abstract algebra, prime 

elements and prime ideals give a generalization of prime numbers. 

In mathematics, the search for exact formulas giving all the prime numbers, certain families of prime numbers 

or the n-th prime number has generally proved to be vain, which has led to contenting oneself with approximate 

formulas [8]. 

Recall that Mills' Theorem [8]: "There exists a real number A, Mills' constant, such that, for any integer n > 0, 

the integer part of  A
3

n

  is a prime number" was demonstrated in 1947 by mathematician William H. Mills [11], 

assuming the Riemann hypothesis [4, 5, 6,7] is true. Mills' Theorem [8] is also of little use for generating prime 

numbers. 

The purpose of this article is to to give a new proof of the Riemann hypothesis [4]. by y introducing  Ŝ a new 

extension of the of the Riemann zeta function  

 

Theorem :The real part of every nontrivial zero of the Riemann zeta function is 1/2. 

The link between the function ζ    and the prime numbers had already been established by Leonhard Euler with 

the formula [5], valid for  ℜ(s)>1   : 

 

 

ζ (s)=∏ p∈P

1

1− p
− s
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1

(1−
1
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1

3
s
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1
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where the infinite product is extended to the set 
P

  of prime numbers. This formula is sometimes called the 

Eulerian product. 

And since the Dirichlet eta function can be defined by  
η (s)= (1− 21− s)ζ (s)

  where : 

η (s)=∑
n= 1

∞ (− 1)
n− 1

n
s

 

We have in particular :  

ζ (z)=
1

1− 2
1− z

∑
n= 1

∞

(− 1)n− 1

n
z

 for 0<ℜ (z)<1 

 

Let  s= x+iy , with 0<ℜ(s)<1  

 

ζ (s)ζ (s)=∏p∈P

1

1− p− s

1

1− p− s
=∏p∈P

1

(1− e− xln(p)cos( yln( p)))2+(e− xln( p)sin( yln( p)))2
 

 

 

 

But :

∏p∈P

1

(1− e− xln( p)cos( yln( p)))2+(e− xln( p)sin( yln( p)))2
≥∏p∈P

1

(1+e− xln( p))2+(e− xln( p))2

 

 

If ζ (s)= 0 , then 

∏p∈P

1

(1+e− xln(p))2+(e− xln( p))2
= 0

 and since the non-trivial zeros of ζ (s)= 0  are 

symmetric with respect to the line 
X=

1

2    because the zeta function satisfies the functional equation [ 4, 6] : 

 

 

ζ (s)= 2
s
π

s− 1
sin(

π s

2
)Γ(1− s)ζ (1− s)

 

 

then 
x=

1

2
+α

, and if 
s'=

1

2
− α +iy

, then ζ (s' )= 0  

 

 

 

But the function  

1

(1+e
− tln( p)

)
2
+(e

− tln(p)
)
2

   is increasing in 
[ 0,1]

, so  

∏p∈P

1

(1+e
− tln(p)

)
2
+(e

− tln( p)
)
2
= 0
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∀ t∈[
1

2
− α ,

1

2
+α ]

 

 

As 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2

is holomorphic : because : 

 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2
=∏p∈P

1

1− A/ pz

1

1− B/ pz

  with  A= i− 1  and B=− i− 1, and both  

∏ p∈P

1

1− A/ p
z

  and  
∏ p∈P

1

1− B/ p
z

   are holomorphic in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

 

 

 

 as we have : 

 

∏ p∈P

1

1− A/ p
z
=∏ p∈P

1+f p( z)
 with 

f p(z)=
1

(p
z
/ A)− 1

. 

 

 

 

|f p(z)|≤
1

|pz
/ A|− 1

=
1

( p
ℜ(z)

/√2)− 1
≤

k

p
1

2
, where k is a positive real constant. 

So 

|∑ p∈P ,p= N

∞

f p(z)|≤ k|∑ p= N

∞ 1

n
1

2|= k|ζ N(
1

2
)|

 

But( see Lemma 1 [6]) : 
ζ N (

1

2
)= oN (1)

 

We deduce that the series 
∑

p
|f p|

  converges normally on any compact of 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

 and 

consequently 

∏ p∈P

1

1− A/ p
z

  is holomorphic in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

 

 

In the same way    

∏ p∈P

1

1− B/ p
z

  is holomorphic in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

  

If 
α ≠ 0

, then the holomorphic function 

∏p∈P

1

(1+e− zln( p))2+(e− zln( p))2
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 will be null (because null on  
]
1

2
,
1

2
+α ]

 ), and it follows that 

∏ p∈P

1

1− A/ p
z

  or 

∏ p∈P

1

1− B/ p
z

  is 

null in 
{z∈ℂ∖{1} ,ℜ (z)≥

1

2
}

. Let's show that this is impossible: 

 

 

 

If 

∏ p∈P

1

1− A/ p
z
=∏ p∈P

1+f p( z)= 0
 with 

f p(z)=
1

(p
z
/ A)− 1

. 
∀ z∈ℂ∖{1} ,ℜ(z)≥

1

2  

 . So for the same reason as above, the application: 

   

 

Ŝ : 

X→∏ p∈ P

1

1− X / p
z

  is holomorphic in the open quasi-disc D= {X∈ℂ ,0<|X|<√2}  with 

z∈ℂ ∖{1},ℜ(z)≥
1

2   

   

Let's extend the function Ŝ by setting: 

For 
z∈ℂ ∖{1},ℜ(z)>

1

2  and  ∀ s∈ℝwiths ≤ 0such asℜ(s+z)≥ 0   

 

Ŝ(C/qs)=∏p∈P

1

1−C/(qs pz)
  (where q is a prime number, and C is such that |C|=√2  )   

 

In particular we have : 

 

Ŝ( A/qs)=∏ p∈P

1

1− A/(qs pz)
 (where q is a prime number)   

 

But for  
z∈ {z∈ℝ∖{1} ,z>

1

2
}

we have : 

∏p∈P| 1

1− A/(qs pz)|≤∏p∈P| 1

1− A/( pz)|
 

 

It follows that : 
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Ŝ( A/qs)= 0

 
 

   

 So :
Ŝ( X)= 0,∀ X∈D

 

   

   

    

  And consequently : 

    

      

Ŝ(1)(z)= ζ (z)= 0 ∀ z∈ {z∈ℂ ∖{1},ℜ(z)>
1

2
}
 

   

 

 

   

   which is absurd, so α = 0 , hence the Riemann hypothesis.  
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