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Abstract

In this paper for a Banach space F and Y x € F, we prove that all orthogonal topological complement E} to
F are isomorphic to a unique Banach space G. Also, the derivative equations of a Riemannian Banach
submanifold N of a Riemannian Banach manifold M are established.
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. Introduction
Let M be aBanach manifold of class C"(r = 2,) modeled on a Banach space E and N c M isa
submanifold of M of the same class (" modeled on a Banach space F c E [1]. Also, let i: ¥ € N —
i(¥) = % € M be the inclusion map. If ¢ = (U,¢,E) isacharton M atapoint ¥ € M and d = (V,},F) is
acharton N at Xx € N c M. Furthermore, if ¥(Xx) =x and Z = ¢(x) are the models of X with respect to
the charts d and c respectively. Also, if i is the local representation of the mapping i with respect to the
charts ¢ and d, then we have :
itxeyp(V)cF —i(x)=Z¢€ ¢U)CE. (1.1)
Equation (1.1) is called the local equation of the submanifold N with respect to the charts ¢ and d.
Let (M, g") be a Riemannian manifold and N c M be its Riemannian submanifold with a metric g2.
This means that g2 isinducedon N by g' according to the rule:
VXEN,VX,X,ETz N
FeX, %) = Gl (Te iR, T (R, (12)
where T;i:Tz N — Tz M is the tangent mapping to the mapping i at the point %. Furthermore
Tz N and Tz M are the spaces of all tangent vectors of N and M respectively. We assume that g* and g2
are strong non-singular [3]. Now, if X;,X, € F are the models of the vectors X;,X, € Tz N with respect to the
chart d, then the models of these vectors in the chart ¢ take the form:
Y, = Di,(X1) , Y, =Di(Xp),
where Di, isthe Frechet derivative of the mapping i [1]. In this case the local representation of (1.2)
has the form:
92(X1,X,) = g2(Din(X,), Diy (X)), (1.3)
where g and g? are the models of g* and g2 with respect to the charts ¢ and d respectively.
Since M and N are Riemannian manifolds, then there exists unique torsion-free connections T and
['? [3], suchthat V1 g1 =0 and V2 g2 =0, on M and N respectively, where V! and V? are the operators
of the covariant differentiation on M and N respectively [3]. Also, we assume T and I'? are the models of
the connections T'' and 2 with respect to the charts ¢ and d respectively.
Assuming that at every point x € N, the tangent space Tz N to the submanifold N c M has a
topological orthogonal complement (T; N)* where,
(T N ={Y eT;M: gi(Y,X) =0 VX €T; N}
such that Tz N @ (Tg N)* = Tg M, also the Banach spaces TyN X (T N)* and TyM are
isomorphic (Here @ is the operation of the direct sum of mutually orthogonal subspaces Tz N and (T, N)*)

[3].

From the definition of the submanifold [1], there exist charts ¢ = (U, ¢,E) on M at the point x € M
and d = =UNnN,y =¢|y,FcE) on N atthepoint X € N suchthat ¢(V) c F.

Now, assume that the chart ¢ is fixed at X € M and define a mapping w.z: Tz M — E as follows:

Let h € T; M. From all equivalence pairs which define the vector h, we take the pair (c,h) whose
first component is our fixed chart c, then the second component h can be taken as the image of w,, at h.

Then, we define:

we,z(Tx Nt =F cE,
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to be the orthogonal topological complement of F c E with respect to g}(x). This means that V x €
N,VX €Tz N, X =wyz(X) €F andforall S€ F;_, ), we have

Gl (S, D (X)) =0, (1.4)
where w.z: Tz M — E is an isomorphism between the normed spaces with respect to the chart ¢
[7]. Similarly w; 5 : Tz N — F is an isomorphism with respect to the chart d.

Now, we shall prove that all these orthogonal topological complements E; to the Banach space F are
isomorphic to a unique Banach space G.
Proof: We assume that the Banach subspaces G,,G, c E are orthogonal complement to F, This
meansthat F @ G, = E = F @ G, and we will prove that G; and G, are isomorphic.
Denoting f;:FXG; — F @ G; = E,i =1,2 are isomorphisms between the Banach spaces. We
define the mappings:
h=proj,of;': Gy — G,

it i
by the rule: h: X, =Y +X, €6, CE=F@® G, (¥,X,) —53X, €G,, and h~' =proj,o

fit }
fl: G, — G, bytherule h™': X, =Y +X, € G, CE=F + G, = (=Y, X) € F X G, —3 X, € G,.

It is clear that h is an isomorphism of the Banach spaces G, and G,. Hence all the topological
orthogonal complements of F are isomorphic. Thus, they are isomorphic to a unique Banach space G.
Now, we shall prove the following theorem:
Theorem (1.1): Forall x € N c M, there exists an isomorphism of the Banach spaces 7z, : G — (T, N)* c
Tz N satisfies the following property:
V X, € N, there exists a chart d = (V, 4, F) at the point %, onand ¢ = (U, ¢, E) at the point i(%,) = %, on
M such that the mapping:
n:x=y(x) €PV) cF — n, =w.zof; € L(G;E) is differentiable of class ¢" .
Proof: Let X, € N be a fixed pointand ¢ = (U,¢,E) , d= ¥ =UNN,y = ¢p|,, F c E) are charts at i,
on M and N respectively.
Now, for all x €V c N, we have G, = w,z((Tz N)*) orthogonal complement to F with respect to g}(x).

We take G = Gy, = Wcz, ((T,EO N)l).

Now, for all ¥ € V N, we define a linear continuous operator n, € L(E;E) and its inverse #i, =n"1, €
L(E; E) as asolution of the equations:

gx(n, (Y, Y,) = ngco (1, Y2), (1.5)
9%, (Y1), Vo) = gz (Y, 12). (1.6)
In this case, it is clear that

nx(G) = va (17)

i (G = G. (1.8)

Furthermore, if we denote:
g%+ L(E;R) — L(E; E)
as an isomorphism of Banach spaces, and taking into account that glx is strong non-singular [3], then from
(1.5), (1.6) we have that:
Ny = gz (gx,)» (1.9)
fle = Gy (9x)- (1.10)
Therefore taking into account that g is differentiable , we deduce that:
fl:x — A, € Lis(E; E) € L(E; E)
is differentiable of class C"~'(Here, Lis(E;E) is open subset of L(E;E) and it is the set of all automorphisms
on the Banach space E).
Now, from the fact that
f € Lis(E;E) c L(E; E) — f~* € Lis(E; E)
is differentiable [4], we deduce that n : x — n, = (i)t € Lis(E; E) < L(E; E) is also differentiable of class
Cr_l.
Now, forall x € V < N, we define:
Meg=wigonle:G— (TeN)* cTy M, (1.11)
where x = i (x).
Therefore, differentiability of the mapping 7 : ¥ — Lis(G; (Tz N)1) of class ("1 exists at least locally.
Remark 1.1: Let ¢'=(U",¢",E) and d'= (V' =U'NnN,y’' = ¢'|,,,F, cE) arechartson M and N at
the point X € V' © N respectively.
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Hence, if A: x € V' — A; € (T N)* is a differentiable vector field of class ("' on V' c N, then we
define the mapping:
A: xeV' — A; =nz;'(A;) €G
which is also differentiable of class C"~2.
Proof: Using (1.11) with respect to the chart d' on V' c N, we get:
A ((”xlax)_l oW, ) (Ap) = ((nx1)|a ow,r )(Ax) = (nz' o wo £)(Ax), this means that the mapping:

A : ¥ — A; canbe represented as composition of the mappings:

A><Ld Px 'dV a1=idgXnA —
i— (A %) —)( +(Ag, x)) — (W x(Ap), 7, & nxl) - Ag, where x = ¢’ (%) such that:
(1) A: x— Agis dlfferentlable of class C"? by condition,
2 Y:ye@TV)Y c(TN)}CTE— Wy, y—zep'(y) EE, is of class ("%, since the mapping ;
locally, can be written as:

B (¢' @ wer,0)) == wer ),
this means:
P =proj,: ¢'(V') X E — E isofclass C*,
(3) The mapping a; : (X,X) EE X V' — (X,7iz) € E x L(E;E) isofclass ("%,
(4) The mapping a, : (X,B) € E X L(E;E) — B(X) € E isofclass C*.
Therefore, we have that the mapping a,oa,eo (W Xid,)o(AXid,): ¥ — (A X) — W(Ap),X) =
(Wer (A2, X) — (wer z(Ap), 7iy) — Ty (wcf_,z(A,z)) =A; is differentiable of class (™' (Here
TV, TN, TE are tangent spaces of the manifolds V',N and E respectively [5], furthermore the mapping

X —x=¢'(X) 5 fi, is differentiable of class C"~! by condition).
Also, since V Z € G,n,(Z) € Ef, then similarly (1.4) we get
9l (ne(2),D i, (X)) =0,V X €Ty N. (1.12)
Now, mixed covariant differentiation of equality (1.3) with respect to the mixed covariant differentiation V-2
taking into account that g* € TQJZO(N),gzl € TN and Ti € THL(N) [6], we get:
Fieo (V7 D ix (X1 X3), D 1 (X2)) + Gl (D ix(X3), V22 D 1, (X15 X2)) + Gy (V2 D i (X5 X1), D i (X3)) +
Il (D i (X1), V2 D i (X3 X3)) = iy (V2 D (X3 X1), D i (X2)) = Gy (D 1 (K1), V2 D i, (X35 X)) =
0. (1.13)
But, for a mixed tensor S € T (N), we have [6].
V2 S(X,Y) = V2 SO Y) = V2 S(v; X) =T (S(¥), D i, (X)) = 5 (r2(v, X)) + T2 (S(¥), D i (X)).
Also, we take S(Y) = D i,(Y), therefore V2D i,(X,Y) = 0 and from (1.13) we get:
2 Gl (D i (X3), V22 D (X33 X,)) = 0. (L14)
Now, from (1.14) we obtain:
V2 D i (X;;X,) € F.
But, since n, : G — EZ is an isomorphism, then there exists a vector A,(X;,X;) € G such that:
V2 D i, (X35 X;) = ny(Ar (X1, X5)). (1.15)

Lemmall: Vx =y(x) e (V) c F,A, € L,(F;G), this means: A, is bilinear continuous mapping.
Proof: From theorem (1.1), we have n, € L(G;E), furthermore Vv x = (x) € Y(V) c F,n,(G) is a closed
vector subspace of E.
Then n, : G — n,(G) is a linear isomorphism of the two Banach spaces. Therefore by Banach theorem of
inverse mapping [7], we have that the mapping n;* : n,(G) — G is, also linear and continuous.
This means n;! € Lis(n,(G); G).
Now, from (1.13) we get:
A, (X1, X3) = nz1 (VY2 D i (X1;X,)), where V22 D iy € L,(F;E) [2].
Thus, we obtain:
A, € L,(F;G).
Also, we consider the first derivative D n,(X;Z) atthe point x € (V) c F, where x € F and Z € G. Then
we can get:
Dn,(X;Z) = D i,(H,(X,2)) + ne (S, (X, 2)). (1.16)
Now, we give the following Lemma:
Lemma 1.2:
1- H,(X,Z) € L(F,G;F), thismeans H, is bilinear and continuous;
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2- S, € L(F,G;G) and this, also means that S, is bilinear and continuous.
Proof:
1- Scalar multiplication (1.16) by D i, (Y) with respect to gl-l(x) where Y € F, taking into account (1.3) and
(1.12) we get:
1 ; — 2

Gioo(D ix(Y), D ny(X,2)) = g2(Y, He (X, 2)),
or denoting the left hand side of the last equality as following:
B (Y, X,Z) = g2(Y,H,(X,2)), (1.17)
where B:x € Yy(V) c F — B, € L(F,F,G;R).
Thus equality (1.17), can rewrites in the from:

Ho(X,2) = (9207 (B, X, ) = (g3) 7 (B(x,2)),  (1.18)
where B, : (X,Z) EF xG — B, (X,Z) = B,(.,X,Z) € L(F;R) = F* and g2*:F — F* is an isomorphism
between the Banach spaces F and its dual F*, taking into account that g2 € L,(F; R) is strong non-singular
[3]. Hence, from (1.18) we get:
Hy = (g2") ™" 2 B, (1.19)
where B, € L(F,G; F*) and we deduce that: H, € L(F,G;F);
2- From (1.14) we have:
Ya = Ny ° Sy, (1.20)
where y, & Dn, — D i, o H,. Hence we obtain: y, € L(F,G;E), furthermore from theorem (1.1) we get:
nz! € L(n,(G); G). Finally, itis clear that: S, = n;'oy, € L(F,G;G).
Lemma 1.3:
1- The mapping:
H:x €F — H, € L(F,G; F), isdifferentiable of class C"~1.
2- The mapping:
S:x€F — S, €L(F,G;G), isdifferentiable of class ("2.
Proof:
1- At first we prove that the mapping g**:x € F — g2* € L(F; F*) is differentiable and its inverse (g2*)7!:
x €F — (g¥)™' € L(F*; F) is also differentiable of class C"~. For this aim, we have that the Banach spaces
L(F;F*) and L,(F;R) are isomorphic [2]. Then, g2* = K(g2), where K :L,(F;R) — L(F;F*) is an
isomorphism of the Banach spaces. But the mapping g : x — gl € L,(F;R) is differentiable of class ("~!
by condition, and hence the mapping: g** : x € F — g%* € L(F; F*) is differentiable of class ("~
Now, (g?) ':x€F — g2* — (g2~ is differentiable, since the mapping u € L(F;F*) > u™lE€
L(F*; F) isdifferentiable [4].
Furthermore, from (1.19) we get H, = (g2*)~! o ,, such that 7, is differentiable of class ("2 (see Lemma
(1.1)). Therefore, it is clear that the mapping x — H, is differentiable of class C"2;
2- From (1.19) we have:
S, = nxto B,, furthermore the mapping B, is differentiable of class C"~2. Also, from remark (1.1) it follows
that the mapping n3;! is differentiable of class ("1, vx' € ¢'(¥) ey'(V') c F, Cc E.
Hence, we deduce that the mapping S, is differentiable of class (" 2.

Equations (1.15) and (1.16) are called the first and the second derivative equations of the Riemannian
submanifold N of the Banach Riemannian manifold M.
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