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Abstract : In the present paper an attempt has been to express the polynomial set B (x,, x,.
x,) in terms of . Many interesting new results may be obtained as particular cases on specializing
the parameters. Out of thesze particular results some of the stand for well known polynomials and
some of them are believed to be new. These polynomials are of outimost importance for science
and engineers because they occur in the solution of differential equation. integral equation etc.
Which describe physical problem. Many orthogonal polynomial have their wide application in
quantum mechanics chemical kinetics and electromagnetic theory etc.
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[.INTRODUCTION

Sing and Singh [1] define the generalized hypergeometric polynomial set B (x,. x,. x;) by

means of generating relation.
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Where 1, u. B, 1, @, @, ¢, d, are real numbers and r, r, are non-negative integer and

7. 1y are natural numbers.

The left hand side of (1.1) contains the product of generalized hypergeometric function
and Lauricella function in the notation of Burchanall and Chaundy [2]. The generalized
polynomial set contains number of parameters.

For Simplicity we shall denote

Mk oy e Cp J g Flon, ek )

B "Xy
i Dy [, BB, |:|:E.}5| : 1-2 3}

by B, (x,. X,. X;)
Where 1 denotes the order of the polynomial set.
After little simplication (1.1). gives
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The Polynomial B (x,. x,. x,) happens to the generalization of as many thirty eight orthogonal

and non-orthogonal polynomials.

II. NOTATIONS

1. (m)y=1.2.3. .. .....m

2. (A)=ALALA,. A

3. [A)I=A.A. A, A
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0L B (x, x, ) IN TERM OF G (s, p*)

Theorem : For r, > 1 and r, > 1. we achieve
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Proof : We have from (1.2)
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Also, we have from [3]
nrtot

(x) —T{ P e 6r (st )

i nct =il 0 (=0h),

DOI: 10.9790/5728-2005012934 www.iosrjournals.org 30 | Page



Expansion of the Generalized Hypergeometric Polynomia

Hence, (3.2) can be written as
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Equating the co-efficient of r from both sides of (3.3) and after little simplification we
obtain for 7, > 1 and r, > 1.
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1
The single terminating factor for (—nc 1)t it o Makes all snmimations in (3.4)

mns up to o,
Hence the theorem
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IV. PARTICULAR CASES

Separating the term corresponding to 5, =0 =5, = x, = 0 =x, in (3.1), we obtain a number of
results on specializing the remaining parameters.
1. Hermite Polynomials :

Ontaking p=0=g=g=h=v=wr,=2=p=u,=4,r=1=x,=34 and x for x,, we

set
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where H (x) are the Hermite Polynomials.

[

Legendre Polynomials :

Ontaking p=0=g=g=h=wmv=1=r=x,=8=p=p,pB,=1:r,=2 and

for v, we get
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where P (x) are the Legendre Polynomials.
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Legendre Polynomials :
OnPutting p=g=0=h=uwr=1=8=x,=vig=1lor
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4. Jackson Polynomials :
Purting p=0=g=g=h=u=vir,=2=r=1=x,=v: un=4, = yu,=—-16 and x for x,.
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where ¢ (v) are the Jakson Polynomials.
Humbert Polynomials [4]:
Forp=0=g=g=h=v=wuir,=3=ur=1=3=x,:n, =-27 and A for v . we get

th
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where h,; (v) are the Humbert Polynomials.

6. Lagrange Polynomials [5]:
Ontaking p=0=g=h=vig=l=v=r=d=r=pu=pa,=akE =bx=vandx
for x,, we get
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where g:;""b":.\'.}'} are the Lagrange Polynomials.
7. Bedient Polynomials :
Puttingg=0=u=vip=l=h=g=r=x=v=p:nrn=2=wc =u E =p.F=
o + [: and x for we get
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where & (. . x) are the Bediend Polynomials.
8. Gegenbouer Polynomials :
Ontaking p=0=g=h=v=ug=1l=r=xy,=uvirn=2=p=u,=4F =vand

writting v for x,. we get
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where C!”(x) are the Gegenbauer Polynomials.
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V. CONCLUSION AND FUTURE SCOPE

In this paper we have obtained many interesting new results for the generalized
hypergeometric polynomial set B (x .x,.x,) followed by important and interesting particular cases.
Out of these particular results some of them stand for well known and some of them are believed
to be new. These are at most important for mathematicians. scientists and engineers.
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