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Abstract

The outbreak of the Coronavirus COVID-19 has taken the lives of several thousands worldwide and locked out
many countries and regions, with yet unpredictable global consequences. In this work, we propose a
compartmental mathematical model for the spread of the COVID-19 disease with special focus on the
transmissibility of symptomatic, asymptomatic or super-spreaders individuals. We estimate the basic reproduction
number to our propose model using general and exponential growth rate formula.

A case study of transmission of Covid-19 in Bangladesh has been done by our proposed model. The efficiency and
some limitations of our model also explained in the paper.
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l. Introduction

Since the outbreak of the COVID-19 coronavirus in early 2020, the virus has affected most countries
and taken the lives of several thousands of people worldwide. By March 2020, the World Health
Organization (WHQ) declared the situation a pandemic, the first of its kind in our generation. From
early 2020, many countries and regions have been locked-down and applied strict social distancing
measures to stop the virus propagation. From a strategic and healthcare management perspective, the
propagation pattern of the disease and the prediction of its spread over time is of great importance, to
save lives and to minimize the social and economic consequences of the disease. The problem of
interest has been studied in various communities including mathematical epidemiology [1], [2],
biological systems modeling [3], [4], signal processing [5] and control engineering [6].
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Figure 1: Covid-19 virus
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A number of modeling studies have already been performed for the COVID-19 epidemic. Wu et al.
[12] introduced a susceptible-exposed-infectious-recovered (SEIR) model to describe the
transmission dynamics, and forecasted the national and global spread of the discase, based on
reported data from December 31, 2019 to January 28, 2020. They also estimated that the basic
reproductive number for COVID-19 was about 2.68. Wu et al. [12] reported a value of 3.1 for the
basic reproductive number based on data fitting of a SEIR model, using an assumption of Poisson-
distributed daily time increments. Tang et al. [7, 9] proposed a deternunistic compartmental model
incorporating the clinical progression of the disease, the individual epidemiological status, and the
intervention measures. They found that the control reproductive number could be as high as 6.47, and
that mntervention strategies such as intensive contact tracing followed by quarantine and isolation can
effectively reduce the control reproduction number and the transmission risk. Imai et al [12]
conducted computational modeling of potential epidemic trajectories to estimate the size of the
disease outbreak in Wuhan, with a focus on the human-to-human transmission. Their results imply
that control measures need to block well over 60% of transmission to be effective in containing the
outbreak. In addition, Gao et al. [13] developed a deep learning algorithm to analyze the infectivity
of the novel coronavirus and predict its potential hosts. Their results indicate that bats and minks may
be two animal hosts of this virus. Most of these models have emphasized the significant role of the
direct, human-to-human transmission pathway in this epidemic, as highlighted by the facts that the
majority of the infected individuals did not have any contact with the marketplaces in Wuhan, that
the number of infections has been rapidly increasing, and that the disease has spread to more than
213 other countries.
Meanwhile, the transmission rates in our model depend on the epidemiological status and
environmental conditions which change with time. In particular, when the infection level is high,
people would be motivated to take necessary action to reduce the contact with the infected
individuals and contaminated environment so as to protect themselves and their families, leading to a
reduction of the average transmission rates. Such varied transmission rates also reflect the strong
disease control measures that the whole world has implemented, including large-scale quarantine,
intensive tracking of movement and contact, strict isolation, and advising the public to stay home and
avoid spreading infection. The remainder of this paper is organized as follows.

In section IT, we describe the general mathematical and compartmental models, In section III, we

explain about the measure and estimation of reproduction number. In section IV, we describe about

the methodology of our work. In section V, we introduce our proposed model. In section VI, we
explain the numerical case study to our proposed model in Bangladesh. In section VII, we discuss
about the efficiency and some limitations of our model.

II General Mathematical and Compartmental Models

Mathematical modeling is the art of translating problems from an application area into tractable
mathematical formulations whose theoretical and numerical analysis provides insight, answers, and
guidance useful for the originating application. A model is an entity that resembles a system or object
in certain aspects, but is easier to work with as compared to the original system. Models are used for
the 1) identification and better understanding of systems, 2) simulation of a system’s behavior, 3)
prediction of its future behavior, and ultimately 4) system control.
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IT General Mathematical and Compartmental Models

Mathematical modeling is the art of translating problems from an application area into tractable
mathematical formulations whose theoretical and numerical analysis provides insight, answers, and
guidance useful for the originating application. A model is an entity that resembles a system or object
in certain aspects, but is easier to work with as compared to the original system. Models are used for
the 1) identification and better understanding of systems, 2) simulation of a system’s behavior, 3)
prediction of its future behavior, and ultimately 4) system control.
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Figure 2: Diagram of mathematical modeling

The nodes of the following diagram represent information to be collected, sorted, evaluated, and
organized.

A compartmental model is a type of mathematical model (that is to say, a model that can be
described by a set of mathematical equations) that simulates how individuals in different
“compartments” in a population interact. The people (or animals) in each compartment are assumed
to be the same as all the other people (or animals) in that compartment. The compartments of the
model can either flow between each other (for instance live individuals can flow to a “dead”
compartment with a certain rate, which is 1/lifetime), or they can interact (for instance, predators eat
prey... the prey doesn’t “flow™ into the predator class, but obviously the number of predators that can
survive 1s related to the number of prey available for them to eat... and the survival of prey is
obviously related to the number of predators around to eat them). Differential (difference) equations
arise in many modeling problems.

With this background, the basic steps of compartmental modeling are:

1) Identifying the quantities of interest as distinet compartments and selecting a variable for each
quantity as a function of time. These variables are the state variables of the resulting state-space
equations.

2) Linking the compartments with arrows indicating the rate of quantity flow from each compartment
to another (visually denoted over the arrows connecting the compartments).

3) Writing the corresponding first-order (linear or nonlinear) differential equations for each of the
state variables of the model. In writing the equations from the graph representation, the edge weights
multiplied by the state variable of their start node are added to (subtracted from) the rate change
equation of the end node (start node). External inputs can be considered to be originated from an
external node with value 1.

4) Setting initial conditions and solving the system of equations (either analytically or numerically),
which is in the form of a first-order state-space model.
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III Measuring and Estimating Reproduction R

In epidemiology, the basic reproduction number, or basic reproductive number (sometimes called
basic reproduction ratio or basic reproductive rate), denoted R, (pronounced R nought or R zero), of
an infection can be thought of as the expected number of cases directly generated by one case in a
population where all individuals are susceptible to infection. Counting the number of cases of
infection during an epidemic can be extremely difficult, even when public health officials use active
surveillance and contact tracing to attempt to locate all infected persons. Although measuring the true
R value is possible during an outbreak of a newly emerging infectious pathogen that is spreading
through a wholly susceptible population, rarely are there sufficient data collection systems in place to
capture the early stages of an outbreak when Ry might be measured most accurately. As a result, R,
is nearly always estimated retrospectively from sero-epidemiologic data or by using theoretical
mathematical models. Data-driven approaches include the use of the number of susceptible persons
at endemic equilibrium, average age at infection, final size equation, and intrinsic growth rate. When
mathematical models are used, Ry values are often estimated by using ordinary differential
equations, but high-quality data are rarely available for all components of the model. The estimated
values of Ry, generated by mathematical models are dependent on numerous decisions made by the
modeler.

Figure 3: Disease transmission when Reproduction number Ry = 2

The population structure of the model, such as the susceptible-infectious-recovered model or
susceptible-exposed-infectious-recovered model, which includes compartments for persons who are
exposed but not yet infectious, as well as assumptions about demographiec dynamics (e.g., births,
deaths, and migration over time), are critical model parameters. Population mixing and contact
patterns must also be considered; for example, for homogeneous mixing, all population members are
equally likely to come into contact with one another, and for heterogeneous mixing, variation in
contact patterns are present among age subgroups or geographic regions. Other decisions include
whether to use a deterministic (yielding the same outcomes each time the model is run) or stochastic
(generating a distribution of likely outcomes on the basis of variations in the inputs) approach and
which distributions (e.g., Gaussian or uniform distributions) to use to describe the probable values of
parameters, such as effective contact rates and duration of contagiousness. Furthermore, many of the
parameters included m the models used to estimate K are merely educated guesses; the true values
are often unknown or difficult or impossible to measure directly. This limitation is compounded as
models become more complex and, thus, require more input parameters, such as when using models
to estimate the value of R, for infectious pathogens with more complex transmission pathways,
which can include vector borne infectious agents or those with environmental or wildlife reservoirs.
In summary, although only 1 true R, value exists for an infectious disease event occurring in a
particular place at a particular time, models that have minor differences in structure and assumptions
might produce different estimates of that value, even when using the same epidemiologic data as
inputs. In commonly used infection models, when Ry > 1 the infection will be able to start
spreading in a population, but not if Ry << 1R < 1. Generally, the larger the value of R, the harder
it is to control the epidemic.
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IV Methodology
Our proposed model has been made on base of the following SEIR model
SEIR Model

It is an extended SIR model [14] where a new compartment or state is added. It is known as Exposed
or E which is positioned between the susceptible and infectious compartments. The Exposed
individual is infected but not infectious, i.e. the disease remains in latent state. This concept can also
be explained on the basis of the level of pathogen within the host and immunological status of the
host. When the host is susceptible, it indicates that no pathogen is present and only a low level of
non-specific immunity exists within the host. As soon as the susceptible encounters an infectious
individual, he becomes infected. The pathogen increases in number and the infected host may not
show any signs of infection and thus he enters the Exposed compartment. As soon as the pathogen
burden is sufficiently high, the Exposed host becomes Infectious and disease is transmitted to another
susceptible individual. When the Infectious individual can no longer transmit infection as the
pathogen is cleared from his immunity system, he belongs to the Recovered category. The class
distinction between Exposed-Infectious and Infectious-Recovered is not very distinct because of
variability in responses between different individuals and variability in pathogen levels over the
infectious period.

SEIR Model

Susceptible » Exposed —— > |Infectious » Recovered

Figure 4: Diagram of SETR Model

Many diseases have a latent phase during which the individual is infected but not yet infectious. This
delay between the acquisition of infection and the infectious state can be incorporated within the SIR
model by adding a latent/exposed population, E, and letting infected (but not yet infectious)
individuals move from S to E and from E to L.

V Our Propose Model

General Description

kf1-uyp-og) B; S

B.B.B1 katy &,
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Figure 5: Flowchart of the model
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We propose a new epidemiological compartment model that takes into account the super-spreading
phenomenon of some individuals. Moreover, we consider a fatality compartment, related to death
due to the virus infection. In doing so, the constant total population size N is subdivided into eight
epidemiological classes: susceptible class ( S ), exposed class ( E ), symptomatic and infectious class
(1), super-spreaders class ( P ), infectious but asymptomatic class ( A ), hospitalized ( H ), recovery
class ( R ), and fatality class ( F ). Also we construct the qualitative analysis of the model as
determining the reproduction number, local stability and sensitivity analysis.

We also assume that new births are susceptible people. We do not consider here movement of people
between territories. Under those assumptions, the evolution of the compartments mentioned above is
modeled by the following system of ordinary differential equations (which is simplified below):

ds I H ‘P
a - PSS TBRSTBSS
UE I H 'F

o =koyE— (& + &)1 — gl

dp

= koyE— (83 +§;)P — opP (D
i—?z k(1 — oy — ay)E
'?:I_I:: 5,(1 +P) — 8,H — o H
=81+ P) +&H
% =g;l + GpP+GhH
Where ,

* [ = Human to human transmission coefficient per unit time per person.
. B = High transmission coefficient due to super spreaders.
e | = The relative transmissibility of hospitalized patients.
» Lk = Rate at which an individual leaves the exposed class by becoming infectious.
» o, — Proportion of progression from exposed class E to infectious class L.
» o, = Relative very low rate at which exposed individual becomes super spreader.
s 0§, = Average rate at which symptomatic and super spreader individuals become
hospitalized.
* §; = Recovery rate without being hospitalized.
e §, = Recovery rate of hospitalized patients.

* 0;0p0, = Death rates due to infected, super spreaders and hospitalized patients.
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Calculating the Basic Reproduction Number and Local Stability

It can be understood as the average number of cases one infected individual generates, over the
course of its infectious period, in an otherwise uninfected population. Using the next generation
matrix approach [15 ] to our propose model (1) , the basic reproduction number can be computed by
considering the below generation matrices F and V | that is, the Jacobian matrices associated to the
rate of appearance of new infections and the net rate out of the corresponding compartments,
respectively,

0o p pl ﬁ k 0 0 0
o = 0 0 0 0 & I = —ko;  wy 0 0
00 0 0 —ka; 0 w, O
00 0 0 0 =0, =0 wy
Where ,
wi=0,+8+0 , wp=08,+8+o, , wy=06 +ay @)

The basic reproduction number Ry is obtained as the spectral radius of F. vt precisely,
_ BoaGal +wy)  (BS;1+ Bwn)a
WiWy WpWh

Ro

(3)
Noting that the two last equations and the fifth of system (1) are uncoupled to the remaining
equations of the system, we can easily obtain, by direct integration, the following analytical results:
X . - : D ; . s .
AR)=k(l —a; —a;) [ E(s)ds
0
t t

R(D = §; f (1(s) + P(s))ds +6"f H(s)ds )

0 0

L

F(t) = G-lf 1(s)ds +GDJLP(S)dS +ap fl[-[(s)ds
Since the togal population siie Nis constant,oonc has
S@)=N - [E@+ IO+ PO+ A@®+ HE® + R@) + F()] (5)
Therefore, the local stability of model (1) can be studied through the remaining coupled system of

state variables, namely, the variables E, I, P, and H in (1). The Jacobian matrix associated to these
variables of (1) is the following one:

~k p B P
kay —wy 0 0
Ju= (6)
kus 0 —wp 0
0 Ga E'a —Wp

where w; , wp and wy, are defined in (2) . The cigenvalues of the matrix [ are the roots of the
following characteristic polynomial:

Z0) =1+ a P+ and tagi+ay )

Where,
al=k+wi+wp+wh

a; = —Pkay — ‘Bakaz + kwy + kw; + kwp + wyw; + wpwp + wiwp

a; = —Pd kla; — pd,kla, — pkaywy, — P kaywy, — Pkaywy — B.kazwi + kwywy + kwywy
+ kwywy + wywywy,

ay = —Bd;klayw; — B3 klaywy — f kaywiwy — Bkaywywy + kwywywy,

(®)
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Now by using the Liénard—Chipard test, all the roots of Z()) are negative or have negative real part
if, and only if, the following conditions are satisfied:

La>0,i=1,2,3,4

2. aja; > ag

In order to check these conditions of the Liénard—Chipard test [9], we rewrite the coefficients
ay,a;,a3,a, of the characteristic polynomial in terms of the basic reproduction number given by (3)

a; =k+wj+wp+wy

' 1
Po1 \ o P2, ﬁﬁaklul( +—2)
Wp \'\rh Wh""i

a, = (1 —.‘Rﬂj(kwi + kwp] + kw -
i

- 1 Wi
+ po.kla, (W_h + thp) + (k + wy)wy + (wy, +widwyp
(8)
o . Po;wy P aywy
daz = k(1 _Rg)(Wth + wpw + W]'Wp) + kw, + kij—
i D
6.kl ( 1 1) 5okl 1 1
+ pé kla;wy w—h-i-;l + Bo klayw; E+W_p + Wy wiwp
ay = kwhwiwp(l — .‘Rﬂ) (9)
From the above expressions we can obtain that
a8y — a3 = (1 — R (k 4+ wydkw; + (1 — ‘Rﬁ}(k-l- wp, + wh]kw]J
Ba 8 lary Ba & la,
+ (k4w +wy) oy |, Boalay kwp + (k+ w; + wy) Bz | Fale, kw
wp w; wp wp
B3, kla, B3, klo,
4 (k + wy + wy) ;h + (k+wy +wp) :_f (k + wy)wy
+ (Wh + wi )Wp (10)

From these previous expressions, it is clear that if Ry < 1, then the conditions of the Liénard—
Chipard test [10] are satisfied and, as a consequence, the disease free equilibrium is stable. In the
case when Ry > 1, we have that a, < 0 and, by using Descartes’ rule of signs, we conclude that at
least one of the eigenvalues is positive. Therefore, the system is unstable.

VI Case Study in Bangladesh

The virus was confirmed to have spread to Bangladesh in March 2020. The first three known cases
were reported on 8 March 2020 by the country's epidemiology institute, IEDC. After that some
precautions like lockdown, social distancing and wearing mask campaign were taken by the
government and the authorities. Though the spread of corona virus became alarming day by day in
Bangladesh. From 7 April 2020 to 4 August 2020, we conduct a case study of 120 days measuring
the basic reproduction number Ry by (1) Exponential growth rate & (2) Our proposed model.
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Figure 6: Daily confirmed infected cases (7/4/2020 to 04/08/2020)
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Calculating reproduction number by Exponential Growth Rate and general formula

We estimates R using epidemic data of covid-19 by the exponential growth rate r. Thus process
requires two statistical process. First estimate r and then convert r intoR .
Let,

J(t) be the number of new infections at time t.

Supposing that each infected individual on average generates secondary cases at a rate A(1) at time T
since( T 1s referred as the infection age ).

J(.E):EA(:‘){r—r)dr (11)

Since Ry represent the total number of secondary cases that a primary case generates during the
entire course of infection, the estimation 1s

ﬂ?0=ff1(r)dr (12)
When | (t) follows an exponential growth path, it is easy to extract the integral of A(t) from equation
(7). So we have

J(t) = Ke™, K is a constant

J(t—1) = Ke'te ™™t

This simplifies equation (11) to the so called Eular-Lotka equation

! =fA(r)e_”dr (13)

2(t) represents the frequency of secondary transmission relative to infection age .

Al) _Al)

glr)=

—_— = (14)
J:A(S) s Ro
Replacing A(T) in the right hand side of equation (9) by that of equation (10), R is obtained
1 r

" [e)earc &) 0
Now from our collected data of Bangladesh, we can construct the below table with required
information:

Notation Value Description
X 242022 Total confirmed cases of period t

P 164,689,383 Total population of the areca
X 35 Initial confirmed case when t=1
t 120 Total number of days

Table 1: Parameter values for Exponential growth rate

Now we know by exponential growth rate formula
X=X,(1+n)t

= 242022 =35(1+ )'?°

— 11— 0.0765

Alsog(1) = the frequency of secondary transmission of period t.

v g ) __ Total confirmed cases of a period
v - Total population of the area

x 100

S o) = —22%2 100 = 0.147
B\ = 164689383 Y
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From equation (15) putting the values of r & g(t) we find

Ro— ro 0.0765
T e(r) T 0.147
=052

Here the value of Ry is less than 1. So the virus will die out after a certain period.
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Figure 6(A) : Cumulative number of confirmed infected cases (7/4/2020 to 04/08/2020)
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Figure 6(B): Cumulative number of deaths (7/4/2020 to 04/08/2020)

B 3.9787 Day!

i] 11.9361 Day!

1 1 dimensionless
k 0.25 Day!

oy 0.7 dimensionless

05 0.001 dimensionless

3, 0.05 Day’!

B; 0.9 Day!

B, 0.9 Day!

oj 2.1040 Day!

Gp 1 Day’l

on 0.1 Day!

Table 2: Calculated and Assumed parameter values for our proposed model

DOI: 10.9790/5728-2003023849

www.iosrjournals.org

47 | Page



A new Compartmental Mathematical Model for COVID 19 Transmission: Bangladesh Study

We put these parameter values in equation (3) and calculate the basic reproduction number

ARV (P8al +Pwy)up
WiWh prh

Ro 0.96

Here the value of Ry is less than 1. So the virus will die out after a certain period.

VII Results and Discussion

SIR. & SEIR model divide the whole population into 3 or 4 compartments where the
compartments are susceptible, exposed, infected and removed/recovered. But in the cases of
very infectious disease, there can be other compartments in the population like symptomatic,
asymptomatic and super spreaders which we found in Covid-19 transmission played a very
important role and could make vital differences in the calculation. Also SIR & SEIR model
do not take different compartment for recovered and removed population, but we took them
as different compartment in our model to calculate the more accurate picture of the

transmission of Covid-19. The basic reproduction number Ry for SIR model is Ry = E: from

which we can see Ry depends on only two factor B (infection rate) & v (recovery rate). But in

: . : (Bal+6 wh Joz
our proposed model the basic reproduction number K, — BraCCaltwn) (83al+F wh oz

WiWh WpWh
which R, is dependent on some more factors like high transmission coefficient due to super
spreaders, the relative transmissibility of hospitalized patients, rate at which an individual
leaves the exposed class by becoming infectious etc. These factors help to determine more
accurate numerical value of the reproduction number.

At the time of writing, well-documented limitations in testing capacity in Bangladesh and a
lack of information on exposed individuals, super spreaders and hospitalized patients, made it
challenging to know where on the epidemic situation we currently find ourselves. The
challenges in both scope of testing and pace of testing make case counts a poor metric of
underlying disease activity. Any meodel involves trade-offs between simplicity and realism,
and in this work we have not attempted to model physical distancing. Our understanding of
the natural history of Covid-19 infection continues to evolve, and the precise role of pre-
symptomatic and subclinical transmission is uncertain. Physical distancing becomes a more
important control measure in the face of incomplete case ascertainment owing to
asymptomatic or mildly symptomatic cases. Lastly, the model does not include seasonality; it
1s possible that transmission will attenuate in the summer, resulting in a decline in cases that
would be expected to resurge with the return of colder weather. Therefore, the accuracy and
the validity of the estimation would be better if the models fit the first-hand data on the
population mobility and the data on the natural history, the epidemiological characteristics,
and the transmission mechanism of the virus.

VIII Conclusion

We proposed a mathematical model for Covid-19 transmission taking into account some
parameters and developed a route of transmission for the disease. We estimated the
theoretical formula of the basic reproduction number R; through our model. We also
conducted an optimal control theory for our model by which the control measurement can be
taken with the help of proper data. A case study of transmission of Covid-19 in Bangladesh
was also done by two different methods including our proposed model. We calculated the
basic reproduction mumber Ry for Bangladesh by Exponential growth rate model & our
proposed model.
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