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Abstract

In this paper, we investigate some intertwining sets and quasi-affine sets of some classes of operators in
Hilbert spaces. We are interested in the intertwining relation of the form WX = XR, where W, R are
some bounded linear operators and X is an arbitrary bounded linear operator which we will endow some
special properties.
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I. Introduction

Let ‘H denote a Hilbert space and B(H) denote the Banach algebra of bounded linear oper-
ators. If T' € B(H), then T* denotes the adjoint of T, while Ker(T'), Ran(T), M and Mt
stands for the kernel of T, range of T', closure of M and orthogonal complement of a closed
subspace M of H, respectively. We denote by o(T"), |T|| and W (T'), the spectrum, norm
and numerical range of T, respectively. Recall that an operator T' € B(H) is

Let ‘H denote a Hilbert space and B(H) denote the Banach algebra of bounded linear oper-
ators. If T' € B(H), then T* denotes the adjoint of T, while Ker(T'), Ran(T), M and M
stands for the kernel of T', range of T', closure of M and orthogonal complement of a closed
subspace M of H, respectively. We denote by o(T"), |T|| and W (T'), the spectrum, norm
and numerical range of T, respectively. Recall that an operator T' € B(H) is

normal if THT =TT*.

self-adjoint (or hermitian) if T* =T.
skew-adjoint it T* = —T.

unitary it T*T =TT* = 1.

quasinormal it T(T*T) = (T*T)T.
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binormal it (T*T)(TT*) = (TT*)(T*T).

hyponormal it T*T = TT*.

f-operator if 7*T and T 4 T* commute.

a projection if T2 =T and T* =T.

an involution if T? = 1.

a symmetry if T =T* = T~!. That is, T is self-adjoint unitary.
isometric it T*T =1.

a contraction if |7 < 1.

Let A € B(H) and B € B(K). We say that X € B(H.,X) intertwines A and Bif XA = BX.
We denote by I(A,B) = {X € B(H.K) : XA = BX} the intertwining set of A and B. In
this case we call X the intertwining operator. If X has dense range, then we say that 4 and
B are densely intertwined by X .

If X intertwines both the pairs (4, B) and (B, A), then we say that X doubly intertwines A
and B.

The set I[A,B] = {X € B(H,K) : XA = BX and XB = AX} is called the double inter-
twining set of A and B.

The commutator of A € B(H) and B € B(K) is defined as C(A4,B) = [4, B] = AB — BA.
The self-commutator of 4 € B(H) is defined as C(A* 4) = [A*, A] = A*A—AA* Let Q2 bea
class or subset of B(#). The commutator set of the class Q is defined as C(Q2) = {AB — BA :
A,B e Q}. Clearly, C(Q) ={C(A,B): A,B € Q}.

The commutant of T' denoted by {T}’ is the set of all operators that commute with T'. That
is {T} = {S € B(H) : ST = T'S}. The bicommutant or double commutant of T € B(H)
denoted by {T'}" is defined hy

{(TV ={Ae€ B(H): AS=SA, Se{T}}={p(T): T € B(H), pa polynomial} = m (S}
Se{T}

Note that the lattices Lat(T) and Hyperlat(T) have set-theoretic set inclusion ordering
(C) of the power set P(H) as a partial order < on them. With this partial order each of
Lat(T) or Hyperlat(T) is a complete lattice with H as the greatest element and zero {0} as
the least element. If Ly and Ls are complete lattices, we write L1 = L4 to signify that there
is a (complete) lattice isomorphism of one onto the other.

A quasiaffinity X is said to have the hereditary property with respect to an operator
T € B(H) it X € {T} and X(M) = M for every M € Hyperlat(T). If Ty and T, are
quasisimilar and there exists an implementing pair (X,Y ) of quasiaffinities such that XV
has the hereditary property with respect to 77 and Y X has the hereditary property with
respect to T5, then we say that T i1s hyper-quasisimilar to Th, and we denote this by Ty < T5.
The notion of hyper-quasisimilarity was introduced by C. Foias etal[7].
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Two operators A € B(H) and B € B(K) are said to be similar (denoted A ~ B) if there exists
an invertible operator N € B(H,K) such that NA = BN or equivalently A = N~'BN, and
are unitarily equivalent (denoted by A = B)if there exists a unitary operator U € B, (H,K)
(Banach algebra of all invertible operators in B(H)) such that UA = BU (i.e. A = U*BU,
equivalently, A = U~1BU). Two operators A € B(H) and B € B(K) are said to be metrically
equivalent (denoted by A ~, B) if ||Az| = | Bz||, (equivalently, |{Az, _4;3:)|% = |(Bz, B-r)|%
for all z € H)(see [10]). Clearly similarity, unitary equivalence and metric equivalence are
equivalence relations on B(H).

Let ‘H and X be Hilbert spaces. X € B(H, K) is called a quasiaffinity or quasiinvertible
it has trivial kernel and dense range(that is Ker(X) = {0} and Ran(X) = K). An operator
S € B(H) is said to be a quasiaffine transform of 7' € B(K) (denoted by S < T') if there

exists a quasiaffinity X € B(H,X) such that X5 =TX. By
Q(B)={Ae€B(X): XA=BX,X aquasiaf finity}

the set of quasiaffine transforms of B also called the quasiaffine orbit of B. If X is invertible,
then @(B) coincides with the similarity orbit of B. Operators 5 € ‘H and T € K are said
to be quasisimilar if there exists quasiaffinities X € B(H.X) and Y € B(K,#H) such that
XT' =5X and TY =Y .5. The set of all operators quasisimilar to B € B(H) is called the
quasisimilarity orbit of B and is denoted by

Q;(T)={Ae B(K): XA =BX YA =BY XY quasiaf finities}.

A subspace (closed linear manifold) M C H is said to be invariant under T' € B(H) if
» € M implies that T'x € M or TAM C M. A subspace (closed linear manifold) M C H is
said to be a reducing subspace for T' € B(H) or reduces 1" if it is invariant under both T and
T*(equivalently, if both A and A4L are invariant for T'). A subspace (closed linear manifold)
M C H is said to be a hyperinvariant subspace for T € B(H) if SAM < M for each S € {T}'.
That is, it is invariant under every operator commuting with 7'. By a subspace lattice on H
we mean a family of subspaces of ‘H which is closed under the formation of arbitrary intersec-
tions and and arbitrary linear spans and which contains the zero subspace {0} and H. The
subspace lattice of all invariant, reducing and hyperinvariant subspaces of 1" is denoted by
Lat{T), Red{T) and Hyperlat{T), respectively. Note that Red(T) may not be a lattice. The
subalgebra of all operators generated by an operator T' € B(#H ), denoted by W*(T') will be
called the (unital) weakly closed (von Neumann) algebra generated by T'. We use this alge-
bra to investigate the structures of invariant and hyperinvariant lattices for various operators.

1. Basic Results

Theorem 2.1 Let A, B € B(H). Then the commutator (A, B) — AB — BA is a bilinear
operation ¢ : B(H) x B(H) — B(H) with respect to the "variables” A and B.

Proof. Let o be a scalar. Then
wlaA,B) = (aAd)B — BlaAd) =a(AB — BA) = ayp(A, B).

(A, aB) =A(aB) — (aB)A = a(AB — BA) = ap(A, B).
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This shows that i is linear in the first and second variable and hence bilinear.

Theorem 2.2 Let A, B B(H). Then I(A, B) is a closed subspace of B(H).

Proof. Let T\T1,T5 € I{A, B) and let & € C. Then TA = BT, T1'A = BT} and Tv A = BT5.
Thus
(Th +15)A=T1A+ 1A = BT + BT, = B(I1 + 1),

(Th12)A =T (T2A) = Th(B13z) = (11 B)T; = B(I13)

and
(aT)A = a(TA) = a(AT) = A(aT).

This proves that I(A, B) is closed with respect to addition, multiplication and scalar multi-
plication. Trivially, the zero operator O € I{A4, B). This proves the claim.

Recall that an algebra over a field F is a vector space with a bilinear product, that is a
set together with operations of multiplication, addition and scalar multiplication by elements
of a field, satistfving the axioms implied by a vector space. An algebra is unital if it has an
identity element with respect to the multiplication operation. A subalgebra is a subset of an
algebra, closed under all its operations, and carrying the induced operations.

Theorem 2.3 Let A€ B(H). Then {A} is a unital subalgebra of B(H).

Proof. Let €, 1,03 € {A} and let & € C. Then by definition CA = AC, C14A = AC) and
CoA = AC5. Therefore

(Ci + C2)A = CLA + Cod = AC) + ACs = A(Cy + Cb)

(C1C2)A = C1(CoA) = C1{ACR) = (C1A)Co = A(C1Cy)

and

(aC)A = aCA = A(aC).
This proves that Cy + C5,C1C3 and aC all belong to {A}. That is {4} is closed under

addition, multiplication and scalar multiplication. This proves the claim.
Clearly, by definition I € {A}. Hence, { A} is a unital subalgebra of B(H).

Theorem 2.4 Let A, B € B(H). Then I[A,B] CI(A,B).
Proof. The proof follows from the definition of 1[4, B] and I{A4, B).

Theorem 2.5 Let A, B € B(H). Then the solution to the operator equation X A = BX is
IfA,B).

Theorem 2.6 Let A, B € B{H). Then the solution to the operator equations XA = BX
and XB = AX s I[A,].

Theorem 2.7 Let A,B € B(H). If I(A, B) contains a unitary operator then A and B are
unitarily equivalent.
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Theorem 2.8 Let A, B € B(H). If I(A,B) contains an invertible operator then A and B

are similar.

Theorem 2.9 Let A, B e B(H). If I{A, B) contains a quasiaffinity then B is a quasiaffine
transform of A.

Theorem 2.10 Let A,B € B(H). IfI[A,B] contains a quastaffinity then A and B are

guasisimilar.
If I[A, B] = {0}, then A and B are called disjoint operators.
Corollary 2.11 Let A, B € B(H). If I(A,B) and I(B,A) contain quasiaffinities then A
and B are quasisimilar,
Note that if A and B are quasisimilar then they need not have equal spectra(see [9]) but

o(A) No(B) # 0. However, quasisimilar subnormal operators have equal spectra, (see [4]).

Theorem 2.12 Let A, B € B(H) and A = B then I(A4, A) = I[A, A] = {A} and {I[A, A)} =
{74 Ay ={{A}Y ={A}".

Proof. Follows from the definitions.

Let & be a subset of B(H). We define
S ={T eB(H): TS=5T, v5eS}

and

S":={BeB(H): BA=AB_ ¥ Ac S'}.

Note that
Sﬂ'f — {Sﬂ'}!.

Theorem 2.13 Let S be a subset of B{H). Then § C 8",

Proof. By definition, every 5 € 8§ commutes with every T’ € 8'. Hence § C 8",
Corollary 2.14 Let § be a subset of B(H). Then &' C 8.

Proof. The proof follows from Theorem 2.13.

Theorem 2.15 Let 8 and T be subsets of B(H). If S C T then T' C &' .
Corollary 2.16 Let 8§ be a subset of B(H). Then 8" C &'.

Proof. The proof follows from Theorem 2.15.

Proposition 2.17 Let & be a subset of B(H). Then &' = 8&".
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Proof. The proof follows from Corollary 2.14 and Corollary 2.16.

Theorem 2.18 Let S and T be subsets of B(H). Then
(i). (SuT)Y=8nT"

(ie). (STUTY' =(8"nT"Y =(8NTY if we assume that S =8" and T =T".

Recall that A and B are similar if there exists an invertible operator X such that B =

XAXL

Theorem 2.19 Suppose A and B are similar. Define the mapping
v {AY — {BY

by
P(T)=XTX !

for allT € {AY. Then ¢ is an isomorphism from {A}' onto {B}'.

Proof. It suffices to prove that ¢ is linear, injective, surjective and ¢~ is linear.

Let T, 171,715 € {A} and o € C. Then
PN +T) = X(T+To)X = X(MIX 4T X Y = XTI XL XX L = o(T)) + ¢(Ty)

and

plaT) = X(aT) X' =aXTX ! = ap(T).
This shows that i is linear.
Now suppose T € {A}. Then o(T) = 0 implies that XT X! = 0 which implies that T = 0.
Thus ¢ is injective.
Now suppose B € {B}. We show that there exists a T' € {A} such that B = »(T"). But
B =XAX"! = p(T). This shows that ¢ in onto.

1. Main Results

Recall that T' € B(H) is normal if T*T = TT™*. We denote the class of normal operators by
N, the class of quasinormal operators by @, the class of binormal operators by B and the
class of f-operators by . Note that @ ={T : [T, T*T| =0}, B={T: [T*T,TT*] = 0} and
={T:[I*T,T+T1*) =0}

Theorem 3.1 The class N = {T : [T*,T] =0} .
Proof N ={T':T*T=TT*} ={T: [T*,T] =0}.

Theorem 3.2 Let T' € B(H). The class NN ={T : [I'*,T] = 0} is a closed subset of B('H)

under scalar multiplication.
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Proof. Suppose T' € B(H ) is normal and o € C. Then (oT")*(aT') = @aT*T = aal'T" =
(aT)(aT)* which shows that a1 is normal.
Next, suppose {I}} is a sequence of normal operators converging to 7' € B(H). Then

IT°T =TT*| < |T*T = TETh|| + 1T T = TT*|| — O

as k — oo, Hence T*T" = TT™* and therefore T 1s normal.

Theorem 3.3 IfT € B(H) is normal then T™ is normal for any n € .

Proof. Since T is normal, A" = {T": [T*,T] = 0}. By mathematical induction or simple
caleulation (T*T)" = T*"T™ = T™T*",

Theorem 3.4 Let T € B(H). IfT'€f6nB, theT € Q.

Proof. See ([3] and [5]).

Theorem 3.5 If T € B(H) is normal and S is unitarily equivalent to T then S is normal.

Proof. Normality of T" implies that [T,7*] = 0. Suppose § = U*T'U , for some unitary
operator U € B(H). Then

[S.8%] = [*"TU.U*T*U] = U*[T*. T|U = 0.

Hence 5 is normal. This proves the claim.

4 Quasiaffine Sets of some Operators

An operator W : £2(N) — (2(N) is a unilateral weighted shift if there exists an orthonormal
basis {e, : n = 0,1,2, ...} and a sequence of scalars {c,,} such that We, = aye,44, for all
n=012 .. Ita,=1ftorall n=201,2,., then W is called the unilateral shift or forward
shift operator and is usually denoted by S. Clearly, S(eg,e1,ea,...) = (0,eq, €1, €2, €3,...).

It is known (see [6], Proposition 2.1) that a weighted shift is hyponormal if and only if its
weight sequence {a,} is increasing (that is, ap41 = o). Clearly, the unilateral shift is a
hyponormal operator on H = 2(N).

Note that the quasiaffine transform of an operator T may not have exactly the same
properties as T'. We may have T' being a quasiaffine transform of S without 7' inheriting
many of the properties of 5.

Example. Let H = (2(N). Define W : (2(N) — (%(N) by
Wep =e1,Wey = v@eg, Wen = enti1.

for all n = 2,3.4,.... Then there exists X € B(H) such that

L
ﬁen!

Xeg=eg,Wey =1, We, =
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for all n = 2,3,4,.... With respect to the orthonormal basis e, : » = 0,1,2,... of H, X
has an infinite matrix representation given by X = diag(1,1, %, %, ..). It i1s clear that
Ker(X) = {0} and Ran(X) = H and hence a quasiaffinity and XTW = SX, where S is
the unilateral shift on H. But the weight sequence for W is {1,4/2,1,1,1,...} which is not
increasing. So W is not hyponormal.

Theorem 4.1 Let T' € B(H) be hyponomal and let A € B(H) be a quasiaffine transform of
T. Then Ker(A — M) = Ker(A — M)? for every € C.

Proof. See ([6], Proposition 2.3)

Let D = {A € C: || < 1} denote the open unit disc and D{\ € C : |A| < 1} its topological
closure.

Proposition 4.2 If T' € B(H) is a quasiaffine transform of a hyponormal operator L, then
o(L)Ca(T).

Proof. See [4].

Recall that T € B(H) is bounded below if there exists a constant o > 0 such that
|Tx]| = a| |, for all x € H. If T € B(H) 1s bounded below and has dense range, then it is
invertible.

Theorem 4.3 (Bounded Inverse Theorem): Let T € B(H.K). Then Ker(T) = {0} if and
only if T is injective if and only if T : Ran(T) — M exists.

Corollary 4.4 Let T € B(H,K). Then the following statements are equivalent, {a). T is
bounded below.

(b). T7Y: Ran(T) — M exists and is bounded.

(c). Ran(T) = Ran(T).

Remark. Note that if 7 € B(H,K) is hounded below, then Ker(T) = {0} and so 77! :
Ran(T) —s H exists. It remains to show that 77! is bounded. Let y € Ran(T) C€ K. Then
there exists x € H such that Tr = y. Thus

1 1 .
Ty = |T7 Tz = ||z]| < =||Tx|| = = , 4.1
1T~ yll = || o = llell = ZITlf =~y (4.1)
for all y € K.

Proposition 4.5 IfT € B(H) is invertible and S € B{K) is hyponormal and X € B(H,K)
has dense range and XT = 5X, then S is invertible,

Proof. Clearly, Ran(X) C Ran(S) and so K = Ran(X) C Ran(5), which implies
that Ran(S) = K. Hence Ran(S) is dense in K. It remains to show that S is bounded
below on Ran(X). Let y € Ran(T). Then there exists v € H such that T« = y, that is
x=T7Yy.Thenusing(4.1), wededucethat|S(X z)|| = | X Tx| = ﬂjl-r”||X;L'||.Th-:'.sp'r'o-t!esth.eda?’.m.

Remark. From Proposition 4.5, it follows that if an invertible operator T' is densely mntertwined by
a hyponormal operator S, then 5 is invertible. Since X7 = SX| then either T and S are both invertible
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or both non-invertible. A consequence of Proposition 4.5, is that quasisimilar hyponormal operators S
and T have equal spectra, since for any A € C, the operators § — Al and T — Al are both invertible or

both non-invertible, and hence a(S) = o(T').

Theorem 4.6 Let T € B(H) be a contraction which is a quasiaffine transform of the unilateral shift
S e B(H). Then o(T) =D.

Proof. There exists a quasiatiinity X such that X7 = SX. Clearly every A € Il is an eigenvalue of
T* (that is, A € o, (T™)) with dimKer(T* — M) > dimKer(S5*). Therefore o(T') = D.

Theorem 4.7 Let T € B(H) be a contraction such that XT = SX where X is a quasiaffinity and S is
a unilateral shift. Let M C H be a T-invariant subspace of H(that is, M € Lat(T)). Then the map

@ : Lat(T) — Lat(S)
defined by ¢ : M —— XM is an isomorphism.
Theorem 4.8 Let A € B(H) and B € B(K) are quasisimilar, then Q.(A) = Q.(A).

Remark. Theorem 4.8 says that two quasisimilar operators have equal quasisimilarity orbits.

V. Discussion
The notions of intertwining sets, quasiaffine sets or orbits, commutators, commutants and double
com- mutants of operators are very useful in solving the classical Carathéodory interpolation problems
(see [8]) . Intertwining operators also find applications in solving ordinary and partial differential equations
(see [1]) and also in the construction of exactly solvable or quantum mechanical systems described by
Hamil- tonians (see [2]) and quantification of how well two observables described by operators can be
measuredsimultaneously in the Heisenberg Uncertainty Principle in Quantum mechanics.
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