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Abstract

In thispaper, several characterizations of fuzzy quasi-regular spaces,which are defined bymeans of fuzzy open
sets andfuzzyregular closed sets, are established. It is obtained that eachfuzzy set defined in a fuzzy quasi-
regular space contains a fuzzy regular closed set and each fuzzy Gs-set contains a fuzzy closed setin afuzzy
quasi-regular space.The conditions under which fuzzy quasi-regular spacesbecome fuzzy weakly
bairespacesand fuzzy bairespaces are obtained. It is obtained that fuzzy quasi-regular spaces are not
fuzzyhyperconnected spaces.
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I.  Fuzzy Quasi-Regular Spaces

In order to deal with uncertainties, the idea of fuzzy sets, fuzzy set operations was introduced by
L.A. Zadeh [19] in 1965. The potential of fuzzy notion was realized by the researchers and has successfully
been applied in all branches of Mathematics. In 1968, C.L. Chang[4] introduced the concept of fuzzy
topological spaces and his work paved the way for the subsequent tremendous growth of the numerous fuzzy
topological concepts. In classical topology,John.C. Oxtoby|[8] introduced the notion of quasi-regularity and
by means of which he produced a productive subclass of the class of Baire spaces which contains all
completely metrizable and all Hausdorff locally compact spaces. The condition of quasi-regularity has
the flavour of a separation condition [9].

In the recent years, there has been a growing trend among many fuzzy topologists to introduce
and study various types of fuzzy topological spaces.Motivatedby the works of John. C. Oxtoby[8] and
A. R. Todd[10], onquasi-regularityin classical topology, the notion of fuzzy quasi-regularity in fuzzy
topological spaces was defined by G.Thangaraj and S.Anjalmose [1]. The purpose of this paper is to study
several properties and applications of fuzzy quasi-regular spaces.

In section 3, it isobtained that each fuzzy set definedin a fuzzy quasi-regular space contains a fuzzy
regular closedset and each fuzzy Gs-set in a fuzzy quasi-regular space contains a fuzzy closed set. Also it
isestablished thateach fuzzy closed set is contained in a fuzzy regular open set and each fuzzy Fj-set is
contained in a fuzzy regular open set in fuzzy quasi-regular spaces. It is found that each fuzzy residual set
containsfuzzy closed set and each fuzzy nowhere denseset is contained in a fuzzy regular open set and each
fuzzy first category set is contained in a fuzzy open set in fuzzy quasi-regular spaces. Also it is established
thateach fuzzyo-boundary set is contained in a fuzzy open set and each fuzzy co-a-boundary set contains a
fuzzy open set and each fuzzy open set contains a fuzzy regular open set and a fuzzy somewhere dense set in
fuzzy quasi-regular spaces.lt is obtained that class of fuzzy F;-sets lies between the classes of fuzzy open sets
and fuzzy regular closed sets.

In section 4, the inter-relations between fuzzy regular spaces and fuzzy quasi-regular spaces are
established. The conditions under which fuzzy quasi-regular spaces become fuzzy weakly Baire spaces and
fuzzy Baire spaces are obtained. It is obtained that fuzzy quasi-regular spaces are not fuzzy hyperconnected
spaces.
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Il.  Preliminaries

In order to make the exposition self-contained, some basic notions and results used in the sequel, are
given. In this work by(X, T) or simply by x, we will denote a fuzzy topological space due to Chang (1968). Let
Xbe a non-empty set and Ithe unit interval [0,1]. A fuzzy set Ain X is a mapping from X into I. The fuzzy
setOyis defined as Ox(x) = 0, for all x € X and the fuzzy set 1y is defined as 1x(x) = 1, forallx € X.
Definition 2.1 [4] :Afuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions:
(@).0x € Tand 14 € T.
(b). Ifa,b € T, thena Ab € T.
(c). IfA; € T foreachi € J,then Vv; A, €T.
T is called a fuzzy topology for X,and the pair (X,T) is a fuzzy topological space, or fts for short. Every
member of T is called a T- openfuzzy set.
Definition 2.2[4]: Let (X, T) be a fuzzy topological space and A be any fuzzy set in (X, T). The interior, the
closure and the complement of A are defined respectively as follows:
@i).intd) = v { wp <A, peth
@i).cld) = A{p/ A< p,1—pet}
(iii). A (x) = 1-A(x),forall x € X.
For a family{i € J }Jof fuzzy sets in(X, T), the union ¢ = v; () and the intersection § = A; (%), are
defined respectively as
(iv). ¥(x) = sup;{ A(x) /x € X}
(V). A(x) =infi{f 3x) /x €X}.
Lemma 2.1][2]: For a fuzzy set A of a fuzzy topological space X,
(). 1—int(A) =cl(1—2A) and (ii). 1—cl (1) =int (1 —A).
Definition2.3:A fuzzy set Ain a fuzzy topological space (X, T)is called a
(2). fuzzy regular - open set if A = intcl (A) and
fuzzy regular-closed set if A= clint (A) [2].
(2).fuzzyGgs-setif A = Az, (A;)where A; € T;
fuzzyF,—setif A = V2,( w), wherel —p; € T [3].

Definition 2.4: A fuzzy set Ain a fuzzy topological space (X, T), is called a

(i).fuzzy dense set if there exists no fuzzy closed set p in (X, T)Such thatd < u < 1. Thatis, cI(1) =1, in
(X,T) [11].

(if). fuzzy nowhere dense set if there exists no non-zero fuzzy open setu in (X, T)such that

u < cl(A). Thatis, intcl(A) = 0, in (X, T)[11].

(iii). fuzzy first category setif A = V2, (A;), where (A,)'S are fuzzy nowhere dense sets in (X,T). Any other
fuzzy set in(X, T) is said to be of fuzzy second category[11].

(iv). fuzzy residual setif 1 — A is a fuzzy first category setin (X, T) [12].

(v).fuzzy somewhere dense set if there exists a non-zero fuzzy open set p in (X, T) such that u < cl (1). That
is, intcl(A) # 0, in (X, T) [18].

(vi). fuzzy e-boundary set if A=V, 2;(u;), where p; = cl (A)A (1-2%;) and (A;)’s are fuzzy regular open sets
in (X,T) [17].

(vii). fuzzy co- o-boundaryset if y = AZ,(y;), where y; = int (1—X;) vA; and(};)’s are fuzzy regular open
setsin (X, T) [17].

(viii). fuzzyresolvableset iffor eachfuzzy closed set p in(X,T), cl(uAA) Acl (U A(1 = A))is afuzzynowhere
dense in(X, T)[15].

(ix).fuzzy simply open set if bd(A)is a fuzzy nowhere dense set in (X, T).That is, Ais a fuzzy simply open set in
(X, T)if [cl (A) Acl (1—1)], is a fuzzy nowhere dense set in (X, T) [14].

Definition2.5:A fuzzy topological space (X, T) is called a

(i). fuzzy regular spaceif for eachfuzzy open set Ain (X,T), A =V, (A,), where cl(r,) < Aandr, € T, for
eacha [5].

(ii). fuzzy Baire spaceifint (V2;(1;)) = 0, where();) Sare fuzzy nowhere dense sets in (X, T) [13].

(iii). fuzzy weakly Bairespace if int (\V;2,(w;)) = 0, where p; = cl( X)) A (1 =) and (A;)’s are fuzzy regular
open sets in (X, T) [17].

(iv).fuzzy open hereditarily irresolvable spaceif intcl(A) # 0, for any non - zero fuzzy set A defined on X,
thenint (1) # 0, in (X,T) [12].

(v). fuzzy hyperconnectedspace if every non - null fuzzy open subset of (X, T)is fuzzy dense in(X, T) [7].
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Theorem 2.1 [2] : In a fuzzy topological space,

(a).The closure of a fuzzy open set is a fuzzy regular closed set.

(b). The interior of a fuzzy closed set is a fuzzy regular open set.

Theorem 2.2[14] : IfAis a fuzzy simply open set in a fuzzy topologicalspace(X, T), then Aa (1 — A) is a fuzzy
nowhere dense set in (X, T).

Theorem 2.3 [16] :IfAis a fuzzy residual set in a fuzzytopological space(X,T), then there existsa fuzzyGs-set
uin(X, T)suchthat u < A

Theorem 2.4 [17] :IfA is a fuzzy o-boundary set in a fuzzy topological space (X, T), then Ais a fuzzy F,-setin
X, 7).

Theorem 2.5 [17] :If y is a fuzzy co- o-boundary set in a fuzzytopological space(X, T), then 1 — yis a fuzzyo-
boundary set in (X, T).

Theorem 2.6 [13] :Let(X, T) bea fuzzy topological space. Then the following are equivalent:

(1). (X, T) is anfuzzy Bairespace.

(2).int (A1) = 0, for every fuzzy first category set A in (X, T).

(3). cl () =1, for every fuzzy residual set pin (X, T).

Theorem 2.7 [17] :Let(X, T) be a fuzzy topological space. Then, the following are equivalent:

(1).(X, T)is a fuzzy weakly Baire space.

(2). int (1) = 0, for every fuzzy o-boundary set A in (X, T).

(3). cl (w) = 1, for every fuzzy co- o-boundary set pin (X, T).

Theorem 2.8 [17] :If a fuzzy topological space (X,T) is a fuzzy weakly Baireand fuzzy open hereditarily
irresolvable space, then (X, T) is a fuzzy Baire space.

Theorem 2.9[5] :Let (X, T)be a fuzzy topological space. Then, the following properties are equivalent:

(i). (X, T)is fuzzy hyperconnected,

(ii). 1xand Oare the only fuzzy regular open sets in X.

Theorem 2.10 [15 ]: If A is a fuzzy closed set with int (1) = 0, in a fuzzy topological space (X, T), then A is
afuzzy resolvable setin (X, T).

Theorem 2.11[17] :If (X, T) is a fuzzy weakly Baire space, then int (1) nint (1 - 1) = 0, for any fuzzy set A
defined on X.

1. FuzzyQuasi-Regular spaces

Motivated by the works of John. C. Oxtoby[8] and A.R. Todd [10],onquasi-regularity in classical topology, the
notion of fuzzy quasi-regularity in fuzzy topologicalspaces is defined as follows:
Defintion 3.1 : A fuzzy topological space (X,T)is called a fuzzy quasi-regular space iffor each fuzzy open
setiin (X, T), there exists a fuzzy regular closed set p in (X, T)such that u < A.
Example3.1 :LetX = {a,b,c}and = [0, 1]. The fuzzy setsa,  and y are defined on X as follows:
a: X - Iis definedby a(a) = 0.4; a(b) = 0.6; a(c) = 04,
B: X — Iis definedby B(a) = 0.6; B (b) = 0.4; B(c) = 0.6,
y: X — I is defined by y(a) 04; y(b) = 04;y(c) = 0.6.
Then,T = {0, a, B, v, avB, avy,a B, 1}isafuzzy topology onX. By computation, one can find that
ca) =1 —pB;int (1 —a) = B;
cd@)=1—-—a;int(1 —p) = «a;
cd@) =1 —a;int(1 —y) = «a;
cllavpB)= 1—-JanpB] ;int(1 —[avB]) = aApB;
clavy)= 1—JanB];int(1 —[avy]) = anB;
cdlanB)=1—-(avp).int(1 —[a AB]) = a vp.
The fuzzy regular closed sets in (X,T) are 1— a, 1- B, 1- (avpB)and 1-(anf) and 1- B <
a;l1—a< B;1-(avpB) <y;1- (arB) <avB;1- B < avy and 1- (a vB) <
a A B.Thus, for each fuzzy open setAi(= a, B, v, a vB, a vy,a A )there exists a fuzzy regular
closed set u
1-a,1-,1-(avp),1- (e Af))in(X,T)suchthat u < A.Hence (X, T) is a fuzzy quasi-regular space.
Example 3.2 :LetX = {a,b,c}andI = [0, 1]. The fuzzy setse, 8 and y are defined on X as follows:
a: X - I isdefinedby a(a) = 0.5; a(b) = 04; a(c) = 04,
B: X - I isdefinedby B(a) = 0.6; B(b) = 04; B(c) = 0.6,
y: X - [is definedby y(a) = 0.4; y (b) 0.5; y (¢) = 0.4.
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Then, T={0, a, B, v, avy, Bvy, aay, 1}isa fuzzy topology on X. By computation, one can find
that
ca) =1—-(x vy);int (1 —a)
cd@B)=1-y;int 1 -p)=vy;
cd@y)=1-[Bvy];int(1 —y) =B v
cd(avy) =1—-[avy];int(Q —[avy]) =
c(Bvy) = 1 — y;int(1 —[Bvy]) =
clary) = 1-(fvy).int(1 —[a Ay]) = Bvy.
The fuzzy regular closed setsin (X,T)are1 —y,1- (a vy), 1- (B vy).
Now for the fuzzy openseta, (1 — y) £ a; 1- (avy) £ a andl- (B vy) £ a.
Thus, for the fuzzy open set ain (X, T), there is no fuzzy regular closed set u (1 —y, 1-(avy),1-(B vy)) in
(X,T) such that u< . Hence (X, T) is not a fuzzy quasi-regular space.

a v

-

1

Y
avy;
Y

’

Proposition 3.1 : If there existsa fuzzy open sety such that cl(y) < A,for each fuzzy open set A in a
fuzzy topological space (X, T), then (X, T) is a fuzzyquasi-regular space.

Proof :LetA be a fuzzy open set in (X, T).Suppose that cl (y) < 1, where yis a fuzzy open setin (X,T). By
Theorem2.1, cl (y)is afuzzyregular closed set in (X,T).Let u = cl (y). Hence, for the fuzzy open setlin
(X, T), the existence of a fuzzy regular closed set w in (X, T) such that u < A implies that (X, T)isa fuzzy quasi-
regular space.

Proposition 3.2 : If § is a fuzzy closed set in a fuzzy quasi-regular space (X,T), then there exists a fuzzy
regular open set a in(X, T)such that § < a.

Proof :Let$ be a fuzzy closed set in (X,T). Then, 1 - § is a fuzzy open set in (X, T). Since (X,T) is a fuzzy
quasi-regular space, there exists a fuzzy regular closed set pin (X, T) such thaty < 1-8.Then, § < 1- u.Let
a = 1 -p. Hence, for the fuzzy closed set 8, there exists a fuzzy regular open set ¢ in (X, T)suchthat§ < a.

Proposition 3.3 : IfA is a fuzzy Gs-set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy closed set
0 in (X,T) such that 8 < A.

Proof :Let4 be a fuzzy Gs-setin (X,T). ThenA = A2, (X)), where A € T.Since(X,T) is a fuzzy quasi-
regular space, for the fuzzy open set A, there exists a fuzzy regular closed set y; in (X, T) such thaty; < ;.
This implies that A2, () < Aj2; (A)and then A2, () <A, in (X, T).Since fuzzy regular closed setsare
fuzzyclosedsets in a fuzzy topological space,Aj=; (1;)is a fuzzy closed setin (X,T).Let 6 = A2, (). Thus,
0 is a fuzzy closed set in (X, T) such that 6 < A.

Corollary3.1 : If p is a fuzzy F, -set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy openset y
in (X,T)suchthat u <vy.

Proof :Letu be a fuzzy F;-set in (X, T). Then, 1 -pu is a fuzzy Gs-setin (X,T) and by Proposition 3.3, there
exists a fuzzy closed set 8in (X, T) such thatd < 1 - p. This impliesthat y <1- 6, in (X,T). Lety = 1- 6.
Thus, y is a fuzzy open setin (X, T) such that u <.

Proposition3.4 :1fA is a fuzzy set defined on X in a fuzzy quasi-regular space (X, T), then there exists a fuzzy
regular closed set p in (X, T)suchthat u < A.

Proof: Let\be a fuzzyset defined on Xin (X, T). Then, int (4)isafuzzy open set in (X, T). Since (X, T)is afuzzy
quasi-regular space,there exists a fuzzy regular closed set pin (X, T) such that u < int (1). Nowint (1) < 4,
implies that u < A, in (X, T).

Corollary3.2 :IfAis a fuzzy set defined on X in a fuzzy quasi-regular space (X,T), then there exists a fuzzy
regular open set 8in(X, T) such thatcl (1) < 6.

Proof:For a fuzzy set 4, cl(A)is a fuzzy closed set in (X,T) and 1 — cl(A)is a fuzzy open set in (X, T). By
Proposition3.4, there exists a fuzzy regular closed set u in (X,T) such that u < 1 — cl( A). Then, cl(1) <
1-u,in (X,T).Let § = 1-pu. Thus, & is a regular open set in (X, T)such that cl (1) < 6.

Proposition3.5 :IfA is a fuzzy somewhere dense set in a fuzzy quasi-regular space (X, T), then there exists a
fuzzy regular closed set pin (X, T) such that u < int cl (4).

Proof: Letibe a fuzzy somewhere dense set in (X, T). Then, int cl(1) # 0, in (X,T). Now int cl (1)is a open
set in (X, T).Since (X, T) is a fuzzy quasi-regular space, there exists a fuzzy regular closed set pin (X, T) such
that u < int cl (A).

Proposition 3.6 :1f4 is a fuzzy nowhere dense set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy
regular open set 6in (X, T) such that A < §.
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Proof: Let\ be a fuzzy nowhere dense set in (X, T). Then, int cl(1) = 0,in(X, T). Now cl(A)is a fuzzy closed
setin (X, T). Since (X, T)is a fuzzy quasi-regular space, by Proposition3.2,there exists a fuzzy regular open set
§in (X, T)suchthat cl(4) < § NowA < cl (4),impliesthat 4 < §,in (X, T).

Proposition3.7 :If 1 is a fuzzy first category set in a fuzzy quasi-regular space (X, T), thenthere exists a fuzzy
openset 8 in (X, T) such thatn < 4.

Proof: Letn be a fuzzy first category set in (X, T). Then, n = V;Z;(%, ), where(,)’s are fuzzy nowhere dense
sets in (X, T). Since(X, T) is a fuzzy quasi-regular space, byProposition3.6, there exists a fuzzy regular open set
8;in (X,T) such that  A; <§;. Then ViZi(%;) < ViZ1(8;). Thisimplies thatn < V;Z,(5;). Since fuzzy
regular open sets are fuzzy open sets in a fuzzy topological space,ViZ,(5;)is a fuzzy open set in(X,T). Let
8 = ViZ,(8;). Hence, for the fuzzy first category set 1, there exists a fuzzy open set §in(X, T) such thatnp < §.

Proposition 3.8: If 6 is a fuzzy residual set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy
closed set B in (X,T) suchthat g < 6.

Proof:Let6 be a fuzzy residual set in (X,T).Then, 1 — 8 is a fuzzy first category set in (X, T). Since (X, T)is a
fuzzy quasi-regular space, by Proposition3.7, there exists a fuzzy open set § in (X, T)suchthatl — 8 < §. This
impliesthat 1 —§ < 8.Let 8 =1 — 4. Then, 8 is a fuzzy closed set in (X, T)such that g < 6.

Proposition 3.9 :If A is a fuzzy simply open set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy
regular open set § in (X, T) such that An (1 — 1) < 6.

Proof :Let\ be a fuzzy simply open set in(X,T). Then, by Theorem 2.2, A1 (1 — A) is a fuzzy nowhere dense
set in (X, T).Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.6,there exists a fuzzy regular open set
Sin (X, T) such that An (1 — 4) < 6.

Proposition 3.10 : IfA is a fuzzy residual set in a fuzzy quasi-regular space(X, T), then there exists a fuzzyGs-
set pand a fuzzy closed set 8in (X, T) suchthat 6 < u < A.

Proof :Let\ be a fuzzy residual set in (X,T). Then, by Theorem 2.3, there exists a fuzzy Gs-set pin (X, T)
such that u < A.Since (X,T) is a fuzzy quasi-regular space, for the fuzzy Gs-set uby Proposition 3.3,there
exists a fuzzy closed set 0 in (X, T) such that & < u. Then, it followsthat 8 < u < A.

Corollary 3.3 : If n is a fuzzy first category set in a fuzzy quasi-regular space(X,T), then there exists a
fuzzyopen set a and a fuzzyG,-setf in (X, T) such thatn < f < a.

Proof :Letn be a fuzzy first category set in (X, T). Then, 1 —n is a fuzzy residual set in (X, T). Since (X, T) is
a fuzzy quasi-regular space, by Proposition 3.10, there exists a fuzzy Gg-set pand a fuzzy closed set
Bin (X, T)suchthat 8 < u <1 —mn. Thisimpliesthat 1 — 6 > 1-u>1-[1 —7n]. Leta = 1- fandf = 1-pu.
Then, a is a fuzzy open set and Bis a fuzzy F;-setin (X, T)and n < B < a,in (X, T).

Proposition 3.11 : If pis a fuzzy o-boundary set in a fuzzy quasi-regular space(X,T), then there exists a
fuzzy open set yin (X,T) such that u <.

Proof :Letube a fuzzy o-boundary set in (X,T). Then, by Theorem 2.4, u is a fuzzy F;-set in (X,T).
Since(X, T)is a fuzzy quasi-regular space, byCorollary3.1,there exists a fuzzy open set y in (X,T) such that

u<svy.

Proposition 3.12 :If pis a fuzzy o-boundary set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy
regular closed set n in (X, T)such that cl(u) < n.

Proof :Letube a fuzzy o-boundary set in (X,T). Then, by Proposition 3.11, there exists a fuzzy
open setyin(X, T) such that p <y. This implies that cl( u) < cl(y). By Theorem 2.1, cl(y)is a fuzzy regular
closed set in(X,T). Let n = cl(y). Thus, for the fuzzy o-boundary set p, there exists a fuzzy regular closed set
nin (X, T) such thatcl(p) <.

Corollary3.4 :If pis a fuzzy o-boundary set in a fuzzy quasi-regular space(X,T), then there exists a fuzzy
closed set n in (X, T)such that u < 7.

Corollary3.5 :If uis a fuzzy o-boundary set in a fuzzy quasi-regular space(X, T), then there exist fuzzy regular
closed setsa and n in (X, T) suchthat a < u < 7.

Proof :Letube a fuzzy o-boundary set in (X, T). Then, by Proposition 3.12, there exists a fuzzy regular closed
set n in (X, T)such that cl(n) <n. Now pu < cl(u),in (X,T). Since (X,T) is a fuzzy quasi-regular space,
byProposition 3.4, for the fuzzy set pon X, there exists a fuzzy regular closed set « in (X, T) such thata < u.
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Thus, for the fuzzy o-boundary set y, there exist fuzzy regular closed sets @ andn in (X, T) such thata < u <
n.

Proposition3.13 :If 0 is a fuzzy co-g-boundary set in a fuzzy quasi-regular space(X,T), then there exists a
fuzzy regular open set 6 in (X, T)such that § < int (6).

Proof :LetBbe a fuzzy co-o- boundary set in (X, T). Then, by Theorem 2.5, 1 — @is a fuzzy o-boundary setin
(X,T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.12,there exists a fuzzy regular closed set
nin (X, T)such that cl(1 —60) <n. By Lemma 2.1,cl (1 —6) =1 —int(6), in (X,T). Then, 1 —int () <
nand 1-n < int(0). Let § = 1-7. Hence & is a fuzzy regular open set in (X, T)such that § < int(6).
Corollary 3.6 :If 0 is a fuzzy co-o-boundary set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy
open set §in (X, T)such that § < 6.

Proposition3.14 :IfA is a fuzzy open set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy regular
open set §in (X, T)such that § < A.

Proof :Let\ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open setlin
(X, T), there exists a fuzzy regular closed set p in (X,T) such thatu < A. Then, int(u) < int(4) = A. Since
fuzzy regular closed sets are fuzzy closed sets in a fuzzy topological space, p is a fuzzy closed set in (X, T). By
Theorem2.1, int(u) is a fuzzy regular open set in (X,T). Let § = int(u). Thus, for the fuzzy open set
Ain(X, T), there exists a fuzzy regular open set § in (X, T)such that § < A.

Corollary 3.7 : Ifi is a fuzzy open set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy regular
open set § in (X, T) anda fuzzy regular closed setain (X, T) suchthata < § < 4.

Proof :LetA be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open setA
in (X,T), by Proposition3.14, there exists a fuzzy regular open set §in (X, T) such that § < A. By Proposition
3.4,for the fuzzy set don X, there exists a fuzzy regular closed set « in (X, T) such thata < § < 4.

Proposition  3.15:1f1 is a fuzzy open set in a fuzzy quasi-regular space(X,T), then there exists a
fuzzysomewhere dense set 8in (X, T)such that § < A.

Proof :LetA be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open setA
in (X,T), by Proposition 3.14, there exists a fuzzy regular open set 6 in (X,T) such that § < A. Now
int cl(8) = &, implies that int cl(&) # 0Oand thus 6 is a fuzzy somewhere dense set in (X, T).

Proposition 3.16 :IfA is a fuzzy open set in a fuzzy quasi-regular space(X,T), then there exists a
fuzzysomewhere dense set 6and a fuzzy regular closed set ain (X, T) such thata < § < A.

Proof :Let\ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set 4
in (X,T), by Proposition 3.15, there exists a fuzzy somewhere dense set &§in (X,T) such that § <
A.ByProposition3.4, for the fuzzy set §on X, there exists a fuzzy regular closed set ain (X, T) such thata < § <
A

Proposition3.17 :1f pis a fuzzy F,-set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy open set
yand a fuzzy regular closed set ain (X,T) suchthata < u <vy.

Proof :Letu be a fuzzy F;-set in (X,T). Since (X,T) is a fuzzy quasi-regular space, by Corollary3.1,there
exists a fuzzy open set y in (X,T) such that u < y. By Proposition3.4, for the fuzzy set pon X, there exists a
fuzzy regular closed set a in (X, T) such thata < u <.

Corollary3.8 :Ifint(u) = 0, for a fuzzy F,-set p in a fuzzy quasi-regular space (X, T), then 0y is the fuzzy
regular closed set in (X, T)such that 0y < p.

Proof :Letu be a fuzzy F;-set in (X,T). Since(X,T) is a fuzzy quasi-regular space, by Proposition 3.17,
thereexists a fuzzy open set y and a fuzzy regular closed set ain (X, T) such that « < u < y.If int(u) = 0, then
int( @) = 0 and this will imply [from cl int(a) = a ] that ¢l (0) = aand then a = 0, in (X,T) and Oy is the
fuzzy regular closed set in (X, T) such that 0y < p.

V. Fuzzy quasi-regular spaces and other fuzzy Topologicalspaces

Proposition 4.1 :If a fuzzy topological space (X, T)is afuzzy regular space,then (X, T)is a fuzzy quasi-regular
space.

Proof:Letibe a fuzzy open set in (X, T). Since (X, T) is a fuzzy regular space, for the fuzzy open set Ain(X,T),
A =Vq (L), wWhere cl(4,) < Aand A, € T.By Theorem 2.1, cl (4,) is a fuzzy regular closed set in(X, T).
Thus, for the fuzzy open set Ain (X, T), there exists a fuzzy regular closed set cl(4,)in (X, T) such thatcl(4,) <
A, implies that (X, T) is a fuzzy quasi-regular space.
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Remark :Theconverse of the above Proposition need not be true. That is, a fuzzy quasi-regular space need not
be a fuzzy regular space. For, consider the following example :

Example 4.1 :Let X ={a,b,c}and I = [0, 1]. The fuzzy sets @, B andy are defined on X as follows :

a: X — Iisdefined by a(a) = 0.4; a (b) = 0.6; a (c) = 0.4,
B : X — Iis defined by B (a) 0.6; B (b) 0.4; B (c) 0.6,
y + X - Iisdefined by y(a) 0.4; y (b) 0.5; v (¢) 0.5.

ThenT ={0,a, B, vy, avB, avy, Bvy, arfB, ary, Bay,1}is a fuzzy topology on X. By computation,
one can find that

cley=1 -8 ; int (1 —a)=28;
cd@P)=1—a; int (L —B)=a;
cy)=1-y; int(l —vy) =y,
cl(avB)=1 — [arB] ; int(L —[avp]) =anapB;
cll@vy)=1-=1[Bry ] ; int(1 —[avy]) = BAy;
cdBvy)=1- (anay); int(l —[Bvy])= aAy;
clanB)=1—-[avB]; int(A —[anB] )= avP;
cl(any)=1—[Bvy ]; int(1 —[any])=Bvy;
cdBary)=1- (avy). int(A —[BAY ]) = avy.

By computation one can find that the fuzzy regularclosed setsin (X,T) are 1—a,1—-8,1—-y, 1—
[avB]1-(avy), 1=[Bvyl,1—[arBl,1—-[B A y]andl- (any)Also 1-B<a;l—-a<pB;1-
[BvyI<vy; 1—-[asBl<avPB; 1-B<avy; 1-(ary)<PBvy; 1—-[avpB]l<anB;1-
[Bvy]<aanyand 1—-[av B]<pB vy Hence(X,T)is a fuzzy quasi-regular space.Now, for thefuzzy
open set ain (X,T), a = (arB)Aa Ay)v(a)Where cllarB)=1—[avB]<a; cllany)=1-
[Bvy]<a and cl(a) =1-p < a.For the fuzzy open setyin (X,T), cllarB)=1—-[av B]<y
andcl (a ry)=1—[Bvy]<y.Buty#(@apf)v(ay), in (X,T).Hence (X,T) is not a fuzzyregular
space.

The following Propositions give conditions under which fuzzy quasi-regular spaces become fuzzy Baire spaces.

Proposition 4.2:1f int () = 0, for each fuzzy F;-set B in a fuzzy quasi-regular space(X,T), then (X, T)isa
fuzzyBaire space.
Proof :LetA be a fuzzy first category set in (X, T).Since(X, T) is a fuzzy quasi-regular space, by Corollary3.3,
there exists a fuzzy open seta and a fuzzy F,-setf in(X, T)such that 1 < f < a. Then, int(1) < int (f), in
(X, T).By hypothesis, int (8) = 0and this implies that int (1) = 0, in (X,T). Then, byTheorem2.6,(X,T) isa
fuzzyBaire space.

Proposition4.3:If each fuzzy Gs-set is a fuzzy dense set in a fuzzy quasi-regular space (X, T), then(X,T)is a
fuzzyBairespace.

Proof :LetA be a fuzzy first category set in (X, T).Since (X, T)is a fuzzy quasi-regular space, by Corollary 3.3,
there exists a fuzzy open set a and a fuzzy Fs-set § in (X,T) such that A < 8 < a. Then, int (1) < int (), in
(X, T). Now B isa fuzzy F,-setin (X, T), implies that 1 — Bis a fuzzy Gs-set in (X, T). By hypothesis, cl (1 —
B)=1,in (X,T). ByLemma 2.1, 1 —int (8) = 1 andint (8 ) = 0.This implies thatint (1) =0, in (X,T).
Then, by Theorem2.6, (X, T)is a fuzzyBairespace.

The following Propositions give conditions under which fuzzyquasi-regular spaces become fuzzy
weaklyBairespaces.

Proposition 4.4 :If each fuzzy closed set is a fuzzy nowhere dense set in a fuzzy quasi-regular space(X, T), then
(X, T) is afuzzy weaklyBairespace.

Proof :Let\be a fuzzy o-boundary set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Corollary 3.4,
then there exists a fuzzy closed set n in (X, T)such thatA < 7. Then, int(1) < int(n). By hypothesis,thefuzzy
closed set 1 is a fuzzy nowhere densesetin (X,T) and then int cl(n) = 0. Now int(n) < int cl(n), implies
that int(n) = 0, in (X, T). This implies that int ( A) = 0.Thus, for a fuzzy o-boundary set X, int (1) =0, in
(X, T).Then, by Theorem 2.7, (X, T)is a fuzzy weakly Bairespace.

Corollary4.1:If int (1) = 0, for each fuzzy closed set Ain a fuzzy quasi-regular space (X, T), then (X,T) isa
fuzzyweaklyBaire space.

DOI: 10.9790/0661-2001045968 www.iosrjournals.org 65 | Page



Fuzzy Quasi-Regular Spaces

Proposition 4.5 :If each fuzzy closed set is a fuzzy nowhere dense set in a fuzzy quasi-regular and fuzzy open
hereditarily irresolvable space (X, T), then (X, T) is a fuzzy Bairespace.

Proof :The proof followsfrom Proposition 4.4 and Theorem 2.8.

Proposition4.6 :If a fuzzy topological space(X,T) is a fuzzy hyperconnected, fuzzy open hereditarily
irresolvable and fuzzy quasi-regular space,then (X, T) is a fuzzy weaklyBairespace.

Proof :LetAbe a fuzzy closedset in (X,T). Then,1 — 4 is a fuzzy open set in (X,T). Since (X,T) is a
fuzzyhyperconnected space, 1 — A4 is a fuzzy dense set in (X,T) and cl(1 — 1) = landby Lemma 2.1, 1 —
int(4) =1 and thusint(1) = 0, in (X, T). Since Ais fuzzy closedset in (X,T),int cl(4) =0, in (X,T)and
thus Ais a fuzzy nowhere dense set in (X, T).Thus, the fuzzy closedset Ais a fuzzy nowhere dense set in the
fuzzy quasi-regular space(X, T). Hence, by Proposition 4.4, (X, T)is a fuzzy weaklyBairespace.

Remark :Theconverse of the above proposition need not be true. That is, a fuzzy weaklyBairespace need not be
a fuzzy quasi-regular space and a fuzzy hyperconnected space. For, consider thefollowing example:
Example 4.2:Let p, pp and pj3 befuzzy sets ofl = [0,1] defined as follows:

1
0, OSXSE;
,ul(x)z 1
2x —1, —-<x <1.
2
1 0< <1
(; —x—4l
1 1
Hp(x) =1 —4x + 2, 1S X <35
0 1< <1
k, ;< x <L
1
0, OSxﬁzi
H3(x) =

1
F@x-1, Js<xs<L

Clearly T = {0, puy ,1, piviy, 1} is a fuzzy topology on 1.By computation it follows thatl (u;) =1 —
po cl(pz) =1 —py, cl(uivpp) = 15 int(1 — ) = pp, int(1—pp) = py,int (1 — [ugviz) =0, cl(uz) =
1—wp 5 int(uz) =p ; cl(l—wuz) =1—py; int (1 —p3) =p,. Now intcl (uy) =int(1—u,) =
py;int cl (up) = int (1 — py) = ppintcl (uyvpp) = 1; ntcl (uz) = int(1—pp) =wy; intcl(l—p3) =
int(1—p) = uy. Then, p; and p, are fuzzy regular open sets and thus 1 — pu;and 1 — pyare fuzzy regular
closed setsin(, T).Now &; =cl (1) A (1—py) = 1—w) A (1—py),

&, =cl (1) A (1—py) = (1—py) A (1—py) .Then,d = 8,Vv6,, is a fuzzy a-boundary set in(I,T) and int () =
mt[(1—p) A(1— )] = int[1—(uyvuy) ] =1— cl (uyvitp)) = 1—1=0.Hence(,T) is a fuzzy
weaklyBaire space.

Now,for the fuzzy open sets p; , pp and wvpy, 1—pp £y 31— £ Wy -y £y 5 11— £y ;
1—p £y vy 5 1 — py£pgv,. This implies that(Z, T) is not a fuzzy quasi-regular space. Also, for the fuzzy
open set yy,cl (g ) =1—p, # 1 implies that (I,T) is not a fuzzy hyperconnected space.

Proposition 4.7 :If X is a fuzzy closed set with int(1) = 0, in a fuzzy fuzzy quasi-regular space (X, T), then A
isa fuzzy resolvableset in the fuzzy weakly Bairespace(X, T).
Proof :The proof follows from Corollary 4.1 and Theorem2.10.

Proposition 4.8:1f 1 is a fuzzysetdefined on Xin a fuzzy quasi-regularspace (X, T) in which each fuzzy closed
set is a fuzzy nowhere dense set, then int (1) A int (1 —24) =0,in (X, T).

Proof :Let A be a fuzzy set defined on X in (X, T).By hypothesis, each fuzzy closed set is a fuzzy nowhere
dense set in the fuzzy quasi-regular space(X, T)and then by Proposition 4.4,(X, T) is a fuzzy weaklyBairespace.
ByTheorem2.11, for the fuzzy set Ain (X, T),int (1) A int (1 — A1) =0, in(X,T).

Proposition4.9 :If a fuzzy topological space (X,T) is a fuzzy quasi-regular space, then(X,T) is not a
fuzzyhyperconnectedspace.
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Proof :LetAbe a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open setlin
(X,T), by Proposition 3.14, there exists a fuzzyregular open set § in (X, T)such that§ < A. Then, by Theorem
2.12,(X,T) isnot a fuzzy hyperconnected space.
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