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Abstract 
The introduction of nonelementary integrals as standard functions like error function, exponential integral, sine 

and cosine integrals, logarithmic integral, etc. has stopped the interest in the study of searching new elementary 

and nonelementary integrals, which has stopped the development of new properties in integration in context of 

antiderivatives. Due to this the present generation students are not taught the basic properties of antiderivative 

like Laplace Theorem, Abel Theorem, Liouville Theorem, Liouville Hardy theorem, etc., which make the 

integration more beautiful, attractive and informative. So it is the need to introduce these concepts to 

mathematics learners and teachers to make them aware about these properties of integration. The aim of this 

paper is to find the type of such functions (integrands), which are always integrable in the sense of 

antiderivatives, as a conjecture having integrands a composition of exponential function, algebraic function and 

inverse hyperbolic functions, whose particular cases have been proved by Laplace’s theorem for algebraic 

function as a polynomial of degree one and two only. The paper opens a new scope of research in the field of 

propounding conjectures and properties on elementary and nonelementary antiderivatives. 
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I. Introduction 
Integration is studied in two different views: the first is the inverse process of differentiation and the 

second is as the limit of a sum. The first one is treated as antiderivative or the indefinite integral and the second 

one as the definite integral. The fundamental theorem of Calculus provides a relation between them. In general, 

a function f(x) is said to be integrable if there exists a function F(x) such that F’(x) = f(x) and in that case F(x) 

(or more generally F(x) + K) is said to be an integral of f(x) (Anton et al., 2014; Hardy, 2018; Marchisotto et al., 

1994; Thompson, 2021; Yadav, 2023). But the problem starts when such F(x) does not exist. At this point, we 

need the concepts of elementary and nonelementary functions, because integration is a mathematical operation, 

which when applied on a function (elementary) need not produce only elementary functions but beyond it also, 

which is generally called nonelementary functions. Many such functions have been called error function, 

exponential integral, sine and cosine integrals, logarithmic integral, etc. (Marchisotto et al., 1994; Hardy, 2018; 

Nonelementary integral – Wikipedia; Yadav, 2023). 

An elementary function is a single variable function which is expressed using the mathematical 

ordinary operations sum, difference, product, division, root and composition of finitely many polynomials, 

rational, trigonometric, hyperbolic, exponential, and their inverse functions. For example, 𝑥2 + 𝑥 + 1, √𝑥2 + 1, 

𝑒2𝑥, log⁡(3𝑥), 𝑠𝑖𝑛𝑥 + 𝑥2, ∫ 𝑥2⁡𝑠𝑖𝑛𝑥⁡𝑑𝑥, ∫ 𝑥2⁡𝑒𝑥
3
⁡𝑑𝑥, 𝜋, 𝑒, 7, 𝑠𝑖𝑛ℎ𝑥, 𝑎𝑟𝑐𝑠𝑖𝑛𝑥, |𝑥|, etc. are elementary functions. 

But every function is not necessarily an elementary function. For example, the indefinite integral ∫ 𝑒−𝑥
2
𝑑𝑥 is 

not an elementary function. The detail concept of elementary functions were introduced by Joseph Liouville in a 

series of papers between 1833 to 1841 and the algebraic treatment of elementary functions was started by Joseph 

Fels Ritt in 1930s (Marchisotto et al., 1994; Elementary Function – Wikipedia; Cherry, 1985, 1986; Hardy, 

2018; Kasper, 1980; Risch, 1969; 1970, 2022; Ritt, 2022; Rosenlicht, 1972; Yadav, 2023). 

Every elementary function can always be written in closed form. A closed form expression uses a finite 

number of mathematical operations. It contains constants, variables, arithmetic ordinary operations addition +, 

subtraction -, multiplication x, division / and functions like nth root, exponent, logarithm, trigonometric, 

hyperbolic, inverse trigonometric, inverse hyperbolic, etc. It usually does not contain limit or integral 

(Marchisotto et al., 1994; Closed form expression – Wikipedia; Hardy, 2018; Risch, 1969; 1970, 2022; Ritt, 

2022; Rosenlicht, 1972; Yadav, 2023). A special care must be taken while talking about elementary and 

nonelementary functions or closed form and non-closed form expressions. There exist many expressions which 

are not in closed form but can be reduced into it after simplification. For example, the expression 
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f(𝑥) = ∑
𝑥2

2𝑛

∞

𝑛=0

=
𝑥2

20
+
𝑥2

21
+
𝑥2

22
+⋯+

𝑥2

2𝑛
+⋯ 

is not in closed form because it contains infinite number of terms, however using the summation rule of 

a geometric series, it can be expressed as f(𝑥) = 2𝑥2. If a function is written in closed form, its derivative can 

also be expressed in closed form. But its indefinite integral may or may not be written in closed form. The 

antiderivative of 𝑒−𝑥
2
does not have a closed form expression and its antiderivative has been called the error 

function given by 

erf(𝑥) =
1

𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

. 

Some well known nonelementary antiderivatives (integrals) are the elliptic integral, logarithmic 

integral, Gaussian integral, Fresnel integrals, Sine integral (or Dirichlet integral), Exponential integral, etc. 

(Closed-form expression-Wikipedia; Corliss et al., 1989; Hardy, 2018; Marchisotto et al., 1994; Nijimbere, 

2017, 2018, 2020a, 2020b; Sao, 2021; Sharma et al., 2020; Singer et al., 1985; Trager, 2022; Victor, 2017; 

Nonelementary integral – Wikipedia; Trigonometric integral – Wikipedia; Exponential integral – Wikipedia; 

Error function – Wikipedia; Elliptic integral – Wikipedia; Fresnel integral – Wikipedia; Gaussian integral – 

Wikipedia; Yadav, 2023). 

 

The first example which leads us beyond the domain of elementary functions is the elliptic integrals. 

The first reported study of such integrals was due to John Wallis in 1655. Euler also studied elliptic functions 

and found that they were not integrable in terms of the elementary functions. Such integrals cannot be expressed 

in terms of elementary functions was proved by Joseph Liouville in 1833. Although many pioneers contributed 

in the advancement of the subject like John Bernoulli (1702), Laplace (1812), A. M. Legendre (1825), N. H. 

Abel (1826, 1829), P. L. Chebyshev (1853), E. Hermite (1872), G. H. Hardy (1905), D. D. Mordoukhay 

Boltovskoy (1906-1910, 1913, 1937), C. Hermite (1912), A. Ostrowski (1940), Joseph F. Ritt (1916, 1948), M. 

Rosenlicht (1967-68), etc. but in 1833 Joseph Liouville created a framework for constructive integration by 

finding out when antiderivative of elementary functions are again elementary functions (Cherry, 1985, 1986; 

Hardy, 2018; Marchisotto et al., 1994; Kasper, 1980; Risch, 1969; 1970, 2022; Ritt, 2022; Rosenlicht, 1972; 

Trager, 2022; Yadav, 2023). 

He propounded Liouville’s First Theorem on Integration in 1833 and in 1835 he generalized this 

theorem for several variables and established strong Liouville theorem. He showed that the elliptic integrals of 

the first and second kinds have no elementary expressions.  By 1841, Liouville had developed a theory of 

integration that settled the question of integration in finite terms for many important cases (Marchisotto et al., 

1994; Risch, 1969; 1970, 2022; Ritt, 2022; Rosenlicht, 1972; Trager, 2022; Yadav, 2023). Although Liouville 

theorems play an important role in studying elementary and nonelementary functions in context of 

antiderivatives, Laplace’s theorem is one of the primary property for algebraic and rational functions and the 

present paper is focused on its applications in propounding the conjecture. 

 

II. Preliminary Ideas 
This paper is an attempt to search some special type of elementary functions (integrals) in terms of 

antiderivatives in which inverse hyperbolic functions play an important role as a component in the integrand. 

The Laplace’s theorem and its conjecture have been used to verify the results in the paper. In 1812 Laplace 

found that ‘the integral of a rational function of x, ex and logx is either a rational function of those functions or 

the sum of such a rational function and of a finite number of constant multiples of logarithms of similar 

functions’. Based on this fact he propounded the following well known theorem on integration: 

Laplace’s Theorem: A rational function has an anti-derivative and its integral is always an elementary 

function. It is composed of two parts: one of a rational function part and another one the transcendental or 

logarithmic part. For example, 

∫
2𝑥⁡𝑑𝑥

1 + 𝑥2
= ln(1 + 𝑥2) 

∫
(1 + 𝑥2)2 + 𝑥

𝑥(1 + 𝑥2)
𝑑𝑥 =

x2

2
+ ln|x| +

i

2
ln |

x + i

x − i
|. 

He also proposed a conjecture known as Laplace’s Conjecture which states that “the integral of an 

algebraic function need contain only those algebraic functions which are present in the integrand”. This 

conjecture was later proved by Abel. For example, 

∫(𝑥3 + 1)𝑑𝑥 =
𝑥4

4
+ 𝑥 + 𝐾 
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∫(𝑥4 + 6𝑥3 + 4𝑥2 + 𝑥 − 6)𝑑𝑥 =
𝑥5

5
+ 6

𝑥4

4
+ 4

𝑥3

3
+
𝑥2

2
− 6𝑥 + 𝐾 

(Hardy, 2018; Marchisotto et al., 1994; Risch, 1969; 1970, 2022; Ritt, 2022; Rosenlicht, 1972; Yadav, 

2023). 

 

III. Methodology 
As stated earlier that we will use Laplace’s theorem to prove that whether antiderivative of some 

elementary functions containing the composition of exponential function, polynomial of degree one and two, 

and the inverse hyperbolic functions as a component in the integrands is elementary or nonelementary. 

 

IV. Discussion 
There are many conjectures on elementary and nonelementary functions (integrals) like Bernoulli’s 

conjecture, Laplace’s conjecture, etc. Yadav et. al. (2012) propounded six conjectures on indefinite 

nonintegrable functions, in which they didn’t consider the inverse hyperbolic functions as a component in the 

integrands. Based on the above conjectures, the following conjecture has been propounded: 

Conjecture: An indefinite integral of the form 

∫
eg{f(x)}

g′{f(x)}
dx ⁡⁡⁡⁡⁡= I⁡⁡⁡⁡⁡⁡(Let)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(i) 

where g(x) is an inverse hyperbolic function, f(x) a polynomial of degree one and two, and g′{f(x)} the 

derivative of g with respect to x, is always elementary. 

Proof: We know that there are six inverse hyperbolic functions and infinite number of polynomials 

exist of degree greater than or equal to one. To prove it for polynomial of all degrees is impossible. We would 

prove the statement for some cases. This is why it has been proffered as a conjecture. In each case, we will 

prove the conjecture for a polynomial of degree one and two. Let us discuss them one by one in six cases and 

twelve sub-cases as follows: 

Case-I: When g(x) = sinh−1f(x) and f(x) a polynomial in x of degree one and two, from (i) we have 

I = ∫
esinh

−1{f(x)}√1 + {f(x)}2

f ′(x)
dx 

where f’(x) is the derivative of f(x) with respect to x. Putting sinh−1{f(x)} = z i.e., f(x) = sinh z, and f ′(x)dx =
cosh⁡z⁡dz, we get 

I =
1

2
∫
ez(1 + cosh 2z)

{f ′(x)}2
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ii) 

which will be elementary or nonelementary depends on f(x). So let us consider two different cases of f(x): 

Sub-case-I: Putting f(x) = x + b a polynomial of degree one, we get f ′(x) = 1, then from (ii) we get 

I =
1

2
∫ez(1 + cosh 2z)dz =

ez

2
+
1

2
∫ez cosh 2z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ii⁡a) 

For the second integral using integration by parts, we get 

I1 = ∫ez cosh 2z dz =
2

3
ez sinh 2z −

1

3
ez cosh 2z 

Therefore from (ii a) we get 

I =
ez

2
+ [

1

3
ez sinh 2z −

1

6
ez cosh 2z] =

ez

2
[1 +

2

3
sinh 2z −

1

3
cosh 2z] 

Putting the value of z in it, we get 

I =
esinh

−1(x+b)

2
[1 +

2

3
{sinh{2sinh−1(x + b)} −

1

3
cosh{2sin−1(x + b)}] 

which is elementary. 

Sub-case-II: If we take f(x) = 𝑥2 + bx + c, where b and c are arbitrary rational real numbers, a polynomial of 

degree two, then f′(x) = 2𝑥 + b and sinh−1f(x) = 𝑧 i.e., sinh z = 𝑥2 + bx + c, then from (ii) we get 

I =
1

2
∫
ez(1 + cosh 2z)

(2x + b)2
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(iii) 

From sinh z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(sinh z + K),where⁡K =
b2 − 4c

4
 

Thus from (iii) we have 

I =
1

8
∫
ez(1 + cosh 2z)

(sinh z + K)
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(iv) 

The simple case arise for K = 0. For this we get from (iv) 
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I =
1

8
∫
ez(1 + cosh 2z)

sinh z
dz =

1

8
∫

1

ez
(
e4z + 2e2z + 1

e2z − 1
)ezdz 

Putting ez = w, we get 

I =
1

8
∫

1

w
(
w4 + 2w2 + 1

w2 − 1
)dw 

whose integrand is algebraic in nature and by Laplace theorem it has always an antiderivative and thus will be 

elementary. Its integral will be given by 

I =
1

8
∫

1

w

(w2 + 1)2

(w2 − 1)
dw 

Putting w2 + 1 = p, we get 

I =
1

16
∫

p2

(p − 1)(p − 2)
dp =

1

16
[(w2 + 1) + log

(w2 − 1)4

w2
] 

Putting the values of w, we get 

I =
1

16
[(e2z + 1) + log

(e2z − 1)4

e2z
] 

Again putting the value of z, we get 

I =
1

16
[{e2sinh

−1(x2+bx+c) + 1} + log
{e2sinh

−1(x2+bx+c) − 1}
4

e2sinh
−1(x2+bx+c)

] 

Hence the integral (iv) is elementary for K = 0 i.e., for f(x) = 𝑥2 + 2√c⁡x + c. 

Let us consider that K ≠ 0. Then we have from (iv) 

I =
1

8
∫
ez(1 + cosh 2z)

(sinh z + K)
dz =

1

8
∫

ez(e2z + 1)2

4(e2z − 1 + 2Kez)

1

e2z
ezdz 

Putting ez = w, we get 

I =
1

8
∫

w(w2 + 1)2

(w2 − 1 + 2Kw)

1

w2
dw =

1

8
∫

(w2 + 1)2

(w2 − 1 + 2Kw)

1

w
dw 

whose integrand is algebraic in nature and by Laplace theorem it has always an antiderivative and thus it is 

elementary. Its integral will be given as follows 

I =
1

8
∫

(w2 + 1)2

(w2 − 1 + 2Kw)

1

w
dw 

Since K is an arbitrary constant. Let us take K = 1 for simplicity of the calculations and must be non-zero. Thus 

we get 

I =
1

8
∫

(w2 + 1)2

(w2 − 1 + 2w)

1

w
dw I =

1

8
∫
(w2 − 1)2 + 4w2

(w2 − 1 + 2w)

1

w
dw 

=
1

8
∫

(w2 − 1)2

(w2 − 1 + 2w)

1

w
dw +

1

2
∫

w

(w2 − 1 + 2w)
dw =

1

8
I1 +

1

2
I2 

Now integrating the first integral, we get 

I1 = ∫[(w + 2 −
1

w
) − 4] dw + 4I2 =

w2

2
− log(w) − 2w + 4I2 

The second integral is given by 

I2 = ∫
w⁡dw

(w2 + 2w − 1)
=
1

2
log(w2 + 2w − 1) −

1

2√2
log

w + 1 − √2

w + 1 + √2
 

Putting the values of two integrals in I we get 

I =
w2

16
−
log(w)

8
−
w

4
+
1

2
log(w2 + 2w − 1) −

1

2√2
log

w + 1 − √2

w + 1 + √2
 

Putting the value of w in above integral, we get 

=
e2z

16
−
log(ez)

8
−
ez

4
+
1

2
log(e2z + 2ez − 1) −

1

2√2
log

ez + 1 − √2

ez + 1 + √2
 

Again putting the value of z in above integral, we will get the desired integral. Obviously this integral is 

elementary. Hence the integral (iv) is elementary for non-zero K also. Thus the integral (i) is elementary for 

both linear and quadratic f(x), when g(x) = sinh−1f(x). 
Case-II: When g(x) = cosh−1f(x)  and f(x) a polynomial in x of degree one or two, we get from (i) 

I = ∫
ecosh

−1{f(x)}√{f(x)}2 − 1

f ′(x)
dx 

Putting cosh−1{f(x)} = z i.e., f(x) = cosh z and f ′(x)dx = sinh⁡z⁡dz, we get 
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I =
1

2
∫
ez(cosh 2z − 1)

{f ′(x)}2
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(v) 

Sub-case-III: Taking f(x) = x + b i.e., f ′(x) = 1, from (v) we get 

I =
1

3
ez sinh 2z −

2

3
ez cosh 2z −

ez

2
 

Putting the value of z in it, we get 

I =
ecosh

−1(x+b)

3
[sinh 2{cosh−1(x + b)} − 2 {cosh⁡{2cosh−1(x + b)} −

3

2
sinh⁡{2cosh−1(x + b)}] 

which is elementary. Therefore the given integral (i) is elementary for a polynomial f(x) of degree one, when 

g(x) = cosh−1{f(x)}. 
Sub-case-IV: Taking f(x) = 𝑥2 + bx + c, where b and c are arbitrary as earlier, we have f′(x) = 2𝑥 + b and 

cosh−1f(x) = 𝑧 i.e., cosh z = 𝑥2 + bx + c, then from (v) we get 

I =
1

2
∫
ez(cosh 2z − 1)

(2x + b)2
dz 

From cosh z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(cosh z + K),where⁡K =
b2 − 4c

4
 

Thus we get 

I =
1

8
∫
ez(cosh 2z − 1)

(cosh z + K)
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(vi) 

The most simple case arise for K = 0. For this we get from (vi) 

I =
1

8
∫
ez(cosh 2z − 1)

cosh z
dz =

1

4
∫ez (

ez − e−z

ez + e−z
⁡) (

ez − e−z

2
) ⁡dz =

1

8
∫ez (

e2z − 1

e2z + 1
⁡) (

e2z − 1

ez
) ⁡dz 

Putting ez = w, we get 

I =
1

8
∫(

w2 − 1

w2 + 1
⁡)(

w2 − 1

w
) ⁡dz 

whose integrand is algebraic and by Laplace theorem, it has always an antiderivative and thus it is elementary 

and its integral is given by 

I =
1

8
∫ (w +

1

w
− 2

2w

w2 + 1
⁡) ⁡dz 

=
1

8
[
w2

2
+ logw − 2log⁡(w2 + 1)] =

w2

16
+
logw

8
−
1

4
log⁡(w2 + 1) =

e2z

16
+
z

8
−
1

4
log⁡(e2z + 1) 

where 𝑧 = cosh−1(x2 + 2√c⁡x + c). In above integration, we have not added constant of integration. Hence the 

integral (vi) is elementary for K = 0. 

Let us consider that K ≠ 0. Then we have from (vi) 

I =
1

8
∫
ez(cosh 2z − 1)

(cosh z + K)
dz =

1

8
∫ez

(e2z − 1)2

e2z(e2z + 2⁡K⁡ez + 1⁡)
ez⁡dz 

Putting ez = w, we get 

I =
1

8
∫

w⁡(w2 − 1)2

w2(w2 + 2⁡K⁡w + 1⁡)
⁡dw 

whose integrand is algebraic in w and by Laplace theorem, an algebraic integrand is always elementary i.e., it 

has an antiderivative for different values of K. Let us take one case for K = 1, we get 

I =
1

8
∫

w⁡(w2 − 1)2

w2(w2 + 2⁡w + 1⁡)
⁡dw =

1

8
(
w2

2
− 2⁡w + logw) =

w2

16
−
w

4
+
logw

8
 

Putting the value of ez = w in above integral, we get 

I =
e2z

16
−
ez

4
+
z

8
 

where 𝑧 = cosh−1(x2 + 2√c⁡x + c). Thus the above integral is elementary. Hence the integral (vi) is elementary 

for non-zero K also. Similarly we can prove it elementary for other values of K. Thus the integral (i) is 

elementary for both linear f(x) and quadratic f(x), when g(x) = cosh−1{f(x)}. 
Case-III: When g(x) = tanh−1f(x)  and f(x) a polynomial in x of degree one and two, we get from (i) 

I = ∫
eg{f(x)}

g′{f(x)}
dx = ∫

etanh
−1{f(x)}[1 − {f(x)}2]

f ′(x)
dx 

Putting tanh−1{f(x)} = z i.e. f(x) = tanh z and f ′(x)dx = sech2⁡z⁡dz, we get 
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I = ∫
ez(1 − tanh2z)

{f ′(x)}2
sech2 z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(vii) 

Sub-Case-V: Taking f(x) = x + b i.e., f ′(x) = 1, from (vii) we get 

I = ∫ez(1 − tanh2z)⁡sech2z⁡dz = ∫ez ⁡(
2

ez + e−z
)
4

⁡dz = 16∫ ⁡
e4z⁡ez

(e2z + 1)4
⁡dz 

Putting the value of ez = w in above integral, we get 

I = 16∫ ⁡
w4⁡dw

(w2 + 1)4
 

whose integrand is algebraic in w and by Laplace theorem, it has an antiderivative. So it is elementary and its 

integral is given by 

I = 16∫ ⁡
w4⁡dw

(w2 + 1)4
= 16∫ ⁡

⁡dw

(w2 + 1)2
− 16∫ ⁡

2⁡dw

(w2 + 1)3
+ 16∫ ⁡

⁡dw

(w2 + 1)4
 

Putting w = tanθ in above integrals, we get 

I =
θ

1
−
sin2θ

4
−
sin4θ

4
+
sin6θ

12
+ C,where⁡θ = tan−1w⁡and⁡w = ez. 

Sub-Case-VI: Taking f(x) = 𝑥2 + bx + c, where b and c are arbitrary constants i.e., f′(x) = 2𝑥 + b and 

tanh−1f(x) = 𝑧 i.e., tanh z = 𝑥2 + bx + c, from (vii) we get 

I = ∫
ez(1 − tanh2z)

{f ′(x)}2
sech2 z dz = ∫

ez(1 − tanh2z)

(2x + b)2
sech2 z dz 

From tanh z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(tanh z + K),where⁡K =
b2 − 4c

4
 

Thus we get 

I =
1

4
∫
ez(1 − tanh2 z)⁡sech2z

(tanh z + K)
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(viii) 

The simple case arise for K = 0. For this we get from (viii) 

I =
1

4
∫
ez(1 − tanh2 z)⁡sech2z

tanh z
dz =

1

4
∫
ezsech4z

tanh z
dz 

Putting tanh z =
ez−e−z

ez+e−z
 and sech z =

2

ez+e−z
, we get 

I = 4∫
e5zdz

(e2z + 1)3⁡(e2z − 1)
 

Putting ez = w, we get 

I = 4∫
w4dw

(w2 + 1)3⁡(w2 − 1)
 

in which the integrand is algebraic in w and so by Laplace’s theorem, it is always elementary and its integral as 

=
1

4
(−

2𝑤

(1 + 𝑤2)2
+

3𝑤

1 + 𝑤2
+ ArcTan[𝑤] + Log[1 − 𝑤] − Log[1 + 𝑤]) 

Now after putting the values of w and z, we can find its value in terms of x. Thus (viii) is elementary for K = 0. 

Let us consider that K ≠ 0. Then we have from (viii) 

I =
1

4
∫
ez(1 − tanh2 z)⁡sech2z

(tanh z + K)
dz =

1

4
∫

ezsech4z

tanh z + ⁡K
dz 

Putting tanh z =
ez−e−z

ez+e−z
 and sech z =

2

ez+e−z
, we get 

I = 4∫
e5z⁡(e2z + 1)⁡dz

(e2z + 1)4⁡(e2z − 1 + K⁡e2z + K)
 

Putting ez = w, we get 

I = 4∫
w4⁡⁡dw

(w2 + 1)3⁡(w2 − 1 + K⁡w2 + K)
 

in which the integrand is algebraic in w and so by Laplace’s theorem, it is always elementary. Putting different 

values of K, we can easily show that integral (viii) is elementary K ≠ 0 also. For example, taking K = 1, we get 

I = 4∫
w4⁡⁡dw

(w2 + 1)3⁡(w2 − 1 +⁡w2 + 1)
= 2∫

w2⁡⁡dw

(w2 + 1)3⁡
 

= 2(−
𝑤

4(1 + 𝑤2)2
+

𝑤

8(1 + 𝑤2)
+
ArcTan[𝑤]

8
) 

Putting the values of w and z, we can find its value in terms of x. Thus the integral (i) is elementary for both 

linear and quadratic f(x), when g(x) = tanh−1{f(x)}. 
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Case-IV: When g(x) = coth−1f(x) and f(x) a polynomial in x of degree one and two, then we get from (i) 

I = ∫
eg{f(x)}

g′{f(x)}
dx = ∫

ecoth
−1{f(x)}[1 − {f(x)}2]

f ′(x)
dx 

Putting coth−1{f(x)} = z i.e., f(x) = coth z and f ′(x)dx = −cosech2⁡z⁡dz, we get 

I = −∫
ez(1 − coth2z)

{f ′(x)}2
cosech2 z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ix) 

Sub-Case-VII: Taking f(x) = x + b i.e., f ′(x) = 1, from (ix) we get 

I = −∫
ez(1 − coth2z)

1
cosech2z⁡dz = 16∫ ⁡

e5z

(e2z − 1)4
⁡dz 

Putting ez = w, we get 

I = 16∫ ⁡
w4⁡dw

(w2 − 1)4
 

whose integrand is algebraic and so by Laplace’s theorem, it is elementary and its integral 

= 16(−
𝑤

6(−1 + 𝑤2)3
−

7𝑤

24(−1 + 𝑤2)2
−

𝑤

16(−1 + 𝑤2)
+

1

32
Log[−1 − 𝑤] −

1

32
Log[−1 + 𝑤]) 

Sub-Case-VIII: Taking f(x) = 𝑥2 + bx + c, where b and c are arbitrary constants i.e., f′(x) = 2𝑥 + b and 

coth−1f(x) = 𝑧 i.e., coth z = 𝑥2 + bx + c, from (ix) we get 

I = −∫
ez(1 − coth2z)

(2x + b)2
cosech2 z dz⁡⁡⁡⁡⁡⁡(x) 

From coth z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(coth z + K),where⁡K =
b2 − 4c

4
 

Thus we get from (x) that 

I = −
1

4
∫
ez(1 − coth2 z)⁡cosech2z

(coth z + K)
dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(xi) 

The simple case arise for K = 0. For this we get from (xi) 

I = −
1

4
∫
ez(1 − coth2 z)cosech2z

coth⁡z
dz =

1

4
∫
ezcosech4z

coth⁡z
dz 

Putting the values of cosechz and cothz in terms of exponential functions, we get 

I = 4∫ ⁡
e5z⁡dz

(e2z − 1)3(e2z + 1)
 

Putting ez = w, we get 

I = 4∫ ⁡
w4⁡dw

(w2 − 1)3⁡(w2 + 1)
 

whose integrand is algebraic and so by Laplace’s theorem, it is elementary and its integral is given by 

=
1

8
(−

4w

(−1 + w2)2
−

6w

−1 +w2
− 4ArcTan[w] + Log[−1 − w] − Log[−1 + w]) 

Let us consider K ≠ 0. Then we have from (xi) 

I = −
1

4
∫
ez(1 − coth2 z)⁡cosech2z

(coth z + K)
dz =

1

4
∫

ezcosech4z

(coth z + K)
dz 

Putting the values of cosechz and cothz in terms of exponential functions, we get 

I = 4∫ ⁡
e5z⁡dz

(e2z − 1)3(e2z + 1 + Ke2z − K)
 

Putting ez = w, we get 

I = 4∫ ⁡
w4⁡dw

(w2 − 1)3⁡(w2 + 1 + Kw2 − K)
 

whose integrand is algebraic and so by Laplace’s theorem, it is elementary and its integral for particular value of 

K (here = 1) is given by 

=
1

8
(−

2(𝑤 + 𝑤3)

(−1 + 𝑤2)2
+ 𝐿𝑜𝑔[−1 − 𝑤] − 𝐿𝑜𝑔[−1 + 𝑤]) 

Thus the integral (i) is elementary for both linear f(x) and quadratic f(x), when g(x) = coth−1{f(x)}. 
Case-V: When g(x) = sech−1f(x) and f(x) a polynomial in x of degree one and two, we get from (i) 

I = ∫
eg{f(x)}

g′{f(x)}
dx = −∫

esech
−1{f(x)} [f(x)√1 − {f(x)}2]

f ′(x)
dx 

Putting sech−1{f(x)} = z i.e., f(x) = sech z and f ′(x)dx = −sech⁡z⁡tanh⁡z⁡dz, we get 
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I = ∫
ez [sech z√1 − {sech z}2]

{f ′(x)}2
sech z tanh z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(xii) 

Sub-Case-IX: Taking f(x) = x + b i.e., f ′(x) = 1, from (xii) we get 

I = ∫ez sech2 z tanh2 z dz 

Putting the values of sechz and tanhz in terms of exponential functions, we get 

I = 4∫ ⁡
e3z⁡(e2z − 1)2⁡dz

(e2z + 1)4
 

Putting ez = w, we get 

I = 4∫ ⁡
w2(w2 − 1)2⁡dw

(w2 + 1)4
 

which is elementary by Laplace’s theorem and its integral is given by 

=
−𝑤(3 + 4𝑤2 + 9𝑤4) + 3(1 + 𝑤2)3𝐴𝑟𝑐𝑇𝑎𝑛[𝑤]

3(1 + 𝑤2)3
 

Sub-Case-X: Taking f(x) = 𝑥2 + bx + c, where b and c are arbitrary constants i.e., f′(x) = 2𝑥 + b and 

sech−1f(x) = 𝑧 i.e., sech z = 𝑥2 + bx + c, from (xii) we get 

I = ∫
ez [sech z√1 − {sech z}2]

(2x + b)2
sech z tanh z dz 

From sech z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(sech z + K),where⁡K =
b2 − 4c

4
 

Thus we get 

I =
1

4
∫
ez [sech z√1 − {sech z}2]

(sech z + K)
sech z tanh z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(xiii) 

The simple case arise for K = 0. For this we get from (xiii) 

I =
1

4
∫ez tanh2 z sech z dz 

Putting the values of sechz and tanhz in terms of exponential functions, we get 

I =
1

2
∫ ⁡

e2z⁡(e2z − 1)2⁡dz

(e2z + 1)3
 

Putting ez = w, we get 

I =
1

2
∫ ⁡

w(w2 − 1)2⁡dw

(w2 + 1)3
 

which is elementary by Laplace’s theorem and its integral is given by 

=
1

2
(
1 + 2w2

(1 + w2)2
+
1

2
Log[1 + w2]) 

Let us consider that K ≠ 0. Then we have from (xiii) 

I =
1

4
∫
ez sech2 z tanh2 z

(sech z + K)
dz 

Putting the values of sechz and tanhz in terms of exponential functions, we get 

I = ∫ ⁡
e3z⁡(e2z − 1)2⁡dz

(e2z + 1)3(2ez + Ke2z + K)
 

Putting ez = w, we get 

I = ∫ ⁡
w2(w2 − 1)2⁡dw

(w2 + 1)3(2w + Kw2 + K)
 

which is elementary by Laplace’s theorem and its integral for particular values K = 1 (may be considered 

different rational number) is given by 

= −
−1 + w − 2w2 + w3 − (1 + w2)2ArcTan[w]

2(1 + w2)2
 

Thus the integral (i) is elementary for both linear f(x) and quadratic f(x), when g(x) = sec−1{f(x)}. 
Case-VI: When g(x) = cosech−1f(x) and f(x) a polynomial in x of degree one and two, we have from (i) 

I = −∫
ecosech

−1{f(x)} [f(x)√{f(x)}2 + 1]

f ′(x)
dx 

Putting cosech−1{f(x)} = z i.e., f(x) = cosech z and f ′(x)dx = −cosech⁡z⁡coth⁡z⁡dz, we get 
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I = −∫
ez [cosech z√{cosech z}2 + 1]

{f ′(x)}2
cosech z coth z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(xiv) 

Sub-Case-XI: Taking f(x) = x + b i.e., f ′(x) = 1, from (xiv) we get 

I = −∫ez cosech2 z coth2 z dz 

Putting the values of cosechz and cothz in terms of exponential functions, we get 

I = −4∫ ⁡
e3z⁡(e2z + 1)2⁡dz

(e2z − 1)4
 

Putting ez = w, we get 

I = −4∫ ⁡
w2(w2 + 1)2⁡dw

(w2 − 1)4
 

which is elementary by Laplace’s theorem and its integral is given by 

= −4(−
2w

3(−1 + w2)3
−

7w

6(−1 + w2)2
−

3w

4(−1 + w2)
+
1

8
Log[1 − w] −

1

8
Log[1 + w]) 

Sub-Case-XII: Taking f(x) = 𝑥2 + bx + c, where b and c are arbitrary constants i.e., f′(x) = 2𝑥 + b and 

cosech−1f(x) = 𝑧 i.e., cosech z = 𝑥2 + bx + c, from (xiv) we get 

I = −∫
ez [cosech z√{cosech z}2 + 1]

(2x + b)2
cosech z coth z dz 

From cosech z = 𝑥2 + bx + c, we get 

(2x + b)2 = 4(cosech z + K),where⁡K =
b2 − 4c

4
 

Thus we get 

I = −
1

4
∫
ez [cosech z√{cosech z}2 + 1]

(cosech z + K)
cosech z coth z dz⁡⁡⁡⁡⁡⁡⁡⁡⁡(xv) 

The simple case arise for K = 0. For this we get from (xv) 

I = −
1

4
∫ez cosech z coth2 z dz 

Putting the values of cosechz and cothz in terms of exponential functions, we get 

I = −
1

2
∫ ⁡

e2z⁡(e2z + 1)2⁡dz

(e2z − 1)3
 

Putting ez = w, we get 

I = −
1

2
∫ ⁡

w(w2 + 1)2⁡dw

(w2 − 1)3
 

which is elementary by Laplace’s theorem and its integral is given by 

= −
1 − 2w2

(−1 + w2)2
−
1

2
Log[−1 + w2] 

Let us consider that K ≠ 0. Then we have from (xv) that 

I = −
1

4
∫
ez cosech2 z coth2 z

(cosech z + K)
dz 

Putting the values of cosechz and cothz in terms of exponential functions, we get 

I = −∫ ⁡
e3z⁡(e2z + 1)2⁡dz

(e2z − 1)3(2ez + Ke2z − K)
 

Putting ez = w, we get 

I = −∫ ⁡
w2(w2 + 1)2⁡dw

(w2 − 1)3(2w + Kw2 − K)
 

which is elementary by Laplace’s theorem and its integral for particular value K = 1 is given by 

=
1

4
(

2

(−1 + w2)2
−
2(−2 + w)

−1 + w2
− 3Log[−1 − w] − (−2 + √2)Log[−1 + √2 − w] − Log[−1 + w] + (2

+ √2)Log[1 + √2 + w]) 
Thus the integral (i) is elementary for both linear and quadratic f(x), when g(x) = cosec−1{f(x)}. Similarly we 

can prove that the indefinite integral (i) is elementary or nonelementary for higher degree polynomial f(x). 
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V. Conclusion 
From above discussion we conclude that the integral (i) 

∫
eg{f(x)}

g′{f(x)}
dx 

where g(x) is an inverse hyperbolic function, f(x) a polynomial of degree one and two, and g′{f(x)} a derivative 

of g with respect to x, is always elementary. 

 

VI. Future Scope of Research 
The indefinite integral given by (i) has been discussed for only two cases of the polynomial of linear 

and quadratic nature. In all cases, K has been considered for particular value K = 1 and 0 only in quadratic 

polynomial. A big scope is available for research for higher degree and its special cases polynomials as well as 

for different rational and irrationals K in quadratic polynomials. This is why that the integral (i) has been named 

a conjecture and not a theorem or a property. 
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