IOSR Journal of Mathematics (I0OSR-JM)
e-1SSN: 2278-0661, p-ISSN: 2278-8727, Volume 20, Issue 6, Ser. 1 (Nov. — Dec. 2024), PP 58-62
www.iosrjournals.org

Contraction And C(a)- Suboperator Classes
Awadh Bihari Yadav

Department Of Mathematics, C. M. Science College, Darbhanga, Bihar, India.

Abstract:

In this paper we characterize the generalisation of contraction in Hilbert space and C(«)- Suboperator class
and establish some new result in the class of C(a)- Suboperator [1] and its contractive extensions of a C(«a)-
Suboperator class in a complex Hilbert space. The characterizations include a quadratic form inequality. The
bounded linear operator T in complex Hilbert space which satisfy T = gI + (1 — B)U where g € (0,1) and U
is a contraction (||U]| < 1).
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I. Introduction:
Let H be a complex Hilbert space with the inner product (.,.) and the norm ||. || . Here an operator in
H means a linear map T: D(T) ¢ H » H whose domain D(T) is a linear subspace of H. Also o(T) is the
spectrum of T and R(T) is the range, moreover L(H) denotes the space of all bounded linear operator on H .
Py, denote the orthogonal projection in a Hilbert space H on to its subspace H,.

Definition 1.1: Let a € (0%) and let a linear operator T in H be defined on the subspace H, with the condition

[ITsina + icosal| < 1 )

If in the case H, = H, we say thatT belongs to the class C(«) and if in the case =~ H, # H, the
operator T is called a C(a)- Suboperator. It is clear that if T € C(a) iff T* € C(a). It is easy to see that the
condition (1) is equivalent to

sina(||h]|? = |ITh||?) = 2cosa|Im(Th, k)| forallh € H, 2

It is clear that the operators from the class C(a) and C(a)- Suboperators are contractions and this type
of operator define the class C(0) as the set of all self-adjoint contractions in H and a nondensely defined
Hermitian contraction we will call a € (0)- Suboperator.

Let 0 <t <m, we define open sector as S, = {z € (C/(O) targz| < t} and its closure S, =

{z € (C/(O) targz| < t} we consider the following arg with value in [—m, 7t].

Definition 1.2: Let -1 <u < 0 and 0 < v < m, we denoted by8Y (H),for the set of all closed linear operator
T:D(T) c H - H which satisfy (a) o(T) c S, (b) For any v < t < m, there exit a positive constant ¢, such
that ||(z — T)7 Y| < ¢;|z|%, for any z & S, then this linear operator T is called sectorial operator in H if T €
0% (H) .1tis clearly it having non-densely domain and range.

C (a)- Suboperators or operator of the class C(a) naturally arise in the Fractional linear transformation
of the form (I — S)(I + S)~! of sectorial linear relation S with vertex at the origin and the semi angle « [2].

Let T be a non-densely defined contraction in the complex Hilbert space H with D(T) = H,. By M.G.
Crandall [3], gave a parametric form of all contractive extension on H of the operator T in the operator form as
Ty = TPy, + (I —TT*)'2MPy A3)

Where T*: H - H, is adjoint of T and R = H © H,, and Py, P are orthogonal projection in H on to

H, and R respectively and M:R - ran(l — TT*)1/2 is a contractive parameter. This description of all such
extension of a non-densely defined contraction T is in the form of block operator matrices. We will often use
the following well known result of R.G. Dauglus [4].

Theorem 1.3: [4] For every S, T € L(H) the following statement are equivalent:
@ranScranT

(b) S =TU forsome U € L(H)

(c) SS* < ATT* forsomeA = 0.

In this case there is a unique U satisfying ||U]| = [inf{A:SS* < TT*}]l/z and ranU cran T* .
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Let T be contraction operator which satisfy the inequality |17l = ITA||I? =
aRe((I = T)h, h) 4
Forsome a > O and all h € H, then T has a form
T=ul+1-wU (5)

Where U is a contraction (||U]| < 1) and u € (0,1) this means that the spectrum of T is contained in a
disk (z € C: |z —pu| <1 —u) and this type of inequality is called quadratic form inequality , and one has
IT"A| < ||e="U=Dh|| for some € € (0,1) and h € H,n € N. This is a type of domination of the discrete
semigroup (T™),cy by the continuous time semigroup (e‘“"”)t>0 . A generalization of (5) had formulated by

Nevanlinna [5] who obtained the following results.

Theorem 1.4 : Let H be complex Hilbert space and T € L(H),the following two condition are equivalent.

(@) there exist u € (0,1), U € L(H) such that sup,cy||lU™|| < o and T =
wl+ (1 —-wu

(b) there exist constant a, b > 0 such that [|e?”|| < ae!?(1=26%) for all z € € with z = |z|e?,0 €
[—m, ] , Moreover, if these condition hold, then sup,en|IT™|| < o0, supnean/leT" — T < o0,

Il. Contractions And Their Contractive Extensions
Let H and H’ be two Hilbert space and let suppose H, is a subspace of H and T: H, = H’ is a non-
densely contraction. The operator T defined on H is called a contractive extension of T if T > T and ||T|| < 1
. let TeL(Hy,, H) and T* € L(H,H,) be its adjoint operator and R = H © H, . the following theorem
considered by M.G Crandall [6].

Theorem 2.1: Theresult T = TPy, + (U — T*T)l/ZKPR establishes 1-1 correspondense between all contractive
extension of T and all contraction K from R to closure of the range (I — T*T)1/2.
Proof: Let the operator T be given in this result, where K is a contraction, then
T*=T"+K'(U-T'T)"

Let for all w € H- and (I — T*T) /2 = B(say) then
|Tu* = Il + Kk Bull?
N < T ull? + l1Bull? = [[ull?
Thus T* is a contraction. Hence the operator T is contractionand T I H, =T.

Conversely, if T is a contractive extension of T then its adjoint T7*: H — H is also a contraction.
Because T o T, we get P, T* = T* . hence the operator T* is in the form 7* = T* + S, where the range of the

~ 2
Tl = IT*ull? + |Sull? , for all u € H-.

operator S is in the contained R = H © H, , it follow that |
Since T™ is a contraction ,we obtain

1Sull? < llull> = IT*ull?*, u € H' by theorem 1.3 , we have S* = (I — T*T)'/2 K , where K is a
contraction from R to Cr+ , where Cy+ is the closure of the range space of (I — T*T)1/2.

We extend this result as a consequence for T = TPy, + U — T*T)l/z KPp with non-densely
contraction K € L(R, Cy+) has the following relations

| =772
+||(I—K*K)1/2PRU||2.V€H (6)

and ||[1 = (7)) TJu|” = Il = (KK = (T Tl , weH (7)
since T*Cy+ < Cy, from relation (5) gives,

mf{”(’ —TT)v—(I- T*T)W”Z ‘we Ho} = ”(1 - K*K)l/ZPRv”Z, forallve H

e &

1
This implies that, Range(I —T*T) 2R = range(l — K*K)"/2 and by (7) implies that
. 1
Range[l - (T*) T*] /2 =[I- (T*)*T*]I/Z range(l — (K*)*K*]l/z .

I11. Matrix Representation Of Contractive Extensions
If possible, the Hilbert space H’ is decomposed in the way as H' = Hy @ M, then we write T = C* +

To ,where Ty = Py, T € L(Ho H;) and C* = PyT € L(Ho, M).
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*

Then, we transform T in matrix form = [C

T,
IC*holI? < |lhol? forall hy € Hy , then ’
C* = Kol = T3Ty) V> ®
Where K, is operator from closure of the range (I —T(;‘To)l/z to M, which is also contraction. A
bounded extension T of T also has the matrix representation as

= _[C* B].[Ho] _, [Hs
T=lr, D]'[R]_’[M] )
In this representation, the block matrix description of B and D of all contractive extension T was
obtained in [7] . here we propose another approach based on the Crandall,s form [6]

] , but T is a contraction, we have |[|Tyh,ll? +

Theorem 3.1: The consequence T = To d15S H [HO] - [HE’] (9) establishes 1-1
- Kodg, —KoTgS +dy;Uds| LR M

correspondence between all contractive extension T of the contraction T = T, + Kydy, and all pairs (S, U) of

contractive operator where S € L(R, C;) and U € L(Cs, Cy;) and non-negative square root dy = (I — T°T) "2

which is also called defect operator of T.
Proof: since from theorem 2.1, we have that T* = T4 Py, + dg, K5 Py ;then for all u € H’, we have , |jul|* —

IT*ull? = ||Pyy ]| + 1Pyaell? = ||(T o, + g Ko P Jul|”
= 1Pyull® + | P ul|” = [|Ts Py el|” = ||, Ko Pue]]” — 2Re(T5 Py, 1, i, Kg Prre)
= ”dTJPH(')u”z — ||1Ks Pyl + IToKg Pyull® — ZRe(dTJPHbu' TngPMu) + [[Pyull?
= ||drg Py u = ToKgPyu||” + || iz P

2 2
Since the equality Tody, = dg;T, , S0 we get ToCr, < Cry and since range(Kg) < Cr, thus from (10)
2 .
|dx;Puutl|” = inf{lldr(u —v)II* : v € Ho} (11)

Let %y = dp-Hy and My = Cr~ © 1 , S0 My = (m € Cp+ : dp»m € M) , and from (10) and (11) we get,

([P dreu = \|dr; Pryyu — ToKgPyu|” , and
”PM(')dT*u |2 = ”dKSPMu”Z u€EH (12)
s el = g’ we s

From (12), we define a unitary operator U, € L(x,,Cr;) and  Z, € L(M;, Cy;) such a way that

UoPydr-u = drgPy,u — ToKogPyu
ZoPy,dr-u = dggPyu, u€EH (13)

Since adjoint of unitary operator is equal to its inverse that means U; = Uy?' and Z; = Z;!, then from (13)
we have
dp+ = Uy (drz Py, — ToKgPy) + Z5 ' dis Py
= (dr; — KoTg)UoPy, + dizZoPu, (14)
Since K € L(R, Cr+) is contraction, then K = P, K + Py, K, put S = UoPy, K, Y = ZyPy, K

K =5+Y, itfollowsthat K = Uy'S + Zy'Y and ||Kr||? = ||K7||? = ||Sr||?> + ||Yr]|? forall r € R.
Since K is contraction then K € L(M, C1;@®Cy;) is also contraction iff Y = Uds where U € L(Cs, Cg;) is also
contraction.

Again since K € L(R, Cy+) is contraction, then by (14) and all r € R we get
dp-Kr = (drz — KoTg)ST + die; Udgr (15)

Let T = TPy, + dr-KPg, then by (5) and (15) gives (9), if the T is given by (6) with contraction S €
L(R,dr;) and U € L(Cs, Cy;) then the operators K = S+ Uds and K = Uy'S + Z;Uds are contractions.
Since K € L(R, C;+) and hence we obtain

T = (To + Kody, ) Puy + [(dry — KoTg)S + di; Udy | P
= TPy, + [(dr; — KoTg)UoPy, + di;ZoPr, | K Pk
= TPy, + dr-KPg
And hence T is a contractive extension of T.
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Theorem 3.2: Let T be a C(a)-suboperator in H with dom(T) = H, € H and S=U-THU+T)
be sectorial operator with the vertex at the origin and the semi angle 6. Define the contractive extension T, =
TPy, and let

@(2) = [T, + 2zT4(I — zTg)~dz,| I Cx, be the characteristic function [8] of T,. Then there exist
strong unitary limits @(+1) =S — liTl o), p*=85— ““.l @*(z), (which is nontangential to the imazinary

VAdn ZoT
axis) and moreover, the operator @(+1) I' R are linear isometries.
Proof: since Tg = T*, then d~ = dg;, dg, = drPy, + Pg and hence Cg: = Cre,
Cz, = Cr®R , then we have,
dT*(I - ZTJ)_IdTu = UO_IdTO*(I - ZTJ)_ldTOdKOVOu' ue CT (16)
Where V, is an isometry from Cr on to C,. Consequently,
P(2)u = =Tu + Uy *eo(2) + Toldg,Vou, u € Cp 17
Let r € R, then,
dp(I —zT) 'r =dp(I — 2T*) Y(r — zT*r + zT*r)
=dpr +zdp-(I = zT*)'T*r = dpor + zdp-(I — 2T*) ' d g Ko7
= dpr + Ug o (2) + TolKgr

Therefore, @(2)r = zd+r + zUy e (2) + TolK;T, r€R (18)

Since Ty and T, being the class C(a) in the subspace H, c H ,there exist unitary strong limiting values
@(£1) and ¢*(£1) of p(z) and ¢*(z) respectively, this implies that there exist unitary nontangential strong
limiting value $(+1), ¢*(+1) and

P(x1) = [_T + Uo_l[(/’(il) + TO]dKOVO]PHO * [dr + Uo_l[q’(il) + TolKs 1Pg
Next ,we prove that @(+1) T R are linear isometry. It is easy to say that
Irll? = 1g@rl* = (1 = |z —2T)7'rl|>,  re€eR
For r € R from the equality T"Pr = dy,KgPg, We have,
(1= 121Dz = 2T r = A = |z|2) V27 + z(1 — |2[2) V2(I — 2T") 1 T*r
= (1= 121027+ 2(1 — |21 /2(I — 2T*) dy KT

Since, [lvlI2 = lle@vll*> = (1 — |z|?)||UT - zT*)‘ldT0v||2 , v ECy and the operator ¢(+1) are

unitary in Cr,. Consequently we have,
S — 1im (1 — |21 /2(I — 2T*)"dy, = 0
z-*1
Therefore, for all r € R, we have ,
i 2 _ Ik 2y — i _ 2 1/ _ *\—1 * 2
Jim (Irll2 = 1@l = Jim ||~ 1212 (r + 20 = 2T) " dr ks 7) |

And hence operator @(+1) T R are linear isometry.
Theorem 3.3: Let T € C(a) - sub operator class and T be its contractive extension such that there exist 1 > 0
with

~ 2 ~
Al = ||Th||” = A|[(1 — T)h, 4| (19)
Forall h € H, then , Sup,ey n|T™ — T < oo
Proof: This inequality implies that [|R]|2 — ||T&]|* = 0, so that T is contraction. Thus this implies || 7|| < 1 and
there exist 2 > 0 such that [|k]|2 — ||Th||* = A Re[(I — T)h, k] for all h € H, Consequently ,

=~ 2 ~ 2 ~
allz = ||Th||” + ||(1 = T)R||” = 2 Re[(I — T)h, k] (20)
Hence, from (19) and (20) we get, |[(I — T)h, k]| < 2471 Re[(I — T)h, ]
This inequality is a sectorial estimate with quadratic form which implies that the semi group (e‘t("f))t>0 is
bounded holomprphic and hence one has a result
(1 —T)e tU0=-D| < At~ forallt >0
( But we know a result for all contraction T, [IT"h|| < ||e=*"U=Dh||, h € domT )
Using this result, we obtain a bound,
(1 = F)F7|| < ||(1 = T)e=s2¢-D|| < an~1, foralin € N
And hence we get, Suppey n|T™ — T | < oo

IV. Conclusions:
In this article we make use of the results from previously the known results and establish some new
results on extension of C(a)-sub operator classes and also extend some results and application.
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