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Abstract:   
Background: Most of the classical distributions of count data available in the literature have a univariate 

weighted Poisson version. This family of weighted Poisson distributions is therefore very useful for dealing with 

all forms of dispersion as a function of the data. The bivariate case has also been studied by Elion et al, and 

Nganga et al.  

Methods: In this paper, we propose the generalization of weighted Poisson distributions to n-variables by 

constructing its multivariate probability density via the product of conditional distributions. We also present the 

structure of its variance-covariance matrix and the estimation of the model parameters. After proposing some 

special cases of discrete multivariate distributions, an application is made to a trivariate weighted Poisson model 

with real data on the multiplicity of malaria infections.  

  About the application after choice of the model, one found that the outcome variables are effectively dependent 

to each other, and the correlations are positive and negative. Therefore, the effect of the dose of Sulfadoxine 

Pyrimethamine (SP) taken express a better causality by modeling together all the multiplicity of infection from 

the three compartments.   

Conclusion: It is shown that the proposed multivariate weighted Poisson distribution allows classical discrete 

distributions to be combined and even manipulated more easily than some existing models.  
Key Word:  Weighted Poisson, dispersion index, marginal distribution, generalized linear model. 
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I. Introduction 
Weighted Poisson distributions are known to offer a flexible selection of the standard family of 

probability distributions useful for modelling random discrete data. From Fisher [1], Rao[2], to today, it has been 

shown that the way in which data from real phenomena is collected affects the distributions followed by that 

discrete data. We therefore need to carefully choose the weighted function to deal with the dispersion of the data 

when verifying and confirming the model. It is worth remembering that the ratio of variance to mean, commonly 

known as the Fisher dispersion index (DI), is the key parameter used to define underdispersion (DI < 1), 

equidispersion (DI = 1) and overdispersion (DI > 1) in the case of a univariate distribution. And that the weighted 

discrete random variable 𝑌𝑤 follows a weighted Poisson distribution(WPD) if its probability mass function (pmf) 

is given by[3],  

 

𝑃(𝑌𝑤 = 𝑦) = 𝑝𝑤(𝑦; 𝜃) =
𝑤(𝑦)𝑝(𝑦; 𝜃)

𝐸𝑤[𝑤(𝑌)]
.  
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Where 𝑝(𝑦; 𝜃) =
𝜃𝑦

𝑦!
𝑒−𝜃 is the pmf of the Poisson distribution with parameter θ > 0 followed by the 

random variable 𝑌 ∈  ℕ. Note that w(y) is the non-negative weight function and that 𝐸𝜃  denotes the 

mathematical expectation with respect to 𝑝(y;  θ), i.e.,  

𝐸𝜃[𝑤(𝑌 )]  =  ∑ 𝑤(𝑦 )𝑝(𝑦 ;  𝜃) 

∞

𝑦=0

<  ∞. 

This weighted distribution is characterized by certain properties, such as its mathematical expectation and 

its variance, which are given by Kokonendji, Mizère and Balakrishnan respectively[4]. 

 

𝐸𝜃[𝑌𝑤] =  𝜃 (1 +
𝑑

𝑑𝜃
𝑙𝑛𝐸𝜃[𝑤(𝑌 )]) ; (0) 

𝑉𝑎𝑟(𝑌𝑤) =  𝐸𝜃[𝑌𝑤] + 𝜃2
𝑑2

𝑑𝜃2
ln 𝐸𝜃[𝑤(𝑌 )]. 

Due to their wide applicability to real phenomena in different areas of life, a fact that could be attributed 

to the aforementioned interpretation, several univariate or bivariate weighted Poisson derivative distributions have 

been widely investigated in the literature (e.g., Efron[5] ; Cameron and Johansson[6] ; Ridout and Besbeas[7] ; 

Castillo and Pérez-Casany[8], [9] ; Kokonendji, Mizère and Balakrishnan[4]; Bohm and Zech[10] ; Balakrishnan, 

Koutras , and Milienos[11]; Elion et al[12]; Nganga et al[13]). In general, discrete data source phenomena of 

interest in biomedical involve the examination of more than one measure at a time, of relationships between 

measures and comparisons between them. However, certain multivariate Poisson distributions (MPD) have been 

introduced to meet this need. These distributions deal with the case where all the explained variables follow the 

univariate Poisson distribution. Most of the proposed MPD allow positive correlation (see, for example, 

Kawamura[14]; and Kokonendji and Puig[15]). Starting from the limit of the multivariate Poisson distribution 

proposed by Kokonendji and Puig, via the framework defined by Berkhout and Plug[16], there is recently a MPD 

constructed by crossing the conditional univariate Poisson distribution to allow zero and negative correlation with 

the pmf defined as (see, Mizélé Kitoti, Bidounga and Mizère[17]): 

 

𝑃(𝑌1 =  𝑦1, … , 𝑌𝑘 =  𝑦𝑘) = ∏
[𝜃𝑖(𝑦1, … , 𝑦𝑖−1)]𝑦𝑖 𝑒−𝜃𝑖(𝑦1,…,𝑦𝑖−1)

𝑦𝑖!
;  ∀ i =  2, … , k; ∀(𝑦1, . . . , 𝑦𝑖−1) ∈  ℕ𝑘.

𝑘

𝑖=1

(1) 

However, some counting events may combine two or more discrete variables, some of which are not 

necessarily standard Poisson variables, but rather over-dispersed (under-dispersed) counts. The equality of the 

mean and variance for each 𝑌𝑖 in the MPD makes it very restrictive, and so more flexible models are often sought. 

Therefore, in this paper, we mainly focus on the construction of a new multivariate weighted Poisson distribution 

(MWPD) using the same framework as Elion[12] and Mizélé[17] in order to extend their work and introduce a 

generalized multivariate model based on discrete weighted explained variables. 

Indeed, to our knowledge, no work of this kind has been suggested in the literature to date. In section 2, 

we construct the mass function and estimate the classical parameters and the structure of its variance-covariance 

matrix. Section 3 is devoted to the study of the multivariate Fischer dispersion index and to the presentation of 

some examples of special cases of multivariate classical laws. Section 4 presents the application to malaria data. 

In fact, among pregnant women, the multiplicity of infection of the P. Falciparum seems to be linked to the dosage 

of intermittent treatment in a univariate manner in peripheral blood, umbilical cord blood and placental blood. We 

therefore plan to examine the situation in a trivariate manner by pooling the three compartments. section 5 

concludes by presenting some keys results.  

 

II. Multivariate weighted Poisson distribution  
Constructing the model.  

Starting from Berkhout’s framework[16], we find a rational way to generalize the concept to weighted 

Poisson variables by approaching it from a probabilistic point of view to obtain the results below. 

 

 Lemma 2.1.1. Let  (𝑌1
𝑤1 , … , 𝑌𝑠

𝑤𝑠) ∈  ℕ𝑠,  ∀ s > 1, be a s-dimensional random vector of weighted Poisson 

variables depending on the canonical parameters (θ1, . . . , θ𝑠)  ∈  ℝ𝑠∗+  and having ∀ i ∈  {1, . . . , s}, w𝑖(y𝑖  ) a 

weighted function. For all variables 𝑌𝑖
𝑤𝑖  we can define a conditional distribution whose probability density 

function is expressed as follows, 

𝑃( 𝑌𝑖
𝑤𝑖 = 𝑦𝑖 𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1⁄  ) =
𝑤𝑖(𝑦𝑖)

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

 
[𝜃𝑖(𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1)]
𝑦𝑖 𝑒−𝜃𝑖(𝑌1

𝑤1 ,𝑌2
𝑤2 ,…,𝑌

𝑖−1

𝑤𝑖−1)

𝑦𝑖!
. (2) 
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In fact, 𝜃𝑖 is taken as the dependency parameter of  𝑌𝑖
𝑤𝑖  over all given variables 𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1 . The 

step-by-step modality shift from 𝑦2 to 𝑦𝑠 in the expression (2) leads to the following pmf, 

 

𝑃( 𝑌𝑖
𝑤𝑖 = 𝑦𝑖 𝑌1

𝑤1 = 𝑦1, … , 𝑌𝑖−1
𝑤𝑖−1 = 𝑦𝑖−1⁄  ) =

𝑤𝑖(𝑦𝑖)

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

 
[𝜃𝑖(𝑦1 , … , 𝑦𝑖−1)]𝑦𝑖  𝑒−𝜃𝑖(𝑦1,…,𝑦𝑖−1)

𝑦𝑖!
; 

 ∀ 𝑖 =  2, . . . , 𝑠 ;  ∀ 𝑦𝑖 ∈  ℕ. 
Obviously, the above expression can be simplified, 

𝑃( 𝑌𝑖
𝑤𝑖 = 𝑦𝑖 𝑌1

𝑤1 = 𝑦1 , … , 𝑌𝑖−1
𝑤𝑖−1 = 𝑦𝑖−1⁄  ) =

𝑤𝑖(𝑦𝑖)

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

 
[𝜃𝑖]

𝑦𝑖  𝑒−𝜃𝑖

𝑦𝑖!
;  ∀ 𝑖 =  2, … , 𝑠 ;  ∀ 𝑦𝑖 ∈  ℕ. (3) 

By inference on the weighted Poisson variable (see for example Nganga et al[13]), this conditional 

distribution is characterized by the mean and variance such that, 

𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖 𝑌1
𝑤1 , 𝑌2

𝑤2 , … , 𝑌𝑖−1
𝑤𝑖−1⁄  ] =  𝜃𝑖 (1 +

𝑑

𝑑𝜃𝑖

𝑙𝑛𝐸𝜃𝑖
[𝑤(𝑌𝑖)])

 

; (4) 

𝑉𝑎𝑟(𝑌𝑖
𝑤𝑖 𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1⁄ ) =  𝐸𝜃𝑖
 [𝑌𝑖

𝑤𝑖] +  𝜃𝑖
2 𝑑2

𝑑𝜃𝑖
2  𝑙𝑛𝐸𝜃𝑖

[𝑤(𝑌𝑖  )]. 

Similarly, its probability generating function (pgf) and its moment generating function (mgf) are 

respectively summarized by the formulae, 

 

𝐺
𝑌

𝑖

𝑤𝑖(𝑡) =
𝑒𝜃𝑖(𝑡−1)𝐸𝑡𝜃𝑖

[𝑤𝑖(𝑌𝑖  )]

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

, 

 and  

𝑀
𝑌

𝑖

𝑤𝑖(𝑡) =
𝑒𝜃𝑖(𝑒𝑡−1)𝐸𝑒𝑡𝜃𝑖

[𝑤𝑖(𝑌𝑖  )]

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

, −1 < 𝑡 ≤ 1. 

 

Theorem 2.1.1. ∀ s > 1, the combination of weighted counts (𝑌𝑖
𝑤𝑖) , i =  2, . . . , s, having a conditional 

distribution as shown above (see Lemma 1), produces a joint distribution expressed as follows: 

𝑃( 𝑌1
𝑤1 = 𝑦1, 𝑌2

𝑤2 = 𝑦2, … , 𝑌𝑖
𝑤𝑖 = 𝑦𝑖  ) = ∏

𝑤𝑖(𝑦𝑖)

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖  )]

 
[𝜃𝑖]

𝑦𝑖 𝑒−𝜃𝑖

𝑦𝑖!

𝑠

𝑖=1

; (5) 

 

With by convention for 𝑖 = 1,  𝜃1(𝑦0) = 𝜃1.  
The conditional distributions built in Lemma 1 are univariate weighted Poisson distributions with values 

between 0 and 1. So, the finite product of these distributions in ℕ gives a maximum sum of one. This clearly 

proves that this is a probability distribution. 

Definition 2.1.1. The s-dimensional random vector of dependent weighted Poisson variables 

𝑌𝑤 = (𝑌1
𝑤1 , … , 𝑌𝑠

𝑤𝑠) follows a multivariate weighted Poisson distribution if its joint distribution can be given as 

the function (5). With  𝑤𝑖(𝑦𝑖) its weighted function and 𝐸𝜃𝑖
 its mean with respect to the distribution of 𝑌𝑖 as the 

normalization constant in 𝜃𝑖.   

 

Generalized log-linear model. 

The linear model combines a linear variance function and a logarithmic linear relationship between the 

means and the covariates. Undoubtedly, for any permutation, one can derive from the joint distribution a marginal 

weighted Poisson distribution and 𝑠 − 1 conditional weighted Poison distributions WPD(𝑌𝑖
𝑤𝑖; 𝜃𝑖),  which belong 

to the family of regular exponential distributions and are maximum entropy distributions about the sufficient 

statistics. In addition, WPD(𝑌𝑖
𝑤𝑖; 𝜃𝑖), can be used in generalized linear models with covariates 𝑥𝑇 =

(𝑥1, 𝑥2, … , 𝑥𝑛) in log-linear models where the variance function is assumed to be linear. Obviously, the linearity 

of the variance function is verified for the Poisson distribution, but for a conditional weighted Poison distribution 

WPD(𝑌𝑖
𝑤𝑖 ; 𝜃𝑖 ), the variance function is almost linear over a wide range of mean parameters. Consequently, its 

mathematical expectation can be formulated as follows,    

 

𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖 𝑌1
𝑤1 , 𝑌2

𝑤2 , … , 𝑌𝑖−1
𝑤𝑖−1⁄  ] = 𝜇𝑖 =  𝜃𝑖(1 + 𝛼𝑖). (6) 

With 𝛼𝑖 =
𝑑

𝑑𝜃𝑖
𝑙𝑛𝐸𝜃𝑖

[𝑤(𝑌𝑖)] ∈ ℝ+.  

Of course, this parameter 𝜇𝑖  which is a function of 𝜃𝑖  can in turning vary according to the covariates of 

the regressor 𝑥 expressing the heterogeneity observed between individuals, while remaining the key to the 
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interaction between all the 𝑌𝑖
𝑤𝑖 . The generalized log-linear model is therefore highlighted by the Poisson family 

link function below,  

∀ 𝑖 ∈ {2; 3; … ; 𝑘};  ln(𝜇𝑖) = ln(𝜃𝑖) + ln(1 + 𝛼𝑖), 
 

ln(𝜇𝑖) = 𝑥𝑇𝛽𝑖 + ∑ 𝜂𝑖𝑟𝑦𝑟

𝑖−1

𝑟=1

. (7) 

When 𝜂𝑖𝑟  is zero, the expression (7) becomes the linear model according to the marginal distribution. 

This representation of the model appears to be the same as that of the multivariate Poisson distribution by the 

simple fact that 𝑀WPD(𝑌𝑤; 𝜃 ) is its prominent and plausible generalization. This is why 𝜇𝑖  and  𝜃𝑖 are good 

generators of the same estimators of the model parameters (𝛽𝑖  and 𝜂𝑖𝑟). And the log-likelihood function according 

to the joint distribution with respect to the parameter 𝜃𝑖 is, 

ln ℒ(𝑦; 𝜃) = ∑(ln[𝑤𝑖(𝑦𝑖)] − ln(𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]) + 𝑦𝑖 ln 𝜃𝑖 − ln(𝑦𝑖!) −

 

𝜃𝑖)

𝑠

𝑖=1

. (8) 

 

∀ 𝑠 ∈  ℕ − {0; 1};  𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑠)  and  𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑠) . 
 

 

Structure of the variance-covariance matrix. 

The development of this structure is easier when the situation is examined between two variables. Let us 

therefore concentrate on estimating the characteristics of the joint distribution around the i-th, i+1-th and i+2-th 

variables of the random vector  𝑌𝑤 = (𝑌1
𝑤1 , … , 𝑌𝑠

𝑤𝑠).  The expression (7) allows us to deduce the relationships 

below, 

ln(𝜇𝑖+1) = 𝑥𝑇𝛽𝑖+1 + ∑ 𝜂𝑖𝑟𝑦𝑟 + 𝜂𝑖𝑖𝑦𝑖

𝑖−1

𝑟=1

; (9) 

ln(𝜇𝑖+2) = 𝑥𝑇𝛽𝑖 + ∑ 𝜂𝑖𝑟𝑦𝑟 + 𝜂𝑖𝑖𝑦𝑖 + 𝜂(𝑖+1)𝑖𝑦𝑖+1

𝑖−1

𝑟=1

. (10) 

These equations, with a judicious parametrization, can be used to manipulate the conditional expectation 

through the moment generating method from a probabilistic point of view to find the properties below. 

Proposition 2.1.1. For two consecutive weighted random variables 𝑌𝑖
𝑤𝑖  and 𝑌𝑖+1

𝑤𝑖+1 we can define the 

following characteristics: 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)
𝐸

𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

 ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] +

(𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ])
2

(𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)
2

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝐸
𝑒2𝜂𝑖𝑖𝜃𝑖

[𝑤(𝑌𝑖)]

(𝐸
𝑒𝜂𝑖𝑖𝜃𝑖

[𝑤(𝑌𝑖)])2 − 1) ; 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1  ] (𝜃𝑖 𝑒
𝜂𝑖𝑖 +

𝑑

𝑑𝜂𝑖𝑖
ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖

[𝑤𝑖(𝑌𝑖)] − 𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖  ]).   

 

Corollary 2.1.1. As for the non-consecutive variables 𝑌𝑖
𝑤𝑖  and 𝑌𝑖+1

𝑤𝑖+1 , these same characteristics are 

found to be as follows: 

1. 𝐸𝜃𝑖+2
[𝑌𝑖+2

𝑤𝑖+2 ] = 𝜇𝑖+2𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)
𝐸

𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

 ;  

2. 𝑉𝑎𝑟(𝑌𝑖+2

𝑤𝑖+2) = 𝐸𝜃𝑖+2
[𝑌𝑖+2

𝑤𝑖+2] +

(𝐸𝜃𝑖+2
[𝑌𝑖+2

𝑤𝑖+2 ])
2

(𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)
2

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝐸
𝑒2𝜂𝑖𝑖𝜃𝑖

[𝑤(𝑌𝑖)]

(𝐸
𝑒𝜂𝑖𝑖𝜃𝑖

[𝑤(𝑌𝑖)])2 − 1) ; 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+2

𝑤𝑖+2) = 𝐸𝜃𝑖+2
[𝑌𝑖+2

𝑤𝑖+2  ] (𝜃𝑖 𝑒
𝜂𝑖𝑖 +

𝑑

𝑑𝜂𝑖𝑖
ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖

[𝑤𝑖(𝑌𝑖)] −

𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖  ]).  ∀ 𝑖 = 1; 2; … ; 𝑠 − 2    

The proof of Proposition 2.2.1 and its Corollary 2.2.1 is shown by posing 𝐶𝑖 = ∑ 𝜂𝑖𝑟𝑦𝑟
𝑖−1
𝑟=1  and ℎ𝑖 =

 ln(1 + α𝑖) 

then using the demonstration from Nganga et al[13]. 

 

Proposition 2.1.2. For any value of  i ∈  {1;  2; . . . ;  s}, if 𝜃𝑖 >  e  (basic value of the exponential) and if 
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ln 𝑦𝑖−ln 𝜃𝑖

𝜃𝑖
<  𝜂𝑖𝑖 <  0, then we have the inequality 𝜃𝑖 𝑒

𝜂𝑖𝑖 +
𝑑

𝑑𝜂𝑖𝑖
ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖

[𝑤𝑖(𝑌𝑖)] − 𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖  ] < 0. 

The proof of this Proposition 2.2.2 is given in Appendix A. 

This clearly shows that the sign of the covariance between the variables 𝑌𝑖
𝑤𝑖  depends on the sign of 𝜂𝑖𝑖 . 

When 𝜂𝑖𝑖  is zero for all the i ∈  {1;  2; . . . ;  s}, the 𝑌𝑖
𝑤𝑖  are two by two independent. Thus, if ∀ r ∈

 {1;  2; . . . ;  i − 1} ;  𝜂𝑖𝑟 = 0, there is no conditional distribution and any 𝑌𝑖
𝑤𝑖  becomes a simple weighted Poisson 

variable. From these covariance and variance values, we construct the variance-covariance matrix, which can 

contain negative, zero and positive values depending on the correlation of the pairwise weighted variables. We 

show that this joint density is made up of a flexible correlation structure. 

Remark. For any i =  1;  2; . . . , ; s, if the weighting ratio, i.e., the weight function over the normalization 

constant, is equal to 1, then we find the basic multivariate Poisson distribution proposed by Mizélé et al[17]. 

 

Estimation of the parameters 𝜷𝒊 and 𝜼𝒊 from the model. 

The log-likelihood equation expressed in (8) is a useful bilinear function for estimating the parameters 

𝛽𝑖 and 𝜂𝑖𝑟  mentioned in our assumption of modelling. We indeed use one of the most common frameworks, 

namely maximum likelihood estimation, to find the modelling elements (parameter values) that maximize the 

likelihood function; let 𝛽̂𝑖 and 𝜂̂𝑖𝑟 respectively be likelihood estimators of 𝛽𝑖 and 𝜂𝑖𝑟. Let us investigate the 

estimate of 𝛽̂𝑖 by calculating the partial derivatives of the log-likelihood function ln ℒ. 

 
𝜕 ln ℒ

𝜕𝛽𝑖

= 𝑥𝑇𝑦𝑖 − 𝑥𝑇𝑒𝑥𝑇𝛽𝑖+𝐶𝑖 −
𝜕

𝜕𝛽𝑖

ln 𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] 

= 𝑥𝑇𝑦𝑖 − 𝑥𝑇𝑒𝑥𝑇𝛽𝑖+𝐶𝑖 −
𝜕𝜃𝑖

𝜕𝛽𝑖

×
𝜕

𝜕𝜃𝑖

ln 𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] 

We know that  
𝜕𝜃𝑖

𝜕𝛽𝑖
= 𝑥𝑇𝑒𝑥𝑇𝛽𝑖+𝐶𝑖; so, we find, 

𝜕 ln ℒ

𝜕𝛽𝑖

= 𝑥𝑇𝑦𝑖 − 𝑥𝑇𝑒𝑥𝑇𝛽𝑖+𝐶𝑖(1 + α𝑖) 

= 𝑥𝑇(𝑦𝑖 − 𝜃𝑖(1 + α𝑖)) 

= 𝑥𝑇(𝑦𝑖 − 𝜇𝑖) 
Its secondary derivative can be found as follows, 

𝜕2 ln ℒ

𝜕𝛽𝑖𝜕𝛽𝑖
𝑇 = −𝑥𝑇 [𝑥𝑒𝑥𝛽𝑖

𝑇+𝐶𝑖(1 + α𝑖) + 𝑒𝑥𝑇𝛽𝑖+𝐶𝑖
𝜕(1 + α𝑖)

𝜕𝛽𝑖
𝑇 ] 

 

= −𝑥𝑇 [𝑥𝜇𝑖 + 𝑥𝑒𝑥𝑇𝛽𝑖+𝐶𝑖
𝜕𝜃𝑖

𝜕𝛽𝑖
𝑇 ×

𝜕α𝑖

𝜕𝜃𝑖

] 

 

= −𝑥𝑇𝑥 [𝜇𝑖 + 𝑒2(𝑥𝛽𝑖
𝑇+𝐶𝑖)

𝜕2

𝜕𝜃𝑖
2 ln 𝐸𝜃𝑖

[𝑤𝑖(𝑌𝑖)]] 

 

= −‖𝑥‖2 [𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖 𝑌1
𝑤1 , 𝑌2

𝑤2 , … , 𝑌𝑖−1
𝑤𝑖−1⁄  ] + 𝜃𝑖

2 𝜕2

𝜕𝜃𝑖
2 ln 𝐸𝜃𝑖

[𝑤𝑖(𝑌𝑖)]] 

 

= −‖𝑥‖2𝑉𝑎𝑟 (𝑌𝑖
𝑤𝑖 𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1⁄ ) 

Where ‖𝑥‖ is a scalar product of the explanatory vector 𝑥. Similarly, the first and second differentials of 

ln ℒ with respect to the parameter 𝜂𝑖𝑟 are obtained as follows,   

 
𝜕 ln ℒ

𝜕𝜂𝑖𝑟

= −
𝜕

𝜕𝜂𝑖𝑟

ln 𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] +

𝜕

𝜕𝜂𝑖𝑟

𝑦𝑖 ln 𝜃𝑖 −
𝜕𝜃𝑖

𝜕𝜂𝑖𝑟

=
𝜕𝜃𝑖

𝜕𝜂𝑖𝑟

[−
𝜕

𝜕𝜃𝑖

ln 𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] +

𝑦𝑖

𝜃𝑖

− 1] 

 

However,  
𝜕𝜃𝑖

𝜕𝜂𝑖𝑟
= 𝜃𝑖 ∑ 𝑦𝑟

𝑖−1
𝑟=1 , so one finds,  

𝜕 ln ℒ

𝜕𝜂𝑖𝑟

= ∑ 𝑦𝑟(𝑦𝑖 − 𝜃𝑖(1 + α𝑖))

𝑖−1

𝑟=1

= (𝑦𝑖 − 𝜇𝑖) ∑ 𝑦𝑟

𝑖−1

𝑟=1

. 

So, we have its second partial derivative,  
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𝜕2 ln ℒ

𝜕𝜂𝑖𝑟𝜕𝜂𝑖𝑟

= − ∑ 𝑦𝑟 [𝜃𝑖(1 + α𝑖) ∑ 𝑦𝑟

𝑖−1

𝑟=1

]

𝑖−1

𝑟=1

= −𝜇𝑖 (∑ 𝑦𝑟

𝑖−1

𝑟=1

)

2

. 

Intuitively, we have also got this, 

𝜕2 ln ℒ

𝜕𝜂𝑖𝑟𝜕𝛽𝑖

= − ∑ 𝑦𝑟 [
𝜕𝜇𝑖

𝜕𝛽𝑖

]

𝑖−1

𝑟=1

= −𝜇𝑖 ∑ 𝑥𝑇𝑦𝑟

𝑖−1

𝑟=1

. 

 

All these results are summarized in the proposition below. 

Proposition 2.1.3. For the estimation of the model parameters as defined in the generalized linear 

model (15), we obtain the following results, 

 

1. 
𝜕 ln ℒ

𝜕𝛽𝑖
= 𝑥𝑇(𝑦𝑖 − 𝜇𝑖), with   

𝜕2 ln ℒ

𝜕𝛽𝑖𝜕𝛽𝑖
𝑇 = −‖𝑥‖2𝑉𝑎𝑟 ( 𝑌1

𝑤1 , 𝑌2
𝑤2 , … , 𝑌𝑖−1

𝑤𝑖−1⁄ ). 

2. 
𝜕 ln ℒ

𝜕𝜂𝑖𝑟
= (𝑦𝑖 − 𝜇𝑖) ∑ 𝑦𝑟

𝑖−1
𝑟=1 , with  

𝜕2 ln ℒ

𝜕𝜂𝑖𝑟𝜕𝜂𝑖𝑟
= −𝜇𝑖(∑ 𝑦𝑟

𝑖−1
𝑟=1 )

2
. 

3. 
𝜕2 ln ℒ

𝜕𝜂𝑖𝑟𝜕𝛽𝑖
= −𝜇𝑖 ∑ 𝑥𝑇𝑦𝑟

𝑖−1
𝑟=1 . 

 

III. Multivariate dispersion index and some examples of classic distributions 
Multivariate dispersion index. 

In the multivariate framework, Fischer’s dispersion index seems complex to estimate. Numerous 

suggestions with certain limitations have been made based on matrix and scalar methods for measuring dispersion 

(see, for example, Jørgensen and Kokonendji[18], Karlis and Xekalaki[19], Alerts et al[20], Reyment[21], van 

Valen[22]). However, an alternative new index caught our attention among Kokonendji and Puig’s proposals[15], 

for its flexibility and ability to deal with the dispersion of marginal distributions and correlation coefficients 

between variables through the covariance matrix. There are no restrictions on the dimension 𝑠, the sample size 𝑛 

and the rank of the dispersion matrix. It is useful and easily adaptable for synthesizing the dispersion of the 

weighted joint distribution from the marginal and conditional distributions that belong to the natural exponential 

family. Let 𝑌𝑤  be the discrete non-degenerate weighted random vector on ℕ𝑠 with a variance-covariance matrix 

𝐶𝑂𝑉 𝑌𝑤 , a correlation coefficient matrix 𝑅𝑌𝑤 and an expectation matrix 𝐸𝑌𝑤 . We assume that 𝑑𝑒𝑡, 𝑑𝑖𝑎𝑔, and 𝐷𝐼 

are respectively the determinant, the diagonal, and the dispersion index of the univariate distribution. In this 

framework, we have three parameters defined as follows. 

The generalized variance (sGV), which compares the variability of two multivariate discrete models 

represented by mathematical expectation matrices with the same dimension. And the appropriate measure seems 

to be the ratio of the variances of the weighted vector 𝑌𝑤and the variance of its Poisson vector 𝑌. But this is 

simplified to the following expression, 

𝑠𝐺𝑉(𝑌𝑤) =
det(𝐶𝑂𝑉 𝑌𝑤)

det(𝑑𝑖𝑎𝑔 𝐸𝑌𝑤)
; 

with det(𝐶𝑂𝑉 𝑌𝑤) = det (𝑅𝑌𝑤) × ∏ 𝑉𝑎𝑟(𝑌𝑖
𝑤𝑖),𝑠

𝑖=1  and  det(𝑅𝑌𝑤) ∈ ]0,1]. 

We then have a multivariate (over, equi or under) dispersion measure of 𝑌𝑤depending on whether 

(𝑠𝐺𝑉(𝑌𝑤  )  >  1, 𝑠𝐺𝑉(𝑌𝑤)  =  1, 𝑠𝐺𝑉(𝑌𝑤)  <  1), respectively. 

The marginal multiple dispersion index (MDI) is the parameter that considers only the dispersion 

information from the marginal distribution. For the multivariate weighted Poisson, the univariate conditional 

distributions constructed can be taken one at a time to be marginally weighted and have the following index, 

MDI(𝑌𝑤) = ∑
(𝐸𝜃𝑖

[𝑌𝑖
𝑤𝑖  ])

2

(𝐸𝑌𝑤)𝑇𝐸𝑌𝑤

𝑠

𝑖=1

𝐷𝐼(𝑌𝑖
𝑤𝑖). 

We retain the main definition of the generalized dispersion index (GDI) of 𝑌𝑤 as,  

𝐺𝐷𝐼(𝑌𝑤) =
√𝐸𝑌𝑤

𝑇
𝐶𝑂𝑉 𝑌𝑤√𝐸𝑌𝑤

(√𝐸𝑌𝑤)
𝑇

√𝐸𝑌𝑤
 . 

Thus, the dispersion corresponding to the variables of 𝑌𝑤 can be defined such that 𝑌𝑤 is over- (equi- or 

under-) dispersed, if and only if 𝐺𝐷𝐼(𝑌𝑤) is greater than 1 (equal to 1 or less than 1), respectively. 

 

Some examples of classic distributions. 

In this subsection, we firstly deal with the case of a series of discrete variables that follow the same 

probability distribution but whose canonical parameters may be different. Next, we present the case of data 

describing a multivariate configuration where some are under-dispersed and others over-dispersed. Let us also 
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note that the weighting function 𝑤𝑖(𝑦𝑖) = 𝑤𝑖(𝑦𝑖 ; 𝜃𝑖; 𝛿𝑖) may depend on the parameter 𝛿𝑖 which derives from the 

data registration procedure and on the canonical parameter 𝜃𝑖. In fact, we use Proposition 2.2.1 to deduce certain 

characteristics of the proposed distributions. And the µ𝑖+1 is indeed the one taken from equation (9).  

 

The multivariate binomial distribution. After a good parametrization as defined by Elion et al[12], the 

univariate binomial distribution is indeed a weighted Poisson distribution whose multivariate version has the mass 

function: 

 

𝑝(𝑦1, … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠; 𝑘1, … , 𝑘𝑠) = ∏

𝑘𝑖!
(𝑘𝑖 − 𝑦𝑖)!

(𝜃𝑖 + 1)𝑘𝑖𝑒−𝜃𝑖

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 , ∀ (𝑦𝑖 , 𝑘𝑖) ∈ ℕ2, 𝜃𝑖 > 0. (11) 

Where its weight function in the univariate framework is, 

𝑤𝑖(𝑦𝑖 ; 𝑘𝑖) = {

𝑘𝑖!

(𝑘𝑖 − 𝑦𝑖)!
;                                      𝑦𝑖 = 0,1,2, … , 𝑘𝑖

              0;                𝑦𝑖 = 𝑘𝑖 + 1, 𝑘𝑖 + 2, 𝑘𝑖 + 3, … 

 

And the associated normalization constant is, 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = (𝜃𝑖 + 1)𝑘𝑖𝑒−𝜃𝑖 . 

Thus, for consecutive discrete variables 𝑌𝑖
𝑤𝑖  and  𝑌𝑖+1

𝑤𝑖+1 , one has: 

 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1 (
1+𝜃𝑖 𝑒

𝜂𝑖𝑖

𝜃𝑖+1
)

𝑘𝑖

 ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] (1 + 𝜇𝑖+1
(1+𝜃𝑖 𝑒

2𝜂𝑖𝑖)
𝑘𝑖

(1+𝜃𝑖 𝑒
𝜂𝑖𝑖)

𝑘𝑖
− 𝐸𝜃𝑖+1

[𝑌𝑖+1

𝑤𝑖+1  ]) ; 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝜇𝑖+1𝜃𝑖 𝑘𝑖(𝑒2𝜂𝑖𝑖 − 1)
(1+𝜃𝑖 𝑒

𝜂𝑖𝑖)
𝑘𝑖−1

(1+𝜃𝑖 )
𝑘𝑖+1 .   

 

The multivariate negative binomial distribution I. Its joint distribution is: 

 

𝑝(𝑦1 , … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠; 𝛿1, … , 𝛿𝑠) = ∏

Γ(𝜃𝑖𝛿𝑖
−1 + 𝑦𝑖)

Γ(𝜃𝑖𝛿𝑖
−1)

(
𝛿𝑖

𝜃𝑖(𝛿𝑖 + 1)
)

𝑦𝑖

(1 + 𝛿𝑖)
𝜃𝑖𝛿𝑖

−1
𝑒−𝜃𝑖

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 , ∀ 𝑦𝑖 ∈  ℕ, 𝜃𝑖 > 0, 𝛿𝑖 > 0. (12)
 

 

 

Where its weight function in the univariate framework is[12], 

 

𝑤𝑖(𝑦𝑖 ; 𝜃𝑖; 𝛿𝑖) =
Γ(𝜃𝑖𝛿𝑖

−1 + 𝑦𝑖)

Γ(𝜃𝑖𝛿𝑖
−1)

(
𝛿𝑖

𝜃𝑖(𝛿𝑖 + 1)
)

𝑦𝑖

. 

And the associated normalization constant is, 

 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = (1 + 𝛿𝑖)

𝜃𝑖𝛿𝑖
−1

𝑒−𝜃𝑖 . 

 

Thus, for consecutive discrete variables 𝑌𝑖
𝑤𝑖  and  𝑌𝑖+1

𝑤𝑖+1 , one has the proprieties below: 

 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1(1 + 𝛿𝑖)
𝜃𝑖𝛿𝑖

−1(𝑒𝜂𝑖𝑖−1) ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = (𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1  ])
2

(𝑒𝜃𝑖(1 + 𝛿𝑖)
𝜃𝑖𝛿𝑖

−1(𝑒𝜂𝑖𝑖−1)
2

+
1

𝐸𝜃𝑖+1
[𝑌

𝑖+1

𝑤𝑖+1  ]
− 1) ; 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1  ]𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖  ] (
𝜃𝑖𝛿𝑖

−1
𝑒𝜂𝑖𝑖 ln(1+𝛿𝑖)

𝐸𝜃𝑖
[𝑌

𝑖

𝑤𝑖  ]
− 1).   

 

The multivariate translated Poisson distribution. This distribution is obviously a weighted Poisson 

distribution[12] whose multivariate version has the mass function: 
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𝑝(𝑦1, … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠; 𝛿1, … , 𝛿𝑠) = ∏

𝑦𝑖!
(𝑦𝑖−𝛿𝑖)!

𝜃𝑖

𝛿𝑖

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 .  ∀ 𝑦𝑖 ∈ ℕ, 𝜃𝑖 > 0, 𝛿𝑖 ∈ ℕ∗. (13) 

Where its weighting function in the univariate framework is, 

𝑤𝑖(𝑦𝑖 ; 𝛿𝑖) = {

𝑦𝑖!

(𝑦𝑖 − 𝛿𝑖)!
;             𝑦𝑖 = 𝛿𝑖 + 1, 𝛿𝑖 + 2, 𝛿𝑖 + 3, …

  0;                      𝑦𝑖 = 0,1,2, … , 𝛿𝑖 .

 

And the associated normalization constant is, 

 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = 𝜃𝑖

𝛿𝑖 . 

Thus, for consecutive discrete variables 𝑌𝑖
𝑤𝑖  and  𝑌𝑖+1

𝑤𝑖+1 , one has some characteristics below: 

 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)+𝛿𝑖𝜂𝑖𝑖  ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ](1 + 𝜇𝑖+1𝑒𝜃𝑖𝑒2𝜂𝑖𝑖−𝜃𝑖𝑒𝜂𝑖𝑖+𝛿𝑖𝜂𝑖𝑖); 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝜇𝑖+1(𝜃𝑖𝑒
𝜂𝑖𝑖 + 𝜂𝑖𝑖 − 𝜃𝑖−𝛿𝑖)𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)+𝛿𝑖𝜂𝑖𝑖 .   

 

The multivariate zero-weighted Poisson distribution. Like the one above, this distribution is also a 

weighted Poisson distribution[12] whose multivariate version has the mass function: 

𝑝(𝑦1 , … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠; 𝛿1, … , 𝛿𝑠) = ∏
1

1 − ∑
𝜃𝑖

𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖

 𝛿𝑖
𝑦𝑖=0

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 , ∀ 𝑦𝑖 ∈ ℕ, 𝜃𝑖 > 0, 𝛿𝑖 ∈ ℕ∗. (14)
 

Where its weighting function in the univariate framework is, 

𝑤𝑖(𝑦𝑖 ; 𝛿𝑖) = {
1;        𝑦𝑖 = 𝛿𝑖 + 1, 𝛿𝑖 + 2, 𝛿𝑖 + 3, …
 0;                              𝑦𝑖 = 0,1,2, … , 𝛿𝑖.

 

And the associated normalization constant is, 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = 1 − ∑

𝜃𝑖
𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖 .

 𝛿𝑖

𝑦𝑖=0
 

From this expression we can derive several other expressions, such as: 

 

𝐸𝜃𝑖𝑒𝜂𝑖𝑖 [𝑤𝑖(𝑌𝑖)] = 1 − ∑
(𝜃𝑖𝑒

𝜂𝑖𝑖)𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖𝑒𝜂𝑖𝑖 .

 𝛿𝑖

𝑦𝑖=0
 

 

𝐸𝜃𝑖𝑒2𝜂𝑖𝑖 [𝑤𝑖(𝑌𝑖)] = 1 − ∑
(𝜃𝑖𝑒

2𝜂𝑖𝑖)𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖𝑒2𝜂𝑖𝑖 .

 𝛿𝑖

𝑦𝑖=0
 

 

𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] =

∑
(𝜃𝑖)

𝑦𝑖(𝑦𝑖 − 𝜃𝑖𝑒
𝜂𝑖𝑖)

𝑦𝑖!
𝑒𝑦𝑖𝜂𝑖𝑖−𝜃𝑖𝑒𝜂𝑖𝑖 𝛿𝑖

𝑦𝑖=0

𝐸𝜃𝑖𝑒𝜂𝑖𝑖 [𝑤𝑖(𝑌𝑖)]
. 

 

Therefore, for consecutive discrete variables 𝑌𝑖
𝑤𝑖  and 𝑌𝑖+1

𝑤𝑖+1 ,  it is easier to carry out the expression of the 

𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ], 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) and 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1). So, we can find out: 

 

𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1  ] = 𝜇𝑖+1𝑒𝜃𝑖(𝑒𝜂𝑖𝑖−1)
1 − ∑

(𝜃𝑖𝑒
𝜂𝑖𝑖)𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖𝑒𝜂𝑖𝑖 𝛿𝑖

𝑦𝑖=0

1 − ∑
𝜃𝑖

𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖

 𝛿𝑖
𝑦𝑖=0

 . 

The multivariate COM-Poisson distribution. It is used to manage the dispersion in the same model of 

data, some of which are under-dispersed or equi-dispersed and others over-dispersed. This distribution is very 

useful and is a weighted Poisson distribution[23] whose multivariate version has the joint distribution: 

 

𝑝(𝑦1, … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠; 𝛿1, … , 𝛿𝑠) = ∏
(𝑦𝑖!)𝛿𝑖−1

𝑒𝜃𝑖Ζ(𝜃𝑖 , 𝛿𝑖)

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 , ∀ 𝑦𝑖 ∈ ℕ, 𝜃𝑖 > 0, 𝛿𝑖 ∈ ℕ∗. (15) 

Where its weighting function in the univariate framework is,  
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𝑤𝑖(𝑦𝑖 ; 𝛿𝑖) = (𝑦𝑖!)𝛿𝑖−1. 
And the associated normalization constant is, 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = 𝑒𝜃𝑖Ζ(𝜃𝑖 , 𝛿𝑖). 

With Ζ(𝜃𝑖 , 𝛿𝑖) = ∑
𝜃

𝑖

𝑦𝑖

(𝑦𝑖!)𝛿𝑖
.∞

𝑦𝑖=0  Thus, for consecutive discrete variables 𝑌𝑖
𝑤𝑖  and  𝑌𝑖+1

𝑤𝑖+1, the characteristics 

below can be defined: 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1
Ζ(𝜃𝑖𝑒𝜂𝑖𝑖 ,𝛿𝑖)

Ζ(𝜃𝑖,𝛿𝑖)
 ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = (𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1  ])
2

(
Ζ(𝜃𝑖,𝛿𝑖)

𝜇𝑖+1Ζ(𝜃𝑖𝑒𝜂𝑖𝑖 ,𝛿𝑖)
+

Ζ(𝜃𝑖,𝛿𝑖)Ζ(𝜃𝑖𝑒2𝜂𝑖𝑖 ,𝛿𝑖)

[Ζ(𝜃𝑖𝑒𝜂𝑖𝑖 ,𝛿𝑖)]
2 − 1) ; 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1]𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖] (
1

𝐸𝜃𝑖
[𝑌

𝑖

𝑤𝑖]

𝑑

𝑑𝜂𝑖𝑖
ln Ζ(𝜃𝑖𝑒

𝜂𝑖𝑖 , 𝛿𝑖) − 1).   

 

The multivariate Poisson-Lindley distribution. This distribution, although not well known, is very 

useful in that it facilitates the deal of the dispersion of data within the same framework, some of which are under-

dispersed, or equi-dispersed, and others over-dispersed[24]. In this work we claim that this distribution is a 

weighted Poisson distribution whose multivariate joint distribution can be written as: 

 

𝑝(𝑦1, … , 𝑦𝑠; 𝜃1, … , 𝜃𝑠) = ∏
(𝑦𝑖 + 𝜃𝑖 + 2)𝑦𝑖!

(𝜃𝑖 + 1)𝑦𝑖+3𝜃𝑖

𝑦𝑖−2
𝑒−𝜃𝑖

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑠

𝑖=1

𝑒−𝜃𝑖 , ∀ 𝑦𝑖 ∈ ℕ, 𝜃𝑖 > 0. (16) 

Simply remove the product to obtain the univariate version whose weight function is, 

 

𝑤𝑖(𝑦𝑖 ; 𝜃𝑖) =
(𝑦𝑖 + 𝜃𝑖 + 2)𝑦𝑖!

(𝜃𝑖 + 1)𝑦𝑖+2𝜃𝑖

𝑦𝑖−2. 

And the associated normalization constant is, 

 

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = (𝜃𝑖 + 1)𝑒−𝜃𝑖 . 

So, to build the structure of the variance-covariance matrix with consecutive discrete variables 𝑌𝑖
𝑤𝑖  and  

𝑌𝑖+1

𝑤𝑖+1 , we have: 

1. 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] = 𝜇𝑖+1
𝜃𝑖𝑒𝜂𝑖𝑖+1

𝜃𝑖+1
 ; 

2. 𝑉𝑎𝑟(𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1 ] (1 + 𝜇𝑖+1
𝜃𝑖𝑒2𝜂𝑖𝑖  +1

𝜃𝑖𝑒𝜂𝑖𝑖  +1
) (𝑒−4𝜃𝑖𝑒𝜂𝑖𝑖 − 1); 

3. 𝐶𝑜𝑣(𝑌𝑖
𝑤𝑖 , 𝑌𝑖+1

𝑤𝑖+1) = 𝐸𝜃𝑖+1
[𝑌𝑖+1

𝑤𝑖+1](𝜃𝑖𝑒
𝜂𝑖𝑖 − 𝜃𝑖

2𝑒2𝜂𝑖𝑖𝑒−𝜃𝑖𝑒𝜂𝑖𝑖 − 𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖]).   

 

IV. Application to biomedical data 
In this section, we describe the calculations between patient characteristics and the results of the models 

associated with each variable of interest on the one hand, and with the trivariate weighted Poisson model on the 

other. 

 

The data.  

The data used come from a cross-sectional study carried out between March 2014 and April 2015 in the 

south of Brazzaville, Republic of Congo, on the molecular characterization of malaria infection due to 

Plasmodium Falciparum and the search for risk factors in pregnant women and newborns. Eight years ago, on the 

recommendation of the WHO, the government introduced intermittent preventive treatment based on sulfadoxine-

pyrimethamine (IPTp-SP) for pregnant women. However, high resistance to this drug had been reported in another 

study carried out years earlier in the same area of the city. Hence the interest in launching this molecular 

surveillance, as the parasite can be detected in several ways, depending on the detection marker and the type of 

allele. Thus, for consenting women who met the study’s inclusion criteria, sociodemographic and clinical data 

were collected, including our study variables: number of IPTp-SP doses taken by the pregnant woman (𝑥1), 

number of pregnancies got (𝑥2) and the woman’s age (𝑥3). In addition, blood samples from the three compartments 

(peripheral blood, placental blood, and cord blood) were examined using RT-PCR targeting the merozoite surface 

protein genes of P. Falciparum (MSP1 and MSP2). As the parasite is a haplotype, the presence of each different 

allele symbolizes a different infection. And the multiplicity of infections (MI) is defined as the number of different 

infections in an individual (See Massamba et al[25] for more explanation). 

The hypothesis to be tested here is that as the number of IPTp-SP doses increases, the multiplicity of 

infections (MI) decreases in the three compartments. And that the probability of having a high multiplicity of 
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infections at the same time in the three compartments would be associated with the decrease in the number of 

IPTp-SP doses. Data were analyzed using the R Studio Core Team (2022) (R Foundation for Statistical 

Computing, Vienna, Austria. URL https://www.Rproject.org/). 

 

Results. 

At the start of the analyses, we described all the variables on the 𝑁 = 172 patients, in particular central 

trend, and dispersion parameters (Table 1). This gave us an overall idea of the average dose of 2.09 SP taken by 

the women. Half of them were in their fifth pregnancy 5 [1-9] and half were over 38 [15-43] years old. 

Regarding the dependent variables, the mean of peripheral MI 𝑦̅1 =  1.59 seems greater than its variance  

𝜎̂1
2 = 0.816. This is confirmed by the dispersion index 𝐷𝐼(𝑌1

𝑤1)  =  0.512, which suggests that the variable 𝑌1
𝑤1  

follows an under-dispersed distribution (Table 1). By examining these modalities, which vary between 1 and 6, 

we can conclude that 𝑝1𝑗(𝑦1𝑗 , 𝜃1) is a zero-truncated Poisson distribution. The 𝜒2 value from goodness-of-fit test 

on the observed numbers 𝑛1𝑗 and the theoretical numbers 𝑁 × 𝑝̂1𝑗 confirms our choice (Table 2). 

For placental MI, the mean 𝑦̅2 =  0.73 is few lower than the variance 𝜎̂2
2  =  0.819 with a dispersion 

index 𝐷𝐼(𝑌2
𝑤2)  =  1.128, which helps us to not choose the classical Poisson distribution (Table 1). Similarly, we 

set aside the negative binomial distribution due to the happening of events, which here gives a mean certainly low 

but close to the variance. Therefore, the Poisson-Lindley distribution 𝑝2𝑗(𝑦2𝑗 , 𝜃2) whose 𝜃̂2 was estimated by 

Shanker using the maximum likelihood method[24] to best describing the variable 𝑌2
𝑤2  (Table 2).  

It turns out that the MI of the cord 𝑌3
𝑤3  shows the same phenomenon as 𝑌2

𝑤2 , with a higher dispersion 

index 𝐷𝐼(𝑌3
𝑤3)  =  2.50 (Table 1). Thus, the Poisson-Lindley distribution 𝑝3𝑗(𝑦3𝑗 , 𝜃3) is statistically the most 

appropriate for modelling of the variable 𝑌3
𝑤3  (Table 2). 

Finally, the dispersion relative to these three weighted variables can be examined vectorially using the 

variance 𝑠𝐺𝑉(𝑌1
𝑤1 , 𝑌2

𝑤2 , 𝑌3
𝑤3)  =  1.094 which reveals an over-dispersion of the data. The multiple dispersion of 

the marginal distributions 𝑀𝐷𝐼(𝑌1
𝑤1 , 𝑌2

𝑤2 , 𝑌3
𝑤3) =  0.711 at its side converges towards under-dispersion. But here 

the major parameter that allows us to decide is the generalized dispersion index 𝐺𝐷𝐼(𝑌1
𝑤1 , 𝑌2

𝑤2 , 𝑌3
𝑤3)  =  1.156 

which confirms that this trivariate weighted Poisson distribution is indeed over-dispersed but very close to the 

classical multivariate Poisson distribution (Table 1). 

 

Table 1: Descriptive analysis. 
Statistics Min Max Median Mean Variance DI  

Number of SP doses 

taken 

0 3 3 2.09 1.30   

Number of pregnancies 

got 

1 9 5 4.86 5.73   

Age 15 43 38 35.92 39.65   

Peripheral MI (𝑌1
𝑤1) 1 6 1 1.59 0.816 0.512 sGV = 1.094 

Placental MI (𝑌2
𝑤2) 0 5 0 0.73 0.819 1.128 MDI = 0.711 

Umbilical cord MI 

(𝑌3
𝑤3) 

0 5 0 0.72 0.907 1.268 GDI = 1.156 

 

Weighted Poisson regression. 

This trivariate regression model is summarized by the equations (7), (9) and (10), each representing a 

generalized linear model for what we have below: 

1. ln 𝜇1 = 𝛽10 + 𝛽11𝑥1 + 𝛽12𝑥2 + 𝛽13𝑥3; 

2. ln 𝜇2 = 𝛽20 + 𝛽21𝑥1 + 𝛽22𝑥2 + 𝛽23𝑥3 + 𝜂21𝑦1; 

3. ln 𝜇3 = 𝛽30 + 𝛽31𝑥1 + 𝛽32𝑥2 + 𝛽33𝑥3 + 𝜂31𝑦1 + 𝜂32𝑦2. 
The idea is that having confirmed the absence of interactions between the explanatory variables, we want 

to estimate the 𝛽𝑖𝑗  parameters of the model and then test the null hypothesis 𝐻00 ∶ 𝛽̂𝑖𝑗 = 0; ∀ (i, j) = {1,2,3}  ×

 {0,1,2,3}  whose alternative hypothesis is 𝐻10 ∶ 𝛽̂𝑖𝑗 ≠ 0; ∀ (i, j) = {1,2,3}  ×  {0,1,2,3}. In the same way the 

estimation of 𝜂𝑖𝑗 leads to the verification of the null hypothesis 𝐻01 ∶ 𝜂̂𝑖𝑗 = 0; ∀ (i, j) = {2,3}  × {1,2}  which has 

the alternative hypothesis  𝐻11 ∶ 𝜂̂𝑖𝑗 ≠ 0; ∀ (i, j) = {2,3} × {1,2}.    

 

Table 2: Distributions of the multiplicity of infections according to the three compartments and the Chi-square 

adequacy test. 

Multiplicity of 

infections 

Peripheral 
 

Placental 
 

Umbilical cord 

𝑛1𝑗 𝑁 × 𝑝̂1𝑗 𝑛2𝑗 𝑁 × 𝑝̂2𝑗 𝑛3𝑗 𝑁 × 𝑝̂3𝑗 

0 - -  122 115.3558  156 156.5525 
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1 77 73.9999  33 38.5045  15 22.6646 

2 55 55.5821  9 12.4485  7 3.2463 

3 21 27.8321  5 3.9333  3 0.4609 

4 14 10.4524  2 1.2215  1 0.0065 

5 3 3.1403  1 0.3743  1 0.0009 

6 2 0.7863  - -  - - 

𝜃𝑖  1.502219   2.766052   4.376413 

𝜒2  2.065   1.7645   6.5925 

ddl  5   5   5 

P.value  0.8401   0.8807   0.2528  

 

Table 3: Regression models of the multiplicity of infections. 

Coefficients 

Model (A) 

 

Model (B) 

 

Model (C) 

𝛽̂1𝑗(𝑆𝐸) 𝑃 (> |
𝛽̂1𝑗

𝑆𝐸
|) 𝛽̂2𝑗(𝑆𝐸) 𝑃 (> |

𝛽̂2𝑗

𝑆𝐸
|) 𝛽̂3𝑗(𝑆𝐸) 𝑃 (> |

𝛽̂3𝑗

𝑆𝐸
|) 

Intercept 1.63(0.31) < 0.001  -

0.29(0.69) 

0.6768  -1.01(0.71) 0.1555 

𝑥1 
-0.22(0.05) < 0.001  -

0.35(0.09) 
0.0002  -0.31(0.11) 0.0074 

𝑥2 -0.04(0.03) 0.1972  0.03(0.04) 0.4167  0.05(0.04) 0.2688 

𝑥3 -0.02(0.01) 0.0593  -
0.02(0.01) 

0.8927  0.01(0.01) 0.3437 

𝑦1 - -  0.27(0.10) 0.009  -0.45(0.15) 0.0027 

𝑦2 - -  - -  1.08(0.14) < 0.001  

Log-likelihood -218.0   -170.1   -128.13  

AIC 443.64   350.38   268.1  

BIC 456.0   366.2   287.3  

SE is the Standard Error; P is the P.value according to the fitted model. 

 

Model (A) explains peripheral MI, which appears to be more correlated with the explanatory variables 

in the univariate analyses. However, causality was only observed with the number of SP doses taken 𝛽̂11 = −0.22 

and the association with the intercept 𝛽̂10 = 1.63 (see Table 3). However, model (B) rejects the intercept 𝛽̂20 =

−0.29, by including the number of SP doses taken 𝛽̂21 = −0.35, it also highlights its bivariate aspect with respect 

to placental MI via 𝜂̂21 = 0.27. Model (C) combines the three dependents’ variables with 𝜂̂31 = −0.45 and 𝜂̂32 =

1.08, and we can see the protective effect of taking more of dose of SP (𝛽̂31 = −0.31) over the multiplicity of 

infections in the three compartments. This model shows that the number of pregnancies got, and age of woman 

may be correlated but do not have a direct effect over the MI variables. The three models shown in the table above 

are not the only models run, but rather the most necessary ones that explain our dataset. The comparison of the 

AIC, BIC and Log-likelihood (Table 3) between models allows us to deduce that model (C) is the most adequate 

with adjustment on these data. 

  

V. Conclusion 
In this work we have proposed the generalization of the weighted Poisson distribution in the multivariate 

framework. The elements constituting the variance-covariance matrix have been obtained with an explanation of 

how the covariance can take positive as well as negative values. The suggestion of a few classical distributions as 

multivariate weighted Poisson distributions was used to illustrate this notion of generalization to a large family of 

classical discrete distributions. The application to the trivariate Poisson model revealed, firstly, that it is preferable 

to study simultaneously the effect of taking a dose of SP over the multiplicity of infections in the three 

compartments. Secondly, it highlighted the possibility of modelling a random vector of discrete dependent 

variables that do not all follow the same probability law, without having to worry about managing the correlation 

between variables. 

 

Appendix A. Proof of Proposition 2.2.2. 

Let’s assume that 𝜃𝑖 > 𝑒, for all 𝑖 = 1,2, … , 𝑠. If  
ln 𝑦𝑖−ln 𝜃𝑖

𝜃𝑖
<  𝜂𝑖𝑖 <  0. Then 

ln (
𝑦𝑖

𝜃𝑖

) <  𝜂𝑖𝑖𝜃𝑖 ⇒ (
𝑦𝑖

𝜃𝑖

) < 𝑒𝜂𝑖𝑖𝜃𝑖 ⇒ 𝑦𝑖 − 𝜃𝑖𝑒
𝜂𝑖𝑖𝜃𝑖 < 0. (17) 

From the other side, 
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𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = ∑

𝑤𝑖(𝑦𝑖)

𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝑖≥0

𝑑

𝑑𝜂𝑖𝑖

[
𝑒𝑦𝑖𝜂𝑖𝑖𝜃𝑖

𝑦𝑖𝑒−𝑒𝜂𝑖𝑖𝜃𝑖

𝑦𝑖!
] 

 

𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = ∑

𝑤𝑖(𝑦𝑖)

𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝑖≥0

𝜃𝑖
𝑦𝑖

𝑦𝑖!

𝑑

𝑑𝜂𝑖𝑖

[𝑒𝑦𝑖𝜂𝑖𝑖−𝑒𝜂𝑖𝑖𝜃𝑖 ] 

 

𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = ∑

𝑤𝑖(𝑦𝑖)

𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝑖≥0

𝜃𝑖
𝑦𝑖

𝑦𝑖!
[(𝑦𝑖 − 𝜃𝑖𝑒

𝜂𝑖𝑖𝜃𝑖)𝑒(𝑦𝑖𝜂𝑖𝑖−𝑒𝜂𝑖𝑖𝜃𝑖)]. 

 

If we consider the above inequation (17), we find that, 
𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] < 0. 

 

We can proceed by adding the terms on either side of this inequality as follows.  

 

𝜃𝑖𝑒
𝜂𝑖𝑖 +

𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] < 𝜃𝑖𝑒

𝜂𝑖𝑖 . 

However, 𝜃𝑖𝑒
𝜂𝑖𝑖 < 𝜃𝑖, thus 

𝜃𝑖𝑒
𝜂𝑖𝑖 +

𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] < 𝜃𝑖 ⇒ 𝜃𝑖𝑒

𝜂𝑖𝑖 +
𝑑

𝑑𝜂𝑖𝑖

ln 𝐸𝑒𝜂𝑖𝑖𝜃𝑖
[𝑤𝑖(𝑌𝑖)] − 𝐸𝜃𝑖

[𝑌𝑖
𝑤𝑖] < 𝜃𝑖 − 𝐸𝜃𝑖

[𝑌𝑖
𝑤𝑖]. 

Since for 𝜃𝑖 > 𝑒, 
𝑑

𝑑𝜃𝑖

ln 𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)] = ∑

𝑤𝑖(𝑦𝑖)

𝐸𝜃𝑖
[𝑤𝑖(𝑌𝑖)]

𝑖≥0

𝜃𝑖
𝑦𝑖

𝑦𝑖!
𝑒−𝜃𝑖(ln 𝜃𝑖 − 1) > 0. 

Then according to the equation (0), 𝜃𝑖 − 𝐸𝜃𝑖
[𝑌𝑖

𝑤𝑖 ] < 0. What needed to be demonstrated. 
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