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Abstract 
In this paper, some counter-examples are given to show that the results of [1] are not correct. 

Moreover, the reasons for these mistakes are given and some possible improvements are suggested. 
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I. Introduction 
The well- known Lyapunov inequality [4] for the following second-order linear differential 

equation: 

x′′(t) + q(t)x(t) = 0 (1) 

where q(t) ∈ L1[a, b] is a real valued function, states that if a < b are consecutive zeros of a 

nonzero solution x(t) of (1), then the following inequality and the constant 4 is sharp, which means 

that it can not be replaced by larger ones. 

Later Wintner [5] replaced the function |q(t)| in (2) by the function q+(t), where q+(t) = 

max{q(t), 0}. 

 

That is, he obtained the following inequality: 

In [3], by using the Green function method, Hartmann obtained an inequality which is more 

sharper than both (2) and (3): 

Since for all t ∈ (a, b), (b − t)(t − a) ≤ (b−a)
2 

, inequality (4) implies (2) and (3). 

The Lyapunov type inequalities have been applied to oscillation and Sturmian Theory, 

disconjugacy, eigenvalue problems and many other properties of the solutions. These inequalities and 

their generalizations to higher order differential equations, to Hamiltonian systems, nonlinear differential 

equations, See, for example, [1-5] and the references cited therein. 

In paper [1], the authors considered the following nth order forced differential equation of the 

form No sign restriction is improsed on the forcing term and the nonlinearities satisfying 

0 < α1 < α2 < · · · < αj < 1 < · · · < αm < 2. 

 

The authors of [1] obtained the following main results: 

Theorem 2.2 (Lyapunov type inequality ) Let x(t) be a nontrivial solution of (5) 

satisfying boundary conditions (6). If x(t) /= 0 in (aj, aj+1), j = 1, 2, · · · , r − 1, then the 

inequality 
Theorem 2.3 (Lyapunov type inequality) Let x(t) be a nontrivial solution of (5) 

satisfying the following (k, n − k) conjugate boundary conditions holds, where the functions Qm(t) 

and Qm(t) are defined in (10) and Φ(t) = max  k(t − a)n−k(t + b − 2a)k−1, (n − k)(t − a)k(2b − a 

− t)n−k−1 t∈[a,b] for k = 1, 2, · · · , n − 1. 

Consider the following boundary value problem: 

 

Theorem 3.4 (Hartman type inequality) Let x(t) be a nontrivial solution of (11) 

satisfying the following (k, n − k) conjugate boundary conditions holds, where the functions Qm(t) 

and Qm(t) are defined in (8)  

 

Counter-Examples 

Let us consider equation (5) with a1 = 0 < a2 = π, 0 < α1 < 1 < α2 < 2. 

but the right side of (7) is 9·45 
, which is a positive constant independent of the variable of g. 
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When we let g → 0+, then the left side of (7) tends to 0, but the right side of (7) remains a positive 

constant. This yields a contraction! Therefore the result of Theorem 2.2 is incorrect. 

 

Counter-example 2. If we let a = 0 < b = 1, x(t) = gt3(1 − t)2, where g ∈ (0, 1) is a positive 

constant. Then x(0) = x′(0) = x′′(0) = 0, x(1) = x′(1) = 0, x(5)(t) = 5! = 120, k1 = 2, k2 = 1, r 

= 2, n = k1 + k2 + r = 2 + 1 + 2 = 5. 

Let 

q1(t) = q2(t) = g, f (t) = 5!g + g g
α1 t

3α1 (1 − t)
2α1 + g

α2 t
3α2 (1 − t)

2α2 . 

Then it is easy to verify that x(t) is a nonzero solution of (5) and (10). 

Moreover, x(t) > 0, t ∈ (0, 1), max0≤t≤1 x(t) = x( 3 ) = 36 g > 0. It is easy to verify that the 

left side of (44) 

When we let g → 0+, the left side of (44) tends to 0+, but the right side of (44) remains a 

positive constant, this is a contraction! Therefore the result of Theorem 2.3 is incorrect. 

 

Counter-example 3.  If we define a = 0 < b = 1, x(t) = gt3(1 − t)2, q1(t) = q2(t) = g and f (t) 

is the same as Counter-example 2, the it is easy the verify that the result of Theorem 3.4 is incorrect. 

From above counter-examples, we see that the results of Theorem 2.2 and Theorem 2.3 and Theorem 

3.4 are incorrect. 

The authors claims that inequality (15) is only possible when R1R2 > 1 . That is, the 

condition 4R1R2 > 1 is a necessary condition for the existence of a nontrivial solution of (7). But 

after we carefully checking this claim, it seems that the authors made a mistake. In fact, for R1 > 

0, R1x2(c) − x(c) + B > 0 is equivalent to This inequality dose not implies that 4R1R2 > 1 since 

the equation (7) is not a linear equation of type (1) or (5). In (1) and (5), if x(t) is a nonzero 

solution, then for any real number λ, λx(t) is also a solution of (1) or (5), therefore, the value x(c) 

= maxa≤t≤b x(t) when x(t) > 0, t ∈ (a, b), can take any positive value if we choose suitable λ > 0. 

In this case, let x(c) =  1  , then (16) implies that 4R1R2 > 1. But for nonlinear equation (7), the 

value x(c) or |x(c)| may belong to some interval I = [x0, x1], which may be a single point or which 

does not contain the value  1  , therefore, one can not conclude that (16) implies 4R1R2 > 1. Since 

all the proofs of theorems in [1] relay on this claim, the results of [1] are therefore all incorrect. 

Besides, Lemma 2.1 in [1] states the if A is positive and B, z are nonnegative, then for any α 

∈ (0, 2) with equality holding if and only if B = z = 0. In fact, the claim that the equality holds if 

and only if B = z = 0 is incorrect. In fact, let A = B = α = 1, then inequality (17) reduces to it is 

ease to see that the equality holds if and only if z = 1 . It follows from this conclusion that the 

result of Lemma 2.1 is incorrect also. 

Besides, the results of [2] are incorrect for the same reason. 

 

II. Some Corrections To The Results In [1] 
1. The authors of [1] should add some sufficient conditions to Theorem 2.2 and Theorem 2.3 

and Theorem 3.4, for example, they may assume that all solutions of (7) can take any real value. In this 

case, the inequality 

(16) could be satisfied if x(c) can take any real value. In this case, the inequality (16) implies 

that 4R1R2 > 1. 

Under this assumption, the results of [1] and [2] remain correct. 

 

III. Data Availability 
No data was used for the research described in the article. 
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