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Abstract 
In this paper for a Banach space  𝐹  and  ∀ 𝑥 ∈ 𝐹,  we prove that all orthogonal topological complement  𝐹𝑥

⊥  to  

𝐹   are isomorphic to a unique Banach space  𝐺.  Also, the derivative equations of a Riemannian Banach 

submanifold  𝑁  of a Riemannian Banach manifold  𝑀  are established. 
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I. Introduction 
Let  𝑀  be  a Banach manifold of class  ∁𝑟(𝑟 ≥ 2,∞)  modeled on a Banach space  𝐸  and  𝑁 ⊂ 𝑀  is a 

submanifold of  𝑀  of the same class  ∁𝑟   modeled on a Banach space  𝐹 ⊂ 𝐸  [1]. Also, let  𝑖̇ ∶ 𝑥̅ ∈ 𝑁 ⟶

𝑖(𝑥̅) = 𝑥̅ ∈ 𝑀  be the inclusion map. If  𝑐 = (𝑈, 𝜙, 𝐸)  is a chart on  𝑀  at a point  𝑥̅ ∈ 𝑀  and  𝑑 = (𝑉, 𝜓, 𝐹)  is 

a chart on  𝑁  at  𝑥̅ ∈ 𝑁 ⊂ 𝑀. Furthermore, if  𝜓(𝑥̅) = 𝑥  and  𝑍 = 𝜙(𝑥̅)  are the models of  𝑥̅  with respect to 

the charts  𝑑  and  𝑐  respectively. Also, if  𝑖  is the local representation of the mapping  𝑖  with respect to the 

charts  𝑐  and  𝑑, then we have : 

𝑖 ∶ 𝑥 ∈ 𝜓(𝑉) ⊂ 𝐹 ⟶ 𝑖(𝑥) = 𝑍 ∈ 𝜙(𝑈) ⊂ 𝐸.                  (1.1) 

Equation (1.1) is called the local equation of the submanifold  𝑁  with respect to the charts  𝑐  and  𝑑. 
Let  (𝑀, 𝑔̅1)  be a Riemannian manifold and  𝑁 ⊂ 𝑀  be its Riemannian submanifold with a metric  𝑔̅2. 

This means that  𝑔̅2  is induced on  𝑁  by  𝑔̅1  according to the rule: 

∀ 𝑥̅ ∈ 𝑁, ∀ 𝑋̅1, 𝑋̅2 ∈ 𝑇𝑥̅ 𝑁 

𝑔̅𝑥̅
2(𝑋̅1, 𝑋̅2) = 𝑔̅𝑖(𝑥̅)=𝑥̅

1 (𝑇𝑥̅  𝑖(𝑋̅1), 𝑇𝑥̅ 𝑖(𝑋̅2)),                   (1.2) 

where  𝑇𝑥̅ 𝑖 ∶ 𝑇𝑥̅  𝑁 ⟶ 𝑇𝑥̅  𝑀  is the tangent mapping to the mapping  𝑖  at the point  𝑥̅.  Furthermore  

𝑇𝑥̅ 𝑁  and  𝑇𝑥̅ 𝑀  are the spaces of all tangent vectors of  𝑁  and  𝑀  respectively. We assume that  𝑔̅1  and  𝑔̅2  
are strong non-singular [3]. Now, if  𝑋1, 𝑋2 ∈ 𝐹  are the models of the vectors  𝑋̅1, 𝑋̅2 ∈ 𝑇𝑥̅  𝑁  with respect to the 

chart  𝑑, then the models of these vectors in the chart  𝑐  take the form: 

𝑌1 = 𝐷𝑖𝑥(𝑋1)          , 𝑌2 = 𝐷𝑖𝑥(𝑋2), 
where  𝐷𝑖𝑥  is the Frechet derivative of the mapping  𝑖  [1].  In this case the local representation of (1.2) 

has the form: 

𝑔𝑥
2(𝑋1, 𝑋2) = 𝑔𝑧

1(𝐷𝑖𝑥(𝑋1), 𝐷𝑖𝑥(𝑋2)),                     (1.3) 

where  𝑔1  and  𝑔2  are the models of  𝑔̅1  and  𝑔̅2  with respect to the charts  𝑐  and  𝑑  respectively. 

Since  𝑀  and  𝑁  are Riemannian manifolds, then there exists unique torsion-free connections  Γ̅1  and  

Γ̅2  [3],  such that  ∇̅1 𝑔̅1 ≡ 0  and  ∇̅2 𝑔̅2 ≡ 0,  on  𝑀  and  𝑁  respectively, where  ∇̅1  and  ∇̅2  are the operators 

of the covariant differentiation on  𝑀  and  𝑁  respectively  [3]. Also, we assume  Γ1  and  Γ2  are the models of 

the connections  Γ̅1  and  Γ̅2  with respect to the charts  𝑐  and  𝑑  respectively. 

Assuming that at every point  𝑥̅ ∈ 𝑁,  the tangent space  𝑇𝑥̅ 𝑁   to the submanifold  𝑁 ⊂ 𝑀   has a 

topological orthogonal complement  (𝑇𝑥̅  𝑁)
⊥  where, 

(𝑇𝑥̅ 𝑁)
⊥ = {𝑌̅ ∈ 𝑇𝑥̅ 𝑀 ∶  𝑔̅𝑥̅

1(𝑌̅, 𝑋̅) = 0  ∀ 𝑋̅ ∈ 𝑇𝑥̅  𝑁} 
such that  𝑇𝑥̅ 𝑁 ⊕ (𝑇𝑥̅ 𝑁)

⊥ = 𝑇𝑥̅  𝑀,   also the Banach spaces  𝑇𝑥̅  𝑁 × (𝑇𝑥̅ 𝑁)
⊥   and  𝑇𝑥̅  𝑀   are 

isomorphic (Here  ⊕  is the operation of the direct sum of mutually orthogonal subspaces  𝑇𝑥̅  𝑁  and  (𝑇𝑥  𝑁)
⊥)  

[3]. 

From the definition of the submanifold [1], there exist charts  𝑐 = (𝑈, 𝜙, 𝐸)  on  𝑀  at the point  𝑥̅ ∈ 𝑀  

and  𝑑 = (𝑉 = 𝑈 ∩ 𝑁,𝜓 = 𝜙|𝑁 , 𝐹 ⊂ 𝐸)  on  𝑁  at the point  𝑥̅ ∈ 𝑁  such that  𝜙(𝑉) ⊂ 𝐹. 
Now, assume that the chart  𝑐  is fixed at  𝑥̅ ∈ 𝑀  and define a mapping  𝑤𝑐,𝑥̅:  𝑇𝑥̅  𝑀 ⟶ 𝐸  as follows: 

Let  ℎ̅ ∈ 𝑇𝑥̅  𝑀. From all equivalence pairs which define the vector  ℎ̅, we take the pair  (𝑐, ℎ)  whose 

first component is our fixed chart  𝑐, then the second component  ℎ  can be taken as the image of  𝑤𝑐,𝑥  at  ℎ̅. 
Then, we define: 

𝑤𝑐,𝑥̅(𝑇𝑥̅ 𝑁)
⊥ = 𝐹𝑥

⊥ ⊂ 𝐸, 
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to be the orthogonal topological complement of  𝐹 ⊂ 𝐸  with respect to  𝑔𝑖(𝑥)
1 .  This means that  ∀ 𝑥̅ ∈

𝑁, ∀ 𝑋̅ ∈ 𝑇𝑥̅  𝑁, 𝑋 = 𝑤𝑑,𝑥̅(𝑋̅) ∈ 𝐹  and for all  𝑆 ∈ 𝐹𝑥=𝜓(𝑥̅)
⊥ , we have 

𝑔𝑖(𝑥)
1 (𝑆, 𝐷 𝑖𝑥(𝑋)) = 0,                                    (1.4) 

where  𝑤𝑐,𝑥̅ ∶  𝑇𝑥̅  𝑀 ⟶ 𝐸  is an isomorphism between the normed spaces with respect to the chart  𝑐  

[7]. Similarly  𝑤𝑑,𝑥̅ ∶  𝑇𝑥̅  𝑁 ⟶ 𝐹  is an isomorphism with respect to the chart  𝑑. 
 

Now, we shall prove that all these orthogonal topological complements  𝐹𝑥
⊥  to the Banach space  𝐹  are 

isomorphic to a unique Banach space  𝐺. 
Proof: We assume that the Banach subspaces  𝐺1, 𝐺2 ⊂ 𝐸  are orthogonal complement to  𝐹, This 

means that  𝐹 ⊕ 𝐺1 = 𝐸 = 𝐹 ⊕ 𝐺2  and we will prove that  𝐺1  and  𝐺2  are isomorphic. 

Denoting  𝑓𝑖 ∶ 𝐹 × 𝐺𝑖 ⟶ 𝐹⊕𝐺𝑖 = 𝐸, 𝑖 = 1,2̅̅ ̅̅   are isomorphisms between the Banach spaces. We 

define the mappings: 

ℎ = 𝑝𝑟𝑜𝑗2 ∘ 𝑓2
−1 ∶  𝐺1⟶ 𝐺2 

by the rule:  ℎ ∶  𝑋1 = 𝑌 + 𝑋2 ∈ 𝐺1 ⊂ 𝐸 = 𝐹 ⊕ 𝐺2
𝑓2
−1

→   (𝑌, 𝑋2)
𝑝𝑟𝑜𝑗2
→   𝑋2 ∈ 𝐺2 ,  and  ℎ−1 = 𝑝𝑟𝑜𝑗2 ∘

𝑓1
−1 ∶  𝐺2⟶ 𝐺1  by the rule  ℎ−1 ∶  𝑋2 = −𝑌 + 𝑋1 ∈ 𝐺2 ⊂ 𝐸 = 𝐹 + 𝐺1

𝑓1
−1

→  (−𝑌, 𝑋) ∈ 𝐹 × 𝐺1
𝑝𝑟𝑜𝑗2
→   𝑋1 ∈ 𝐺1. 

It is clear that  ℎ  is an isomorphism of the Banach spaces  𝐺1  and  𝐺2. Hence all the topological 

orthogonal complements of  𝐹  are isomorphic. Thus, they are isomorphic to a unique Banach space  𝐺. 
Now, we shall prove the following theorem: 

Theorem (1.1): For all  𝑥̅ ∈ 𝑁 ⊂ 𝑀,  there exists an isomorphism of the Banach spaces  𝑛̅𝑥̅0 ∶ 𝐺 ⟶ (𝑇𝑥  𝑁)
⊥ ⊂

𝑇𝑥̅ 𝑁  satisfies the following property: 

∀ 𝑥̅0 ∈ 𝑁,  there exists a chart  𝑑 = (𝑉, 𝜓, 𝐹)  at the point  𝑥̅0  on and  𝑐 = (𝑈, 𝜙, 𝐸)  at the point  𝑖(𝑥̅0) = 𝑥̅0  on  

𝑀  such that the mapping: 

𝑛 ∶ 𝑥 = 𝜓(𝑥̅) ∈ 𝜓(𝑉) ⊂ 𝐹 ⟶ 𝑛𝑥 = 𝑤𝑐,𝑥̅ ∘ 𝑛̅𝑥̅ ∈ 𝐿(𝐺; 𝐸)  is differentiable of class  𝑐𝑟−1. 

Proof: Let  𝑥̅0 ∈ 𝑁  be a fixed point and  𝑐 = (𝑈, 𝜙, 𝐸)  ,   𝑑 = (𝑉 = 𝑈 ∩ 𝑁,𝜓 = 𝜙|𝑉 , 𝐹 ⊂ 𝐸)  are charts at  𝑥̅0  

on  𝑀  and  𝑁  respectively. 

Now, for all  𝑥̅ ∈ 𝑉 ⊂ 𝑁,  we have  𝐺𝑥 = 𝑤𝑐,𝑥̅((𝑇𝑥̅ 𝑁)
⊥)   orthogonal complement to  𝐹  with respect to  𝑔𝑖(𝑥)

1 .  

We take  𝐺 = 𝐺𝑥0 = 𝑤𝑐,𝑥̅0 ((𝑇𝑥̅0  𝑁)
⊥
). 

Now, for all  𝑥̅ ∈ 𝑉 ⊂ 𝑁,  we define a linear continuous operator  𝑛𝑥 ∈ 𝐿(𝐸; 𝐸)  and its inverse  𝑛̃𝑥 = 𝑛
−1
𝑥 ∈

𝐿(𝐸; 𝐸)  as a solution of the equations: 

𝑔𝑥
1(𝑛𝑥(𝑌1), 𝑌2) = 𝑔𝑥0

1 (𝑌1, 𝑌2),                                       (1.5) 

𝑔𝑥0
1 (𝑛̃𝑥(𝑌1), 𝑌2) = 𝑔𝑥

1(𝑌1, 𝑌2).                                        (1.6) 

In this case, it is clear that 

𝑛𝑥(𝐺) = 𝐺𝑥 ,                                                    (1.7) 

𝑛̃𝑥(𝐺𝑥) = 𝐺.                                                    (1.8) 

Furthermore, if we denote: 

𝑔𝑥
1∗ ∶  𝐿2(𝐸; 𝑅) ⟶ 𝐿(𝐸; 𝐸) 

as an isomorphism of Banach spaces, and taking into account that  𝑔1
𝑥
  is strong non-singular [3], then from 

(1.5), (1.6) we have that: 

𝑛𝑥 = 𝑔𝑥
1∗(𝑔𝑥0

1 ),                                               (1.9) 

𝑛̃𝑥 = 𝑔𝑥0
1∗(𝑔𝑥

1).                                              (1.10) 

Therefore taking into account that  𝑔1  is differentiable , we deduce that: 

𝑛̃ ∶ 𝑥 ⟶ 𝑛̃𝑥 ∈ 𝐿𝑖𝑠(𝐸; 𝐸) ⊂ 𝐿(𝐸; 𝐸) 
is differentiable of class  ∁𝑟−1(Here,  𝐿𝑖𝑠(𝐸; 𝐸)  is open subset of  𝐿(𝐸; 𝐸)  and it is the set of all automorphisms 

on the Banach space  𝐸). 

Now, from the fact that 

𝑓 ∈ 𝐿𝑖𝑠(𝐸; 𝐸) ⊂ 𝐿(𝐸; 𝐸) ⟶ 𝑓−1 ∈ 𝐿𝑖𝑠(𝐸; 𝐸) 
is differentiable [4], we deduce that  𝑛 ∶ 𝑥 ⟶ 𝑛𝑥 = (𝑛̃𝑥)

−1 ∈ 𝐿𝑖𝑠(𝐸; 𝐸) ⊂ 𝐿(𝐸; 𝐸)  is also differentiable of class  

∁𝑟−1. 
Now, for all  𝑥̅ ∈ 𝑉 ⊂ 𝑁,  we define: 

𝑛̅𝑥̅ = 𝑤𝑐,𝑥̅
−1 ∘ 𝑛𝑥|𝐺 ∶ 𝐺 ⟶ (𝑇𝑥̅ 𝑁)

⊥ ⊂ 𝑇𝑥̅ 𝑀,                (1.11) 

where  𝑥 = 𝜓(𝑥̅). 
Therefore, differentiability of the mapping  𝑛̅ ∶  𝑥̅ ⟶ 𝐿𝑖𝑠(𝐺; (𝑇𝑥̅ 𝑁)

⊥)  of class  ∁𝑟−1  exists at least locally. 

Remark 1.1: Let  𝑐′ = (𝑈′, 𝜙′, 𝐸)  and  𝑑′ = (𝑉′ = 𝑈′ ∩ 𝑁,𝜓′ = 𝜙′|𝑉′, 𝐹1 ⊂ 𝐸)  are charts on  𝑀  and  𝑁  at 

the point  𝑥̅ ∈ 𝑉′ ⊂ 𝑁  respectively. 
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Hence, if  𝐴̅ ∶  𝑥̅ ∈ 𝑉′⟶ 𝐴̅𝑥̅ ∈ (𝑇𝑥̅  𝑁)
⊥  is a differentiable vector field of class  ∁𝑟−1  on  𝑉′ ⊂ 𝑁,  then we 

define the mapping: 

𝐴̃ ∶  𝑥̅ ∈ 𝑉′⟶ 𝐴̃𝑥̅ = 𝑛̅𝑥̅
−1(𝐴̅𝑥̅) ∈ 𝐺 

which is also differentiable of class  ∁𝑟−1. 

Proof: Using (1.11) with respect to the chart  𝑑′  on  𝑉′ ⊂ 𝑁,  we get: 

Ãx̅ ∶ ((𝑛𝑥|𝐺𝑥)
−1 ∘ 𝑤𝑐′ ,𝑥̅) (𝐴̅𝑥̅) = ((𝑛𝑥

−1)|𝐺𝑥 ∘ 𝑤𝑐′,𝑥̅)
(𝐴̅𝑥̅) = (𝑛𝑥

−1 ∘ 𝑤𝑐′ ,𝑥̅)(𝐴̅𝑥̅),  this means that the mapping: 

𝐴 ̃ ∶  𝑥̅ ⟶ 𝐴̃𝑥̅  can be represented as composition of the mappings: 

𝑥̅
𝐴̅×𝑖𝑑

𝑉′

→    (𝐴̅𝑥̅, 𝑥̅)
𝜓×𝑖𝑑

𝑉′

→    (𝑤𝑐′,𝑥̅(𝐴̅𝑥̅ , 𝑥̅))
𝛼1=𝑖𝑑𝐸×𝑛̃
→       (𝑤𝑐′ ,𝑥̅(𝐴̅𝑥̅), 𝑛̃𝑥 ≝ 𝑛𝑥

−1)
𝛼2
→ 𝐴̃𝑥̅,  where  𝑥 = 𝜙′(𝑥̅)  such that: 

(1)    𝐴̅ ∶  𝑥̅ ⟶ 𝐴̅𝑥̅  is differentiable of class  ∁𝑟−1  by condition, 

(2)    𝜓 ∶ 𝑦 ∈ (𝑇 𝑉′)⊥ ⊂ (𝑇 𝑁)⊥ ⊂ 𝑇 𝐸 ⟶ 𝑤𝑐′,𝜋(𝑦)=𝑍∈𝑉′(𝑦) ∈ 𝐸,  is of class  ∁𝑟−1,  since the mapping  𝜓;  

locally, can be written as: 

𝜓̂ ∶ (𝜙′(𝑍), 𝑤𝑐′,𝑍(𝑦)) =
𝑝𝑟𝑜𝑗2
→   𝑤𝑐′,𝑍(𝑦), 

this means: 

𝜓̂ = 𝑝𝑟𝑜𝑗2 ∶  𝜙
′(𝑉′) × 𝐸 ⟶ 𝐸  is of class  ∁∞, 

(3)    The mapping  𝛼1 ∶ (𝑋, 𝑥̅) ∈ 𝐸 × 𝑉
′⟶ (𝑋, 𝑛̃𝑥̅) ∈ 𝐸 × 𝐿(𝐸; 𝐸)  is of class  ∁𝑟−1, 

(4)    The mapping  𝛼2 ∶ (𝑋, 𝐵) ∈ 𝐸 × 𝐿(𝐸; 𝐸) ⟶ 𝐵(𝑋) ∈ 𝐸  is of class  ∁∞. 
Therefore, we have that the mapping  𝛼2 ∘ 𝛼2 ∘ (𝜓 × 𝑖𝑑𝑉′) ∘ (𝐴̅ × 𝑖𝑑𝑉′) ∶  𝑥̅ ⟶ (𝐴̅𝑥̅, 𝑋̅) ⟶ (𝜓(𝐴̅𝑥̅), 𝑋̅) =

(𝑤𝑐′,𝑥̅(𝐴̅𝑥̅), 𝑋̅) ⟶ (𝑤𝑐′ ,𝑥̅(𝐴̅𝑥̅), 𝑛̃𝑥) ⟶ 𝑛̃𝑥 (𝑤𝑐′ ,𝑥̅(𝐴̅𝑥̅)) = 𝐴̃𝑥̅   is differentiable of class  ∁𝑟−1   (Here  

𝑇 𝑉′, 𝑇 𝑁, 𝑇 𝐸  are tangent spaces of the manifolds  𝑉′, 𝑁  and  𝐸  respectively [5], furthermore the mapping  

𝑥̅ ⟶ 𝑥 = 𝜙′(𝑥̅)
𝑛̃
→ 𝑛̃𝑥  is differentiable of class  ∁𝑟−1  by condition). 

Also, since  ∀ 𝑍 ∈ 𝐺, 𝑛𝑥(𝑍) ∈ 𝐹𝑥
⊥,  then similarly (1.4) we get 

𝑔𝑖(𝑥)
1 (𝑛𝑥(𝑍), 𝐷 𝑖𝑥(𝑋)) = 0, ∀ 𝑋̅ ∈ 𝑇𝑥̅ 𝑁.                           (1.12) 

Now, mixed covariant differentiation of equality (1.3) with respect to the mixed covariant differentiation  ∇1,2  

taking into account that  𝑔̅1 ∈ 𝑇0+2
0+0(𝑁), 𝑔̅2

|𝑁
∈ 𝑇2+0

0+0(𝑁)  and  𝑇 𝑖 ∈ 𝑇0+1
1+0(𝑁)  [6], we get: 

𝑔𝑖(𝑥)
1 (∇1,2 𝐷 𝑖𝑥(𝑋1; 𝑋3), 𝐷 𝑖𝑥(𝑋2)) + 𝑔𝑖(𝑥)

1 (𝐷 𝑖𝑥(𝑋3), ∇
1,2 𝐷 𝑖𝑥(𝑋1; 𝑋2)) + 𝑔𝑖(𝑥)

1 (∇1,2 𝐷 𝑖𝑥(𝑋2; 𝑋1), 𝐷 𝑖𝑥(𝑋3)) +

𝑔𝑖(𝑥)
1 (𝐷 𝑖𝑥(𝑋1), ∇

1,2 𝐷 𝑖𝑥(𝑋2; 𝑋3)) − 𝑔𝑖(𝑥)
1 (∇1,2 𝐷 𝑖𝑥(𝑋3; 𝑋1), 𝐷 𝑖𝑥(𝑋2)) − 𝑔𝑖(𝑥)

1 (𝐷 𝑖𝑥(𝑋1), ∇
1,2 𝐷 𝑖𝑥(𝑋3; 𝑋2)) =

0.        (1.13) 

But, for a mixed tensor  𝑆 ∈ 𝑇0+1
1+0(𝑁),  we have [6]. 

∇1,2 𝑆(𝑋, 𝑌) = ∇1,2 𝑆(𝑋; 𝑌) − ∇1,2 𝑆(𝑌; 𝑋) = Γ1 (𝑆(𝑌), 𝐷 𝑖𝑥(𝑋)) − 𝑆 (Γ
2(𝑌, 𝑋)) + Γ2 (𝑆(𝑌), 𝐷 𝑖𝑥(𝑋)). 

Also, we take  𝑆(𝑌) = 𝐷 𝑖𝑥(𝑌),  therefore  ∇1,2 𝐷 𝑖𝑥(𝑋, 𝑌) = 0  and from (1.13) we get: 

2 𝑔𝑖(𝑥)
1 (𝐷 𝑖𝑥(𝑋3), ∇

1,2 𝐷 𝑖𝑥(𝑋1; 𝑋2)) = 0.                          (1.14) 

Now, from (1.14) we obtain: 

∇1,2 𝐷 𝑖𝑥(𝑋1; 𝑋2) ∈ 𝐹𝑥
⊥. 

But, since  𝑛𝑥 ∶ 𝐺 ⟶ 𝐹𝑥
⊥  is an isomorphism, then there exists  𝛼  vector  𝐴𝑥(𝑋1, 𝑋2) ∈ 𝐺  such that: 

∇1,2 𝐷 𝑖𝑥(𝑋1; 𝑋2) = 𝑛𝑥(𝐴𝑥(𝑋1, 𝑋2)).                             (1.15) 

 

Lemma 1.1:  ∀ 𝑥 = 𝜓(𝑥̅) ∈ 𝜓(𝑉) ⊂ 𝐹, 𝐴𝑥 ∈ 𝐿2(𝐹; 𝐺),  this means:        𝐴𝑥  is bilinear continuous mapping. 

Proof: From theorem (1.1), we have  𝑛𝑥 ∈ 𝐿(𝐺; 𝐸),  furthermore  ∀ 𝑥 = 𝜓(𝑥̅) ∈ 𝜓(𝑉) ⊂ 𝐹, 𝑛𝑥(𝐺)  is a closed 

vector subspace of  𝐸. 

Then  𝑛𝑥 ∶ 𝐺 ⟶ 𝑛𝑥(𝐺)  is a linear isomorphism of the two Banach spaces. Therefore by Banach theorem of 

inverse mapping [7], we have that the mapping  𝑛𝑥
−1 ∶  𝑛𝑥(𝐺) ⟶ 𝐺  is, also linear and continuous. 

This means  𝑛𝑥
−1 ∈ 𝐿𝑖𝑠(𝑛𝑥(𝐺); 𝐺). 

Now, from (1.13) we get: 

𝐴𝑥(𝑋1, 𝑋2) = 𝑛𝑥
−1(∇1,2 𝐷 𝑖𝑥(𝑋1; 𝑋2)),  where  ∇1,2 𝐷 𝑖𝑥 ∈ 𝐿2(𝐹; 𝐸)  [2]. 

Thus, we obtain: 

𝐴𝑥 ∈ 𝐿2(𝐹; 𝐺). 
Also, we consider the first derivative  𝐷 𝑛𝑥(𝑋; 𝑍)  at the point  𝑥 ∈ 𝜓(𝑉) ⊂ 𝐹,  where  𝑥 ∈ 𝐹  and  𝑍 ∈ 𝐺.  Then 

we can get: 

𝐷 𝑛𝑥(𝑋; 𝑍) = 𝐷 𝑖𝑥(𝐻𝑥(𝑋, 𝑍)) + 𝑛𝑥(𝑆𝑥(𝑋, 𝑍)).            (1.16) 

Now, we give the following Lemma: 

Lemma 1.2: 

1-    𝐻𝑥(𝑋, 𝑍) ∈ 𝐿(𝐹, 𝐺; 𝐹),  this means  𝐻𝑥  is bilinear and continuous; 
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2-    𝑆𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐺)  and this, also means that  𝑆𝑥  is bilinear and continuous. 

Proof: 

1-  Scalar multiplication (1.16) by  𝐷 𝑖𝑥(𝑌)  with respect to  𝑔𝑖(𝑥)
1   where  𝑌 ∈ 𝐹,  taking into account (1.3) and 

(1.12) we get: 

𝑔𝑖(𝑥)
1 (𝐷 𝑖𝑥(𝑌), 𝐷 𝑛𝑥(𝑋, 𝑍)) = 𝑔𝑥

2(𝑌, 𝐻𝑥(𝑋, 𝑍)), 

or denoting the left hand side of the last equality as following: 

𝛽𝑥(𝑌, 𝑋, 𝑍) = 𝑔𝑥
2(𝑌, 𝐻𝑥(𝑋, 𝑍)),                           (1.17) 

where  𝛽 ∶ 𝑥 ∈ 𝜓(𝑉) ⊂ 𝐹 ⟶ 𝛽𝑥 ∈ 𝐿(𝐹, 𝐹, 𝐺; 𝑅). 
Thus equality (1.17), can rewrites in the from: 

𝐻𝑥(𝑋, 𝑍) = (𝑔𝑥
2∗)−1(𝛽𝑥(. , 𝑋, 𝑍)) = (𝑔𝑥

2∗)−1 (𝛽𝑥(𝑋, 𝑍)),        (1.18) 

where  𝛽𝑥 ∶ (𝑋, 𝑍) ∈ 𝐹 × 𝐺 ⟶ 𝛽𝑥(𝑋, 𝑍) = 𝛽𝑥(. , 𝑋, 𝑍) ∈ 𝐿(𝐹; 𝑅) = 𝐹
∗  and  𝑔𝑥

2∗ ∶ 𝐹 ⟶ 𝐹∗  is an isomorphism 

between the Banach spaces  𝐹  and its dual  𝐹∗,  taking into account that  𝑔𝑥
2 ∈ 𝐿2(𝐹; 𝑅)  is strong non-singular 

[3]. Hence, from (1.18) we get: 

𝐻𝑥 = (𝑔𝑥
2∗)−1 ∘ 𝛽𝑥 ,                                         (1.19) 

where  𝛽𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐹
∗)  and we deduce that:  𝐻𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐹); 

2-  From (1.14) we have: 

𝛾𝑥 = 𝑛𝑥 ∘ 𝑆𝑥 ,                                                (1.20) 

where  𝛾𝑥 ≝ 𝐷 𝑛𝑥 − 𝐷 𝑖𝑥 ∘ 𝐻𝑥 .  Hence we obtain:  𝛾𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐸),  furthermore from theorem (1.1) we get:  

𝑛𝑥
−1 ∈ 𝐿(𝑛𝑥(𝐺); 𝐺).  Finally, it is clear that:  𝑆𝑥 = 𝑛𝑥

−1 ∘ 𝛾𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐺). 
Lemma 1.3: 

1-  The mapping: 

𝐻 ∶ 𝑥 ∈ 𝐹 ⟶ 𝐻𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐹),  is differentiable of class  ∁𝑟−1. 
2-  The mapping: 

𝑆 ∶ 𝑥 ∈ 𝐹 ⟶ 𝑆𝑥 ∈ 𝐿(𝐹, 𝐺; 𝐺),  is differentiable of class  ∁𝑟−2. 
Proof: 

1-  At first we prove that the mapping  𝑔2∗: 𝑥 ∈ 𝐹 ⟶ 𝑔𝑥
2∗ ∈ 𝐿(𝐹; 𝐹∗)  is differentiable and its inverse  (𝑔2∗)−1 ∶

𝑥 ∈ 𝐹 ⟶ (𝑔𝑥
2∗)−1 ∈ 𝐿(𝐹∗; 𝐹)  is also differentiable of class  ∁𝑟−1.  For this aim, we have that the Banach spaces  

𝐿(𝐹; 𝐹∗)  and  𝐿2(𝐹; 𝑅)  are isomorphic [2]. Then,  𝑔𝑥
2∗ = 𝐾(𝑔𝑥

2),  where  𝐾 ∶ 𝐿2(𝐹; 𝑅) ⟶ 𝐿(𝐹; 𝐹∗)  is an 

isomorphism of the Banach spaces. But the mapping  𝑔1 ∶ 𝑥 ⟶ 𝑔𝑥
1 ∈ 𝐿2(𝐹; 𝑅)  is differentiable of class  ∁𝑟−1  

by condition, and hence the mapping: 𝑔2∗ ∶ 𝑥 ∈ 𝐹 ⟶ 𝑔𝑥
2∗ ∈ 𝐿(𝐹; 𝐹∗)  is differentiable of class  ∁𝑟−1. 

Now,  (𝑔2∗)−1 ∶ 𝑥 ∈ 𝐹 ⟶ 𝑔𝑥
2∗⟶ (𝑔𝑥

2∗)−1   is differentiable, since the mapping  𝑢 ∈ 𝐿(𝐹; 𝐹∗) ⟶ 𝑢−1 ∈
𝐿(𝐹∗; 𝐹)  is differentiable [4]. 

Furthermore, from (1.19) we get  𝐻𝑥 = (𝑔𝑥
2∗)−1 ∘ 𝛾̃𝑥,  such that  𝛾̃𝑥  is differentiable of class  ∁𝑟−2  (see Lemma 

(1.1)). Therefore, it is clear that the mapping  𝑥 ⟶ 𝐻𝑥  is differentiable of class  ∁𝑟−2; 
2-  From (1.19) we have: 

𝑆𝑥 = 𝑛𝑥
−1 ∘ 𝛽𝑥 ,  furthermore the mapping  𝛽𝑥  is differentiable of class  ∁𝑟−2.  Also, from remark (1.1) it follows 

that the mapping  𝑛𝑥
−1  is differentiable of class  ∁𝑟−1, ∀ 𝑥′ ∈ 𝜓′(𝑥̅) ∈ 𝜓′(𝑉′) ⊂ 𝐹1 ⊂ 𝐸. 

Hence, we deduce that the mapping  𝑆𝑥  is differentiable of class  ∁𝑟−2. 
Equations (1.15) and (1.16) are called the first and the second derivative equations of the Riemannian 

submanifold  𝑁  of the Banach Riemannian manifold  𝑀. 
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