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Abstract: 
In this paper, we undertake the transient analysis of a limited capacity queueing system with two environmental 

states in the presence of catastrophes. When a catastrophe occur at the service- facility as a Poisson process 

with rate , the number of customers is instantly reset to zero at certain random times. The change in the 

environment also affects the state of the queueing system. In other words, the state of the queueing system is a 

function of environmental change factors.The effects of environmental change and catastrophes are extensively 

dealt with a system are studied. The steady-state behavior of the queueing system is also derived. Some 

particular cases of the model with and without catastrophes are also obtained and discussed. 
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I. Introduction: 

In the queueing literature, analytical results for the transient behaviour of queueing models are not as 

widely available as the steady-state results. The steady-state measures can not give insight into the transient 

behaviour of the system. The steady-state results are well suited to study the performance measures of the 

system on a long time scale while the transient solutions are more useful for studying the dynamic behaviour of 

the system over a finite period. Among several methods, probability generating function technique is one of the 

techniques that is used to obtain transient solution. Even in the case of an simple M/M/1/N queue, analytical 

approach to obtain transient behavior is very difficult. In this regard, we have obtained the transient solution of 

a limited capacity queueing system with two environmental states in the presence of catastrophes. 

In the recent past, many authors have introduced a new class of queueing systems with catastrophes. 

The notion of catastrophe played a very important role in various areas of science and technology, in particular 

birth and death models. This consists of adding to the standard assumptions the hypothesis that the number of 

customers is instantly reset to zero at certain random times. The catastrophes occur at the service- facility as a 

Poisson process with rate . Whenever a catastrophe occurs at the system, all the customers there are destroyed 

immediately, the server gets inactivated momentarily, and the server is ready for service when a new arrival 

occurs. 

The queuing system with catastrophe was studied by Krishna Kumar and Arivudainambi [13] in 2000 

and later 2003 by Crescenzo, et al. [5], where the authors deduced transient probabilities in the M/M/1 queue 

model with catastrophe. Catastrophic modeling and analysis is important in population genetics ([1, 2, 8, 11] 

and their references). It is also well known that population processes may be modeled by networks of queues [3] 

and computer networks with a virus may be modeled by queueing networks with catastrophes [4]. Jain and 

Kanethia [9] discussed and obtained the transient analysis of a queue with environmental and catastrophic 

effects. Liu and Liu [18] studied the transient probabilities of an M/PH/1 queue model with catastrophes which 

is regarded as a generalization of an M/M/1 queue model with catastrophes. 

II. Description and Application of the Model: 

Consider an M/M/1/N queueing system with two environmental states in the presence of catastrophes. 

Customers arrive at the service station one by one according to a Poisson stream with arrival rate 1 and 0 of 

which only one is operative at any instant. There is a single server which provides service to all the arriving 

customers. Service times are independently and identically distributed exponential random variable with 
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parameter 1 and 2. The customers are served according to the first come, first served rule. Apart from arrival 

and service processes, the catastrophes occur at the service facilities as a Poisson process with rate . Whenever 

a catastrophe occurs at the system, all the available customers are destroyed immediately, the server get 

inactivated momentarily and the server is ready for service only when a new arrival occurs. 

This model can be used in a variety of queueing systems found in real-world. In agriculture, if a crop is 

infected with a particular species of insects due to change in temperature (environment), we may use some 

chemical agents or compounds to treat such type of insects. The number of bacteria that destroys the crop, in 

large part, relies on the effectiveness and amount of the chemical reagents used. In other words, the use of the 

chemical reagents can wipe out the whole of the insects or a part of it. The effect of these chemical reagents on 

bacteria which make them zero instantaneously can be regarded as the occurrence of a catastrophe. 

Now, in the next section we setup the assumptions and definitions of the model. In section 4 we 

formulate the differential-difference equations governing the queueing system and obtain the transient solution 

of the queueing model. Some particular cases, steady- state solution and mean queue length is also derived and 

discussed in section 5-7. 

 

III. Assumptions and Definitions of the Model: 
(i) The customers arrive in the system one by one in accordance with a Poisson process at a single service 

station. The arrival pattern is non-homogeneous, i.e. There may exist two arrival rates, namely 1 and 0 of 

which only one is operative at any instant. 

(ii) The customers are served one by one at the single channel. The service time is exponentially distributed. 

Further, corresponding to arrival rate 1 the Poisson service rate is 1 and the service rate corresponding to 

the arrival rate 0 is 2. The state of the system when operating with arrival rate 1 and service rate 1 is 

designated as E whereas the other with arrival rate 0 and service rate 2 is designated as F. 

(iii) The Poisson rates at which the system moves from environmental states F to E and E to F are denoted by 

  and   respectively. 

(iv) When the system is not empty, catastrophes occur according to a Poisson process with rate . The effect of 

each catastrophe is to make the queue instantly empty. Simultaneously, the system becomes ready to accept 

the new customers. 

(v) The queue discipline is first- come-first-served. 

(vi) The capacity of the system is limited to M. I.e., if at any instant there are M units in the queue then the units 

arriving at that instant will not be permitted to join the queue, it will be considered lost for the system. 

Define, 

P
n
 (t) = Joint probability that at time t the system is in state E and n units are in thequeue, including the one in 

service. 

Q
n
(t) = Joint probability that at time t the system is in state F and n units are in the queue, including the one in 

service. 

R
n
(t) = The probability that at time t there are n units in the queue, including the  one in service. 

Obviously, 

R
n
(t) = P

n
(t) + Q

n
(t)             (1) 

Let us reckon time t from an instant when there are zero customers in the queue and the system is in the 

environmental state E so that the initial conditions associated with P
n
(t) and Q

n
(t) become, 

P
n
(0) = 



 

otherwise;0

0n;1
 

Q
n
(0) = 0 ;     for all n.            (2) 

 

IV. Differential-difference equations governing the system and Transient analysis: 
The differential-difference equations governing the system are: 

            ;tPξtαQtPμtPξβλtP
dt

d M

0n

n011010 


     n = 0    (3) 

            ;tαQtPλtPμtPξβμλtP
dt

d
n1n11n1n11n       0 < n < M     (4) 
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          ;tαQtPλtPξβμtP
dt

d
M1M1M1M              n = M                (5) 

            ;tQξtβPtQμtQξαtQ
dt

d M

0n

n01200 


      n = 0    (6) 

          ;tβPtQμtQξαμtQ
dt

d
n1n2n2n   0 < n < M    (7) 

        ;tβPtQξαμtQ
dt

d
MM2M 

 

                      n = M    (8) 

Let, the Laplace Transform of f(t) be 

   



0

st dttfesf          (9) 

Taking Laplace transform of the equations (3)–(8) and using the initial conditions, we get 

         



M

0n

n01101 sPξsQαsPμ1sPξβλs       (10) 

         tQαsPλsPμsPξβμλs n1n11n1n11   ;  0<n<M     (11) 

       sQαsPλsPξβμs M1M1M1          (12) 

  



M

0n

n0120 )s(Q)s(P)s(Q)s(Qs       (13) 

  )s(P)s(Q)s(Qs n1n2n2    ;             0<n<M    (14) 

     sPβsQξαμs MM2          (15) 

Define, the probability generating functions by 

   



M

0n

n
n zsPs,zP           (16) 

   



M

0n

n
n zsQs,zQ          (17) 

   



M

0n

n

n zsRs,zR           (18) 

Where 

)s,z(Q)s,z(P)s,z(R           (19) 

And 

     sQsPsR nnn          (20) 

Multiplying equations (10)–(12) by z
n
, summing over the respective ranges of n and using equations (16)–(18), 

we have. 

         sPz1μsz,Qzαsz,Pμzλξ)βμλz(s 011

2

111 

      0sPzξzsPz1zλ
M

0n

nM

1M

1  



       (21) 

Similarly, from equations (13)–(15) on using equations (16)–(18), we have 

      0sQzξsQz1μs)Q(z,ξ)]αμz(s[μs)P(z,zβ
M

0n

n0222  


     (22) 

Solving equations (21) and (22), we have 
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      

       

    

    ξαμszμμzλξ)βμλz(szβα

ξαμszμsPzξ

ξαμszμzsPξαμszμz)(1zλ

sPξαμsμz)(1μsQzξα(s)Qz)z(1αμ

s)P(z,
221

2

111

2

22

M

0n

n

22M22

1M

1

0221

M

0n

n

2

02




















       (23) 

 

 

    

      

 

     ξα2μsz2μ1μ
2

z1λξβ1μ1λsz
2

zβα

M

0n
snP

2
zξβ

2
βz

sMPz)(1
2M

z1βλ
M

0n
snQ1μξβ1μ1λsz

2
z1λzξ

(s)0Q1μ
2

z1λξβ1μ1λszz)(12μs0Pz)z(11βμ

sz,Q


















   (24) 

Now from equation (19), we have 

   

     

     

        

     

    
       ξβαξzμμξβμλμμαzξμαλzz)(1

μμz2ξβαμμλzzλssz

sPzξβzξαμszμβz

zξαμszμsPz)(1zβλξαμszμzλ

sPz)(1zβμμμξαμsz

sQzξzαμξβμλszzλ

(s)Qz)(1μzλξβμλszμzαμ

s)R(z,

2

21112121

2

21211

23

1

22

M

0n

n22

2

22M

2M

122

1M

1

01122

M

0n

n111

2

1

01

2

11122


























(25) 

The unknown quantities in equation (25) are determined as follows: 

Setting z=1, in equations (23) and (24) respectively, we have 

P 1, s =  P n s =
s + α

s s + α + β 
                                                                                                                     (26)

M

n=0

 

 and                                                 

Q 1, s =  Q n s =
β

s s + α + β 
                                                                                                                     (27)

M

n=0

 

 Further, relation (25) is a polynomial in z and exists for all values of z, including the three zeros of the 

denominator. Hence, the remaining unknown quantities      sPandsQ,sP M00 are obtained by setting the 

numerator equal to zero and substituting the three zeros 
1
, 

2
 and 

3
 (say) of the denominator (at each of 

which the numerator must vanish). 

The Laplace transform of various state probabilities for the number of units in the queue, including the 

one in service can be picked up as the co-efficient of the different powers of z in the expansion of equation (25). 

 

V. Particular Case: 
Now letting , 0 and setting 

1
= 

2
=  (say) in relation (25), we have 

 
       

  






1
2

1

M
1M

10

szz

s/zzsPzz1sRz1
s,zr      (28) 

Where 

     sQsPsR 000   
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   







s,zRlimlims,zr

0
 

Relation (28) is a polynomial in z and exists for all values of z, including the two zeros of the 

denominator. Hence, the unknown quantities    sPandsR M0  can be evaluated as before. 

 

VI. Steady State Results: 
This can at once be obtained by the well-known property of the Laplace transform given below: 

   sfslimtflim
0st 

 , if the limit on the left hand side exists. 

Thus if 

  



M

0n

n
n zRzR  

Where, 

 sRslimR n
0s

n


  

Then 

   s,zRslimzR
0s


 

And 1QPR
M

0n

n

M

0n

n

M

0n

n  


         (29) 

By employing this property, we have from equation (25). 

 

    
          

           
         

    21211121

112121

2

21

3

22111

2

1

M22

1M

10221

01

2

1112

μμμμξβμλμμαz

ξβαξξβμλμμαξαμλzξαμλz

ξβαμzμξαμξβαμλzzλβξβαξz/

Pzβξαμzμz1zλPξαμzμzβz1μ

Qμzλξβμλzαzz1μ

zR















 
(30) 

Or, we can write 

 
       

 zK

zMPzLPzNQzT
zR M00 
         (31) 

Where T(z), N(z) and L(z) are the co-efficient of Q
0
, P

0
 and P

M
 respectively in the numerator of 

equation (30) and K(z) is the denominator of equation (30). 

Equation (31) is a polynomial in z and exists for all values of z, including three zeros of the 

denominator. Hence Q
0
, P

0
 and P

M
 can be obtained by setting the numerator equal to zero. Substituting the three 

zeros b
1
, b

2
 and b

3
 (say) of the denominator (at each of which the numerator must vanish). 

Now, three equations determining the unknown quantities Q
0
, P

0
 and P

M
 are: 

       
1

bM
M

P
1

bL
0

P
1

bN
0

Q
1

bT         (32) 

       
2

bM
M

P
2

bL
0

P
2

bN
0

Q
2

bT         (33) 

       
3

bM
M

P
3

bL
0

P
3

bN
0

Q
3

bT         (34) 

After solving these equations, we have 

     
A

31
A

3
bM

21
A

2
bM

11
A

1
bM

0
Q


  

     
A

32
A

3
bM

22
A

2
bM

12
A

1
bM

0
P


  

     
A

33
A

3
bM

23
A

2
bM

13
A

1
bM

M
P


  

Where 
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     

     

     333

222

111

bLbNbT

bLbNbT

bLbNbT

A  

A
ij
 is the co-factor of the (i, j)

th

 element of A. 

By putting the values of Q
0
, P

0
 and P

M
 in equation (31), we have 

 

                 
          

 zKA

zMAAbMAbMAbMzL

AbMAbMAbMzNAbMAbMAbMzT

zR 333232131

323222121313212111







      (35) 

 

VII. Mean Queue Length: 
Define, 

L
q
= Expected number of customers in the queue including the one in service. 

Then 

L
q
 =  

1z
zR


  

Therefore, from equation (35), we have 

                   
                
                 

      

  2
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212111333232131

323222121313212111

q
1KA

1K1MAAbM

AbMAbM1LAbMAbMAbM1NAbM

AbMAbM1T1MAAbMAbMAbM1L

AbMAbMAbM1NAbMAbMAbM1T1K

L










     (36) 

Where dashes denotes the first derivative with respect to z. 

 

Particular Cases: 

Case I: Relation (28), on applying the theory of Laplace transforms gives 

 
   

  






1
2

1

M
1M

10

zz

zPzz1Rz1
zr        (37) 

Where 

   s,zrslimzr
0s

  

Equation (37) is a polynomial in z and exists for all values of z, including the two zeros of the 

denominator. Hence R
0
 and P

M
 can be obtained by setting the numerator equal to zero. Substituting the two 

zeros a
1
 and a

2
 (say) of the denominator (at each of which the numerator must vanish). 

 

Case II: If 0  (i.e., no catastrophe is allowed in the system), then from equation (37), we have 

 
zλμ

PzλRμ
zr

1

M

1M

10








          (38) 

The condition,   1zrlim
1z




 gives 

1M10 λμPλRμ            (39) 

As r(z) is analytic, the numerator and denominator of equation (38) must vanish simultaneously for z= 

/1, which is a zero of its denominator. Equating the numerator of equation (38) to zero for z= /1 we have 

1,PR 1M
M

0           (40) 

Relation (39) and (40) gives 

 
1M

M

M1M0
1

1
P,

1

1
R

 







  

Now, from equation (38), we have 
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 
 
























 z1

z1
.

1

1
zr

1M

1M
         (41) 

Which is a well known result of the M/M/1 queue with finite waiting space M. 

When there is an infinite waiting space, the corresponding expression for r(z) is obtained by letting M 

tends to infinity in equation (41), If Max(, |z|)  1. 

 
z1

1
zr




            (42) 

Which is again a well- known result of the M/M/1 queue with infinite waiting space. 

Case III: In [13], Krishan Kumar and Arivudainambi have studied the transient solution of an M/M/1 queue 

with catastrophes. They have also obtained the steady- state probabilities and mean & variance of the M/M/1 

queue with catastrophes. 

When a catastrophe occurs at the service facility i.e. ξ >0, the steady- state distribution  pn ;  n ≥ 0  of 

the M/M/1 queue with catastrophes corresponds to: 

p0 =  1 − ρ   ;   n = 0         (43) 

pn =  1 − ρ ρn   ;   n =1, 2, 3, ……        (44) 

where 

ρ =
 λ+μ+ξ − λ2+μ2+ξ2+2λξ+2μξ−2λμ

2μ
       (45) 

Thus equations (43)-(45) provide the steady- state distribution for the queueing system. Obviously, the 

steady state distribution exists if and only if ρ < 1. 

Note: The steady-state probability of this Markov process exists if and only if ξ > 0 𝑜𝑟 𝜉 = 0 𝑎𝑛𝑑 𝜆 > 𝜇. It is 

also observed that the results of equations  (43)-(45) agree with the model discussed above and with [4] by 

Chao, X. 

VIII. Conclusion: 
In this paper, we have established a queueing model and obtained the transient solution of the model 

with environmental change and catastrophic effects. The steady state result and mean queue length of the model 

is also derived and discussed. We have also obtained some particular cases with and without catastrophes. 
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