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Abstract

The purpose of this paper is to introduce a new concept of Tw- separation axioms in intuitionistic ropological
spaces. After giving some characterization of IW Ty, TW Ty, IW T,- spaces separation axioms in intuitionistic
topological spaces. We explore the fundamental properties of separation axioms and counter examples in
intuitionistic fopological spaces.
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I.  Introduction
The concept of intuitionistic sets in topological spaces was first introduced by Coker [3] in 1996. He also
introduced the concept of intuitionistic points and investigated some fundamental properties of closed sets in
intuitionistic topological spaces. Later he[5] defined T; and T, separation axioms and discussed some
properties. In this paper, to define a new type of separation axiom based on TW- open sets in intuitionistic
topological spaces. We introduce the concepts of W T,- space, Tw T;- space,Tw T,- spaces using Tw-
open sets and discuss the relationship between them.

Il.  Preliminaries

Definition 2.1 [3]: Let M be a non-empty set. An intuitionistic set (shortly TS ) A isan object having the form
A = <M, Ay, A> Where Ay, A, are subsets of M satisfying A, N A, = ¢@. The set A; called the set of
members of A, while A, is called set of nonmembers of A.
Definition 2.2 [4]: Let M be a nonempty set and p € M be a fixed element. Then the TSP defined by p =

< M, {p}, {p}c > is called an intuitionistic point ( shortly TP).
Definition 2.3 [1] : An intuitionistic topological space (M, Zt,) is said to be

i SZTl(l) space if for all &,% € M (& # #) there exist an T- open set V, W such that & €V , £ ¢V

andeEW beW.

ii. IT,(ii)- spaceif for all &, £ € M (& # £ ) there exist an T- open set V, W such that bev , kev
and /z EW, E emw.

iii. IT,(iii)- space if for all &,% € M (4 # £) there exist an T- open set V, W such that & € V € £
and €W c .

iv. %Tl(w) space if for all 4,% € M (4 # £ ) there exist an I - open set 1V, W such that Fevc ;z,

rewck.

v. IT,(v)-spaceif for all &,% € M (& # £ ) there exist an T- open set V, W such that £ ¢ V and &
¢gW.

vi. IT,(vi)- space if for all &, € M (& # #) there exist an T- open set V, W such that £ ¢ V and
bew.

Definition 2.4 [1] : An intuitionistic topological space (M, Zt,) is said to be
i. T T,(i)- space if for all 6,4 € M (& # £) there exist T- open set V, W such that & €V, £ € W
andVnNW= ¢.
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ii. I T,(ii)- spaceif for all &,% € M (4 # £ ) there exist T- open set V, W such that &# €V, £ € W
andVNW=¢§.

iii. T T,(iii)- spaceif for all &, % € M (& # £ ) there exist T- open set V, W such that & €V, &£ € W
andV < W.

iv. I T,(iv)- space if for all &,% € M (& +# £ ) there exist T- open set V, W such that Fev , rEewW
andV € W.

v. T T,(v)-spaceif for all 4,£ € M (4 # £ ) there exist T- open set V, W such that bev c /?, ¥
EWC FandV € W. ~
vi. T T,(vi)- space if for all &, £ € M (& # £ ) there exist T- open set V, W such that bevc /?, 3

EWCHandV € W.
Definition 2.5 [6]: An intuitionistic topological space (M, Tt;) is called TT;- space if foralla,b € M (a #
b ) there exist T- openset U, Vsuchthata € U;, b € U; and b € V;,a & V;.
Definition 2.6 [6]: An intuitionistic topological space (M, It,) is called TT,- space if for all &, % € M with
(& # #£ ) there exist T- open set V, W suchthat & €V, £ ¢V, and L € W, 6 &€ W, andV N W = §.

III. ITw- Separation Axioms
Definition 3.1: An intuitionistic topological space (M, Tt;) is said to be
a) IW Ty(i)- space if forall a,b € M (a # b) there exist TW- open set U such that @ € U and b & U or
beUand d¢U.

b) IW Ty (ii)- spaceif foralla,b € M (a # b) there exist TW- open set U such that @ € U and b ¢ U and

beUand @¢U.
Definition 3.2: An intuitionistic topological space (M, Tt,) is called TW Ty- space if for all a,b € M with
(a # b) there exist Tw- open set U such thata € U;,b € U, or b € Uy, a € U,.
Theorem 3.3 : Every intuitionistic T, space is TWw T,- space but not conversely.
Proof: Since every intuitionistic open is Tw- open, the proof follows.
Example 3.4 : Let M = {a, 4} with the family 1, = {§, M, < M, 0,0 >, < M,{#},¢ >}. TW- 0S
(M,T1y) = {§, M, <M, 0,0 > <M, {a},p > <M, ¢,{a}><M{6},¢p> <M,{&}{a}>} Here
be<M,{6},{a} >and a ¢ < M,{6},¢ >. Hence (M,Tt,) is ITw Ty- space. But there exist no
intuitionistic open set U such that @ € U and & ¢ U or & €U and a &€ U. Hence (M, Zt,) is not an
intuitionistic T, space .
Theorem 3.5: Let (M, Tt,) and (Y, TT,) be two intuitionistic topological spaces. Let & : (M, T1,) — (Y, Z1,)
be a one-one, onto and TW- open map. If (M, Tt,) is a IT, space then (Y, Tt,) is TW T- space.
Proof : Suppose a,b €Y with a # b. Since & is onto, then there exist p,# € M such that § (p) = a and
G ()= b.Then § (p) # F(r) = p ++ as§ isone-one. Since p,7 € M,p #+ and (M,ZT1,)isIT Ty
space, there exist T -open set U in M such that p € U;, » & U;. As § is TW- open, F (U) is TW- open in
(Y,Zt,). SinceFU) =<Y, FW), FWU,) > a=F(p)eFWU,;) and b= F () & F(U,). Finally, we
get a,b € Y with a # b there exist Tw- open set § (U) € (Y,T1,) such thata= F(p) € §U,), b =
& () ¢ & (Uy). Hence (Y, T1,) is T T,- space.
Theorem 3.6: Let (M, Tt,) and (Y, TT,) be two intuitionistic topological spaces. Let & : (M, 1) — (Y, Z1y)
be a one-one, onto and TW- continuous map. If (Y,T7,) isa TT, space then (M, Tt,) is TW T,- space.
Proof : Let X, Y € M with X # Y implies  (X), F (Y) € Y with F (X) # F (Y) as § is one-one. Since
F (X)), & (Y) €Y and (Y, Tt,) is T, space, there exist a T- open set U in Y such that § (X) € U;, & (Y) ¢ U,
or §(Y)eU,F(X) ¢ U,. Since F is TW- continuous map, F~1(U) is Tw- open in (M, I1;). Now, F (X)
€ U, implies F(F (X)) € §1(U,) which implies X € F1(U;) and § (Y) € U, implies F1(F (Y)) €
¥~ 1(U,) which implies Y € F1(U,). Similarly, Y & F1(U,), X & F1(Uy). Thus if X, Y € M with X =
Y, there exist TW- open set F~1(U) such that X € F (U, Y ¢ F W) orY € F LU, X & F L(U).
Hence (M, Tt,) is TW-T,- space.
Definition 3.7 : An intuitionistic topological space (M, Tt;) is said to be
i.TW T4 (i)- space if for all &, % € M (& # £ ) there exist TW- open set V, W such that & € V, £ & V and
ReW, bew.
ii.TW T, (ii)- space if for all &, % € M (4 # # ) there exist TW- open set V, W such that & € V, £ & V and
LEW, bgW.
iii.TW T, (iii)- space if for all &, % € M (& # £ ) there exist TW- open set V, W such that & € V € £ and
REW C b
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iv.Zw T, (iv)- space if forall &,% € M (& # £ ) there exist Tw- open set V, W such that bevc /?, ke

wcéb.
v.IW T4 (v)- space if for all &,% € M (4 # £) there exist TW- open set V, W such that £ ¢ V and & ¢
w.

vi.IW T4 (vi)- space if forall &,£ € M (& + £ ) there exist TW- open set V, W such that £ & Vand & ¢
w.

Theorem 3.8 : Let (M, Tt,) be intuitionistic topological spaces. Then the following implications are valid but
not conversely.

Tiw Ty (v)

Tiw Ty (i) / \ Tw T, (vi)
T n(m\ //"

Tw Ty (iii) w Ty(iv)

Fig. 3.1
Proof : Obvious.
Example 3.9: Let M = { g, £} with the family Tt ={M, @, < M, {£}, ¢ >, <M, 0,9 >}. TW-0S(M, 1)
={M,®d, <M,p,0> <M, {g}><MI{glLe> <M,{£}eo> <M, {£},{g}>)Here (M,I1) is
Iw T, (i)- space but not Iw T; (ii)- space.
Example 3.10: Let M = { g, £} with the family It ={M, @, < M, {g},{£} >}. IW-0S(M,%1) = (M, @,
<M,0,0 > <M,0,{g}> <M, {g}o > <M, p,{£} > <M, {g},{£} >} Here (M, Z1) is TW T, (iv)-
space but not Tw T, (iii)- space.
Example 3.11: Let M = { g, £} with the family It ={ M, @, < M,{g},{£} >, <M, {g} ¢ > <M,p,¢ >
, <M,p,{£} >} ITw-0S (M,Zr) = Tt. Here (M, 1) is Tw T, (v)- space but not Tw T (ii)- space.
Example 3.12 : The above example, satisfied Tw T; (iv)- space but not Tw T, (ii)- space.
Example 3.13 : Let M = { g, £} with the family It={M, &, < M,{g} {1} > <M, {gl,¢ >}. IW-0S
(M, 1) = (M, &, <M, 0,{£} >, <M, {g},0 > M,{g},{£} >}Here(M,I1) is TW T, (iv)- space but not
Iw T, (iii)- space.
Example 3.14 : Let M = { g, £} with the family It ={ M, @, < M,{g},{£} > < M,{g},0 >, < M,p,¢ >
, <M,p,{£} >} IW-0S (M,It) = I1. Here (M, I1) is TW Ty (v)- space but not T T (ii)- space.
Example 3.15 : The above example satisfied Tw T; (iv)- space but not Iw T (ii)- space.
Example 3.16 : Let M = {g, ¢} with the family Ir={M, ¢, < M,{g}{ 1} > <M, {g} o >}.IW-
0S(M,Z1) = {M, @, <M, p,{£} >, < M,{g}, 9 > M,{g},{£} >}. Here (M, Z1) is TW T, (vi)- space but
not Iw Ty (ii)- space.
Example 3.17: In example 5.1.16, TWT; (i)- space is satisfied but not Iw T; (iii)- space.
Definition 3.18: An intuitionistic topological space (M, T1,) is called IWT,-space ifforalla,b € M (a #
b ) there exist Tw- open set U,V suchthata € U;,b € U; and b € V,,a & V,.
Theorem3.19: Every IT;- space is Tw T; - space but not conversely.
Proof: Since every intuitionistic open is TWw- open, the proof follows.
Example 3.20: Let M = { 4, #} with the family Tt={M, @ < M,{$},¢ >}.Then d € <M, {d}, ¢ >,
¢ <M, {d},o>and § € <M, {#},{d} > d & <M, {#},{d} >. Here (M, Tt,) is TW T, (i)- space. But
there exist no intuitionistic open set U and V such that 4 € Uand # ¢ U and # € V and 4 ¢ V. Hence
(M, Zt,) is not TT; - space .
Theorem 3.21: Let (M,Tt;) and (Y,T7,) be two intuitionistic topological spaces. Let & : (M, T1,) —
(Y,Z1,) be aone- one, onto and TW- open map. If (M, It,) is a IT; space then (M, Tt,) is T T; - space.
Proof : Suppose »,« € Y with # # w. Since § is onto, then there exist &,# € M such that F(4) = »
and §(#) = w.Then F(B) = F(#) = & + #,as § isone -one. Since &,# € M, & # fand (M,ZT1,) is
a TT; space, then there exist T- open set U and Vin M suchthat & € U;, # € U; and & €V, # € V,. As T is
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Iw- open, F(U) is TWw- open in (Y, T1,). Since FU) =< VY, F(U,),FU,) >, = (&) € F(U;) and u =
F#) ¢ §(U,).Finally, we get 7,1« € Y with  # w there exist TW- open set F(U) € (Y, Tt,) such that » =
F(H) € F(U,), u =) ¢ F(U,). Hence (Y, Tt,) is TW T;- space.
Theorem 3.22 : Let (M, T7;) and (Y,T7,) be two intuitionistic topological spaces. Let & : (M, Tty) =
(Y, Z1,) be a one- one, onto and Tw- continuous map. If (Y, Tt,) is a TT; space then (M, Tt,) is IW T;- space.
Proof: Let 4,4 € M with d # A implies §(d), F(A) € Y with F(d) = F(A) as § is one- one. Since
F(d), F(A) €Y and (Y, T1,) is an intuitionistic T; space, there exist T -open set U and V in Y such that F(4)
€U, F(A) & Uyor F(h) €V, F(d) & V. Now, F(d) € U, implies ‘{y‘%%(d)) € ¥ 1(U,) which implies
d € F1(U,y). As F(h) € Vy, FH(F(A)) € F1(V,) which implies £ € F1(V). Similarly, A ¢ F1(U,),
d & F1(V,).Finally, we get d,A € M with d # #, there exist TW- open set F~1(U) and F~(V) such that
deF LU, A¢F 1(UDor AEFLV,), 4 ¢ F1(V,).Hence (M,T1,) is I T;- space.
Definition 3.23 : An intuitionistic topological space (M, It,) is said to be

Vii.IW T, (i)- space if for all &,% € M (& # £ ) there exist TW- open set V, W such that & € V, £ € W

andVNW= §.

viil.TW T, (ii)- space if for all &, £ € M (& # £ ) there exist TW- open set V, W such that be V, kew
andVNW= ¢.
ix.TW T, (iii)- space if for all &,% € M (& # £) there exist TW- open set V, W such that & € V, £ € W
andV € W.

X.IW T, (iv)- space if for all &,% € M (& # £ ) there exist TW- open set V, W such that be V, kew
andV € W.

Xi.TW T(v)- space if for all &,% € M (6 # £) there exist TW- open set V, W such that beV ck,
REWC FandV € W. B
xil.IW T (vi)- space if for all &,% € M (& # £ ) there exist Tw- open set V, W such that bevc k,

AEWCHandV € W.
Definition 3.24: An intuitionistic topological space (M, It,) is called ITw T,- space if for all &, £ € M with
(& # #£ ) there exist Tw- open set V, W suchthat & €V, £ ¢V, and R €W,, &6 & WyandVNW = §
Theorem 3.25 : Every intuitionistic T,- space is T T,- space but not conversely.
Proof: Since every intuitionistic open is TW- open, the proof follows.
Example 3.26: Let M' = {a, ¢} with the family St ={ M, @ < M, ¢, >}.Thena € V= < M, {a}, {6} >,
4 ¢ Vand 6 eW=<M,{6},{a}>a¢ W.Also,V N W = @.Here (M, T1,)is ITW T,- space. But there
exist not an intuitionistic open set V, W such that &# €V, £ €V,and £ € W,, 6 & W, andVNW = @.
Theorem 3.27: Let (M,Z7;) and (Y,T7,) be two intuitionistic topological spaces. Let & : (M, T1,) -
(Y, Z7,) be one- one, onto and TWw- open map. If (M, ITt,) is TT,- space then (Y, It,) is T T,- space.
Proof: Suppose &, £ € Y with (& # £ ). Since § is onto, then there exist g, m € M such that & (g) = & and
& (m) = £. Then § (g) # & (m) which implies g # m, as § is one-one. Since g,m € M, g # m and (M, Z1,)
is IT,- space, then there exist T- open setV in M suchthatg € V;,, m& 7V, andm € W;,g € W, and V' N
W = @. Since, § is Tw-open, Vand W € (M, Tt,) implies F (V) and F (W) is Tw- open in (Y, T1,). As
FW) =<Y, V), V) > W) =<Y,§W,), §Wy) >, & = F(g) € V) and £ = F(m) €
F(W,). Also, m & V; implies £ = (m)) € F(V;) and g € W, implies & = F(p) & F(W,;) . Consider
FV) NF(W) # @ which implies F(V;) N F(W,) # ¢ then there exists at least one ¢ € Y for which ¢ €
F(Vp) N F(W,;) which implies ¢ € F(V;) and ¢ € F(W;). Then there exists u € V; and v € W, such that
Fw) = Fw) = c = u = vas Fisone-one =>u = v €V, N W, which is a contradiction to the fact that
V N W = @. Therefore, we get & (V) N F (W) = @. Finally, we get &, £ € Y with (4 # £ ) there exist T-
open set § (V), F(W) € (Y,Z1,) such that & = F(g) € FWV), £ =F(m) ¢ (V) and £ =F (m) €
FW), 6 = F(g) € FW,) and F(V) N F(W) = @. Hence (Y, It,) is TW T,- space.
Theorem 3.28: Let (M,Z7;) and (Y,T7,) be two intuitionistic topological spaces. Let & : (M, T1,) —
(Y, Tt,) be a one- one, onto and Tw- continuous map. If (Y, T1,) is ITT,- space then (M, Tt,) is Tw T,- space.
Proof: Let 4,4 € M with d # A implies F(d), F(A) €Y with F(d) # F(A) as § is one- one. Since
F(d), F(A) € Y and (Y, T1,) is TT,- space, then there exist an intuitionistic open set V and W in Y such that
F(d) eV, FA) € Vior F(h) €W, F(d) & W, andV N W = $ which implies V; N W, = @. Now,
&(d) €V, implies F1(F(2)) € F*(V,) which implies & € F~1(V;). And F(A) € V, implies F(F(A)) €
¥ 1(V,) which implies £ € ¥ 1(V,). As F(A) € Wy, FLFA)) € F 1(W,) which implies 4 € F~L(W,).
Similarly, A ¢ F1(V), 4 & F1(W,). Suppose F1(WV)NF (W) # @ which implies F (V)N
FL(W,) # @ which implies F(F 1(G,)) N F(F 1(H,)) # ¢ which implies V; N W, # ¢ which is a
contradiction. Therefore ¥~ 1(V) N ¥F"1(W) = @. Finally, we get d, 4 € M with 4 # £ there exist TW- open
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set F1(V) suchthat 4 € F1(V)), A ¢ F V) or A EF (W), d & F (W) and F1WV)NF (W) =
@. Hence (M, T1,) is ITw T,- space.

Theorem 3.29 : Let (M, Tt,) be intuitionistic topological spaces. Then the following implications are valid but
not conversely.

Tiw Ty (vi)
Tiw Ty (v) Tw T, (ii)

Tiw T (i)

T T,(iii) Tw T, (iv)

Y

Fig. 3.2

Proof: Obvious.

Example 3.30: Let M = { g, ¢} with the family It = { M, @, < M, {g},{ [} >}. IW-0S(M,%1) = {M,
@, <M,0,0> <M, {g}> <M, {g}o> <M, {£}> <M, {g},{£} >} Here (M,I1) is ITW
T, (ii)- space but not Tw T, (i)- space.

Example 3.31 : In example 3.30, TWT, (ii)- space is satisfied but not TW T; (v)- space.

Example 3.32: Let M = { g, £} with the family It ={ M, §,< M, {g}, {1} >}. TW-0S (M,I1) = {M,
P, <M,p0,¢0> <M {g}o> <M, {£}>M{g}{f}>} IW-0SM,Ir) = ITt. Here (M,3I1)
is IW T, (iv)- space but not Tw T, (i)- space.

Example 3.33: The above example satisfies I T, (iv)- space but not T T, (ii)- space and I T, (iii)- space.
Example 3.34 : Let M = { g, £} with the family It ={ M, @, < M,{g},{1} >}. IW-0S(M, %) = {M, @,
<M,p,0 > <M, p,{g}> <M, {g}e > <M, {f}> Mg}, {£} >} Here (M,Z1)is ITw T,(vi)-
space but not Tw T, (v)- space.
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