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Abstract: This research presents an age-structured Susceptible-Vaccinated-Exposed-Asymptomatic-

Symptomatic-Hospitalized (SVEASH) COVID-19 model that accounts for age-dependent recruitment and 

transmission rates, contact ratios, and multiple infection forces. It assumes perfect vaccination that guarantees 

permanent immunity. The study explores the mathematical properties of the model, determining the existence of 

equilibrium and the local stability of the disease-free equilibrium (𝐸0). The basic reproduction number R0, a 

key threshold for stability, is calculated as a weighted average from both asymptomatic and symptomatic 

infection classes. Using the Laplace transform, the model is solved analytically, and simulations show that 

vaccinating up to 85% of the global population between ages 0-80 significantly reduces the disease's peak and 

shortens the epidemic's duration. The research also highlights the importance of vaccinating not only 

susceptible and hospitalized individuals but also those who have recovered, further aiding in controlling the 

outbreak. 

Keywords: Covid-19, Transmission, Vaccine, Response, Age-structured, and population 

---------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 14-12-2024                                                            Date of Acceptance: 31-12-2024 

--------------------------------------------------------------------------------------------------------------------------------------------- 

 

I. Introduction 

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to global health, social, and 

economic disruptions. As of 2020, the virus has spread worldwide, prompting governments to implement 

various public health measures to limit transmission, including lockdowns, travel restrictions, and vaccination 

campaigns. Mathematical and epidemiological models have played a crucial role in understanding the dynamics 

of COVID-19 transmission and in evaluating the effectiveness of these interventions (Ferguson et al., 2020). 

One of the most important advancements in epidemiological modeling has been the incorporation of age 

structure into transmission models. These age-structured models divide the population into age groups that have 

distinct risks for infection, disease severity, and responses to vaccination (Keeling & Rohani, 2008; Hethcote, 

2000).Age-structured models are particularly relevant in the context of COVID-19, as evidence suggests that 

disease severity and transmission vary substantially across different age groups (Liu et al., 2020). Older adults 

are at higher risk of severe disease and mortality from COVID-19, while children and young adults tend to 

experience milder symptoms or remain asymptomatic (Liu et al., 2020). This variation in disease progression 

necessitates models that account for these differences to accurately predict the course of the pandemic and guide 

interventions. Furthermore, age also affects the immune response to both natural infection and vaccination, with 

older individuals often showing a weaker immune response to vaccines compared to younger populations 

(Polack et al., 2020; Hall et al., 2021). 

Traditional epidemiological models, such as the Susceptible-Infected-Recovered (SIR) model, have 

been instrumental in understanding the spread of infectious diseases (Kermack & McKendrick, 1927). 

However, these models often assume a homogeneous population, which fails to capture the important variations 

in disease transmission and vaccine efficacy across age groups. To address this, age-structured models explicitly 

partition the population into age classes, each with distinct rates of infection, recovery, and vaccination 

response. These models are particularly effective in simulating how COVID-19 spreads through different 

cohorts and in assessing the impact of vaccination campaigns that prioritize specific age groups (Anderson & 

May, 1992; Brauer et al., 2019).The importance of age-structured modeling in the COVID-19 context has been 

demonstrated in several studies. For example, Ferguson et al. (2020) developed a model that incorporated age-

specific transmission rates and assessed the impact of various non-pharmaceutical interventions, including 

social distancing and quarantine measures. Their work emphasized that age structure must be considered when 

predicting the outcomes of public health interventions. Similarly, age-structured models have been used to 

evaluate vaccination strategies, with a focus on prioritizing older adults who are at greater risk of severe disease 

(Hodges et al., 2021). These models have shown that vaccinating high-risk age groups first can significantly 
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reduce hospitalizations and deaths, even in the absence of widespread vaccination.Another critical factor in the 

modeling of COVID-19 transmission is the role of vaccine efficacy across age groups. Vaccines have been 

shown to be highly effective in preventing severe disease, but their efficacy can vary by age. For instance, older 

adults may experience a lower immune response to COVID-19 vaccines, which influences vaccine effectiveness 

and the timing of booster doses (Hall et al., 2021). Models that incorporate these differences are essential for 

simulating the impact of vaccination campaigns. Studies by Hodges et al. (2021) and others have indicated that 

prioritizing vaccines for older populations can help achieve the greatest reductions in mortality and 

hospitalizations, even if younger populations are vaccinated later.Additionally, waning immunity over time 

presents another challenge for modeling the long-term effectiveness of vaccination campaigns. As immunity 

from both natural infection and vaccination decreases over time, booster doses may be necessary to maintain 

protection, particularly in older age groups (Ferguson et al., 2020). Models incorporating age-structured 

immunity dynamics can estimate the long-term impact of vaccination strategies and help inform decisions 

regarding booster shots. 

In conclusion, age-structured models are indispensable for understanding COVID-19 transmission 

dynamics and optimizing vaccination strategies. These models provide insights into the variation in 

susceptibility, disease progression, and vaccine response across age groups, allowing for more tailored and 

effective public health interventions. As the pandemic continues and new variants emerge, ongoing refinement 

of these models will be crucial for guiding responses and ensuring the most efficient use of resources. 

 

II. Methodology 

Thefollowing are the materials usedin this research work. 

2.1Equation Editor : This is used for typing and inserting mathematical equations and symbols appropriately. 

2.2MAPLE 2015 Version : it is used for plotting of both the 2D and 3D graphs. All the mathematical analysis 

here is visualized using MAPLE 2015 for easy interpretations. 

2.3ModelVariablesandParameters:table 3.1 shows the description of model variables and 

parameters used. 

Table2 . 1:Description of model variablesandparameters 
Variable Description 

P 𝑎, 𝑡  Total population density of age a at time t 

S 𝑎, 𝑡  density of susceptible individuals of age a at time t 

V 𝑎, 𝑡  density of Vaccinated individuals of age a at time t 

E 𝑎, 𝑡  density of exposed individuals of age a at time t 

M 𝑎, 𝑡  density of asymptomatic infectious individuals of age a at time t 

I 𝑎, 𝑡  density of symptomatic infectiousindividuals of age a at time t 

H 𝑎, 𝑡  density of hospitalizedindividuals of age a at time t 

Parameter Description 

A Maximum age attained by individuals in the population, 0<A< ∞ 

y 𝑎, 𝑡  The per capita force of infection 

𝛽 𝑎  Transmission or infectionrate 

𝑔 𝑎  Contact ratio 

b 𝑎  Recruitment rate for all ages a 

B Total number of birth rate (newborns) 

K, j Fraction of susceptible who become vaccinated, exposed who become symptomatic. 

µ a , α a  age-specific natural and disease induceddeath rate respectively 

∅ 𝑎  age-specific vaccinationrate 

θ a  age- specific exit rate from the exposed class 

z a , q a  age-specific hospitalized rate for infectious asymptomatic and symptomatic class 

n a  age-specific boost of immunity 

 

2.4 ModelDescription 

The proposed model isan age-structured susceptible-vaccinated-exposed-asymptomatic infected-

symptomaticinfected and hospitalized (SVEMIH) model that considered a total population density of 

P 𝑎, 𝑡 ,where 𝑎 denotes the age of individuals attime t. A is the highest age attained by the individuals in 

the population, where A <∞ with 𝑎 ∈ [0, A) or with𝑎 ∈ [0, ∞). The whole population under consideration 

is divided into six compartments of susceptible, vaccinated, exposed, asymptomatic infectious, 

symptomatic infectious,and hospitalizedage densities denoted by S 𝑎, 𝑡 , V 𝑎, 𝑡 , E 𝑎, 𝑡 ,𝑀 𝑎, 𝑡 , I 𝑎, 𝑡  
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and H 𝑎, 𝑡 respectively. 

Let b 𝑎 , µ 𝑎  and𝛼 𝑎  be age specificflow or recruitment for all ages 𝑎entering only the susceptible 

compartment, natural mortality and force ofmortalityrate of the population respectively with a fraction k of 

susceptible individuals vaccinated at the rate∅ 𝑎 and the remaining (1-k) become exposed after contact 

with the infection at the transition rate 𝑔 𝑎 𝜆 𝑡 .𝜃 𝑎 is the exit ratefrom the latent class, j is the 

proportion of exposed individuals who show symptomswhile the remaining (1-j) are asymptomatic 

infectious without symptoms. 

Most individual’s immune response is capable of controlling and clearing the infection over time when 

hospitalized and treated (WHO 2021). n 𝑎  is the rate at which individuals who recovered as a result of 

medical intervention are vaccinated. q(a), z 𝑎  is the rate at which symptomaticinfectious and 

asymptomatic individuals who are noticed as a result of diagnosisarehospitalized respectively. 

According to Institute for Health Metrics and Evaluation, Healthline (2023), most comprehensive study to 

date provides evidence on natural immunity after recovery from COVID-19, but the duration and level of 

immunity can vary among individuals. When a person recovers from a viral infection like COVID-19,their 

immune system produces antibodies and memory T cells that are specific to the virus. However, the extent 

and duration of immunity are still being studied and are not yet fully understood. Due to these 

uncertainties, our model considers boosting of immunity of recovered individuals immediately after 

treatment. 

Here, the force of infection𝑦 𝑎, 𝑡  after contact with thesymptomatic and asymptomatic infectious in the 

infective compartment is assumed to be  

𝑦 𝑎, 𝑡 = 𝑔 𝑎  𝛽 𝑎  𝐼 𝑎, 𝑡 + 𝑀 𝑎, 𝑡  𝑑𝑎                                         2.1
𝐴

0

 

Equation (3.3.1) is the force of infection of the inter-cohort separable form, where 𝛽 𝑎  and 𝑔 𝑎  is 

defined as the transmission coefficient andthe contact ratio respectively. Due to the natureof this contagion 

disease, Covid-19 can also be transmitted through droplets generated by the infected individual on the 

surfaces and different public places. 

Let  λ 𝑡 =  𝛽 𝑎  𝐼 𝑎, 𝑡 + 𝑀 𝑎, 𝑡  
𝐴

0
𝑑𝑎 

equation (3.3.1) becomes 

𝑦 𝑎, 𝑡 = 𝑔 𝑎 𝜆 𝑡                                                                                       2.2 

The integral  𝐼 𝑎, 𝑡 𝑑𝑎
𝐴

0
 and  𝑀 𝑎, 𝑡 𝑑𝑎

𝐴

0
 stands for the total number of symptomatic infected and 

asymptomatic infected individuals respectively. 

The following diagram describes the transmission dynamics and vaccination of COVID-19 infection. 

 
Figure 2.1 Flow diagram of COVID-19 transmission and vaccine response 

 

2.5The Model Equations 

From the assumptions, descriptions and the compartment diagram in figure 2.1, we obtained the following 

system of partial differential equations for the transmission dynamics of the diseases. 
∂S a, t 

∂a
+

∂S a, t 

∂t
= b a −  𝜇 𝑎 + kϕ 𝑎 +  1 − 𝑘 𝑔 𝑎 𝜆 𝑡  S a, t              2.5.1 
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∂V a, t 

∂a
+

∂V a, t 

∂t
= kϕ 𝑎 S a, t + n a H a, t − μ a  V a, t                              2.5.2 

 
∂E a, t 

∂a
+

∂E a, t 

∂t
=  1 − k g 𝑎 λ t S a, t −  𝜇 𝑎 + 𝜃 𝑎  E a, t                      2.5.3 

 
∂M a, t 

∂a
+

∂M a, t 

∂t
=  1 − j θ a E a, t −  z a + μ a  M a, t                            2.5.4 

 
∂I a, t 

∂a
+

∂I a, t 

∂t
= jθ a E a, t −  q a + μ a + α a  I a, t                                 2.5.5 

 
∂H a, t 

∂a
+

∂H a, t 

∂t
= q a I a, t + z 𝑎 M 𝑎, 𝑡 −  n a + μ a + α a  H a, t   2.4.6 

 

λ t =  𝛽 𝑎  I a, t + M a, t  da                                                                             2.5.7
A

0

 

 

with limiting conditions 

 

S 0, 𝑡 = 𝐵, V 0, t = E 0, t = I 0, t = H 0, t = M 0, t = 0                        2.5.8 

 

and initial conditions 

 

S a, 0 = S0 a , V a, 0 = V0 a , E a, 0 = E0 a , M a, 0 = M0 a              2.5.9 

I a, 0 = I0 a , H a, 0 = H0 a  

 

2.6Methods 
In this research work, we will obtain the basic reproduction number using the condition for the local 

stability of the disease-free equilibrium (Li et al., 2020). The Laplace transform method for solution of partial 

differential equations will be employed to solve our model since Laplace transform enable us to explicitly 

incorporate initial conditions into the solution or transformed equations seamlessly, making it very effective for 

solving initial value problems. It is better suited for solving differential equations and analyzing system 

behavior over time and finally we will perform numerical simulations of the model with graphical 

representations using Maple software. 

 

2.6.1   Laplace Transform 
The Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that 

converts a function of a real variable (usually 𝑡, in the time domain) to a function of a complex variables 𝑠 (in 

the complex-valued frequency domain, also known as 𝑠-domain, or 𝑠-plane).The transform is useful for 

converting partial differential equations (PDEs) in the time domain into much easier ordinary differential 

equations (ODEs) in the Laplace domain. This gives the transform many applications in science and 

engineering, mostly as a tool for solving differential equations and dynamical systems by simplifying partial 

differential equations into ordinary differential equations and also by simplifying ordinary differential equations 

and integral equations into algebraic polynomial equations. 

Laplace transforms provide a potent technique for solving partial differential equations. When the 

transform is applied to the variable 𝑡in a partial differential equation for a function 𝑢 𝑎, 𝑡  while considering 𝑎 

as a parameter, the result is an ordinary differential equation for the transform 𝑢∗ 𝑎, 𝑠 . The ordinary 

differential equation is solved for 𝑢∗ 𝑎, 𝑠  and the function is inverted to yield 𝑢 𝑎, 𝑡 . The Laplace transform 

of 𝑢 𝑎, 𝑡  with respect to 𝑡 and 𝑎 are defined respectively: 

𝐿 𝑢𝑡 𝑎, 𝑡  =  𝑒−𝑠𝑡𝑢𝑡 𝑎, 𝑡 𝑑𝑡 = 𝑠
∞

0

𝑢∗ 𝑎, 𝑠 − 𝑢 𝑎, 0                                 2.6.1 

𝐿 𝑢𝑎 𝑎, 𝑡  =  𝑒−𝑠𝑡𝑢𝑎 𝑎, 𝑡 𝑑𝑡 =
∞

0

𝑢𝑎 𝑎, 𝑠                                                      2.6.2 

2.6.2 Basic properties of the model 

To be sure that the model formulated is well-posed and epidemiological meaningful, there is need to prove the 

positivity and invariant region of the solutions of equation (2.5.1) – (2.5.9). These are best done when the model 

equations are ODE and not PDE and since solution to the transformed ODE along the characteristics curves also 



Modelling Covid-19 Transmissions and Vaccine Response In An Age-Structured Population 

DOI: 10.9790/0661-2006016393   www.iosrjournals.org                      67 | Page 

provide solution to the PDE. Hence, there is need to transform our model equations to ODE only at these points 

using the method of characteristics to be able to carry out these proves. 

First, compare equation (2.5.1) with the general form of a first order PDE in equation (2.5.1) 

𝑎 𝑥, 𝑦 𝑢𝑥 + 𝑏 𝑥, 𝑦 𝑢𝑦 + 𝑐 𝑥, 𝑦 𝑢 = 𝑑 𝑥, 𝑦                                                                 2.6.1 

Here, 𝑢 is a function of 𝑥 and 𝑦. Hence, 

𝑎 = 1, 𝑏 = 1, 𝑥 = 𝑡, 𝑦 = 𝑎, 𝑐 =  𝜇 𝑎 + kϕ 𝑎 +  1 − 𝑘 𝑔 𝑎 𝜆 𝑡  , 𝑑 = 𝑏 𝑎 , 𝑢 = 𝑆 

Let   𝜀 = 𝑡 

Then  
𝑑𝑎

𝑑𝑡
=

𝑏 𝑥, 𝑦 

𝑎 𝑥, 𝑦 
=

1

1
 

That is 

𝑑𝑎 = 𝑑𝑡 

Integrating, we have 

  𝑑𝑎 − 𝑑𝑡 =  𝑎 − 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                                   

Let        𝜂 =   𝑑𝑎 − 𝑑𝑡 =  𝑎 − 𝑡  

and       𝑆 𝑎, 𝑡 = 𝑆 𝜀, 𝜂  

then (2.6.1) becomes 
𝑑𝑆

𝑑𝜀
= 𝑏 𝑎 −  𝜇 𝑎 + kϕ 𝑎 +  1 − 𝑘 𝑔 𝑎 𝜆 𝑡  𝑆 

That is, 
𝑑𝑆

𝑑𝑡
= 𝑏 𝑎 −  𝜇 𝑎 + kϕ 𝑎 +  1 − 𝑘 𝑔 𝑎 𝜆 𝑡  𝑆                                        2.6.2 

Similarly, (2.6.2) – (2.6.6) becomes 
𝑑𝑉

𝑑𝑡
= kϕ 𝑎 S + n a H − μ a  V                                                                            2.6.3 

𝑑𝐸

𝑑𝑡
=  1 − k g 𝑎 λ t S −  𝜇 𝑎 + 𝜃 𝑎  E                                                         2.6.4 

𝑑𝑀

𝑑𝑡
=  1 − j θ a E −  z a + μ a  M                                                                  2.5.5 

𝑑𝐼

𝑑𝑡
= jθ a E −  q a + μ a + α a  I                                                                   2.6.6 

𝑑𝐻

𝑑𝑡
= q a I + z 𝑎 M −  n a + μ a + α a  H                                                 2.6.7 

Adding (2.6.2) – (2.6.7) gives 
𝑑𝑃

𝑑𝑡
= b a − 𝜇 𝑎 𝑃 − 𝛼 𝑎  𝐼 + 𝐻                                                                       2.6.8 

 

2.6.3      Positivity of Solution 

Since the model studied human population, we need to show that all the state variables remain non-negative for 

all times. 

Theorem 2.1 :  Let Ω =  Ω =   𝑆, 𝑉, 𝐸, 𝑀, 𝐼, 𝐻 ∈ ℝ+
6  : 𝑆 0 ≥ 0, 𝑉 0 ≥ 0, 𝐸 0 ≥ 0, 𝑀 0 ≥ 0, 𝐼 0 ≥

0,𝐻0≥0 then the solutions 𝑆𝑡,𝑉𝑡,𝐸𝑡,𝑀𝑡,𝐼𝑡,𝐻𝑡 of the system of equations (2.5.2) – (2.5.7) are positive for all 𝑡≥0 

Proof:  Let   𝑆 0 , 𝑉 0 , 𝐸 0 , 𝑀 0 , 𝐼 0 , 𝐻 0  ≥ 0 ∈ ℝ+
6  

From (2.6.2), we have 
𝑑𝑆

𝑑𝑡
= 𝑏 𝑎 −  σ0 + σ8𝜆 𝑡  𝑆                                                                                      2.6.9 

Where σ0 = μ a + kϕ a ,    σ8 =  1 − 𝑘 g a  

Then 
𝑑𝑆

𝑑𝑡
≥ − σ0 + σ8𝜆 𝑡  𝑆                                                                                                 3.6.10 

Solving (2.6.10) gives 

𝑆 𝑡 ≥ 𝑆 0 𝑒− σ0+σ8  𝜆 𝑡 𝑑𝑡  ≥ 0                                                                               2.6.11 
Since  σ0 ≥ 0 and  σ8𝜆 𝑡 ≥ 0 
𝑑𝑉

𝑑𝑡
= σ1S + n a H − μ a  V                                                                                        2.6.12 

Where  σ1 = kϕ a  

Then 



Modelling Covid-19 Transmissions and Vaccine Response In An Age-Structured Population 

DOI: 10.9790/0661-2006016393   www.iosrjournals.org                      68 | Page 

𝑑𝑉

𝑑𝑡
≥ −μ a  V                                                                                                                   2.6.13 

Solving (2.6.13) gives 

𝑉 𝑡 ≥ 𝑉 0 𝑒−𝜇 𝑎 𝑡 ≥ 0                                                                                                2.6.14 
Since  𝜇 𝑎 ≥ 0 
From (2.6.14), we have 
𝑑𝐸

𝑑𝑡
=  σ8λ t S − σ2E                                                                                                      2.6.15 

Where  σ2 = μ a + θ a  
𝑑𝐸

𝑑𝑡
≥ −σ2E                                                                                                                       2.6.16 

Solving (2.6.16) gives 
𝐸 𝑡 ≥ 𝐸 0 𝑒−σ2𝑡 ≥ 0                                                                                                  2.6.17 
Since  σ2 ≥ 0 
From (2.6.5), we have 
𝑑𝑀

𝑑𝑡
= σ4E − σ3M                                                                                                           2.6.18 

Where  σ3 = μ a + z a  and σ4 =  1 − j θ a  

Then 
𝑑𝑀

𝑑𝑡
≥ −σ3M                                                                                                                   2.6.19 

Solving (2.6.19) gives 

𝑀 𝑡 ≥ 𝑀 0 𝑒−σ3𝑡 ≥ 0                                                                                               2.6.20 
Since  σ3 ≥ 0 
From (2.6.6) 
𝑑𝐼

𝑑𝑡
= σ6E − σ5I                                                                                                              2.6.21 

Where  σ6 = jθ a  and σ5 = μ a + q a + α a  

Then 
𝑑𝐼

𝑑𝑡
≥ −σ5I                                                                                                                       2.6.22 

Solving (2.6.22) gives 

𝐼 𝑡 ≥ 𝐼 0 𝑒−σ5𝑡 ≥ 0                                                                                                  2.6.23 
Since  σ5 ≥ 0 
From (2.6.7), we have 
𝑑𝐻

𝑑𝑡
= q a I + z 𝑎 M − σ7H                                                                                     3.6.24 

Where  σ7 = μ a + n a + α a  

Then 
𝑑𝐻

𝑑𝑡
≥ −σ7H                                                                                                                  2.6.25 

Solving (2.6.25) gives 

𝐻 𝑡 ≥ 𝐻 0 𝑒−σ7𝑡 ≥ 0                                                                                              2.6.26 

Since  σ7 ≥ 0 

Hence, this completes the proof. 

 

2.6.4      Invariant Region 
Theorem 2.2:  the region Ω in theorem 3.1 is positively invariant and all solutions are contained in Ω ∈ ℝ+

6  
. 
Proof:   Let Ω =  𝑆, 𝑉, 𝐸, 𝑀, 𝐼, 𝐻 ∈ ℝ+

6  be any solution of the system with non-negative initial conditions. 
From (3.6.8), we have that in the absence of infection 𝐼 𝑡  and 𝐻 𝑡  equals zero. Thus, we have 
𝑑𝑃

𝑑𝑡
= b a − 𝜇 𝑎 𝑃                                                                                                        2.6.27 

𝑃 = 𝑆 + 𝑉                                                                                                                          2.6.28 

Solving (2.6.27) using the method of integrating factor yields 

𝑃 𝑡 =
𝑏 𝑎 

𝜇 𝑎 
+ 𝑐𝑒−𝜇 𝑎 𝑡                                                                                                  2.6.29 

Using the initial condition 𝑃 0 = 𝑃0 𝑎  and simplifying gives 
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𝑃 𝑡 ≤
𝑏 𝑎 

𝜇 𝑎 
+  𝑃0 𝑎 −

𝑏 𝑎 

𝜇 𝑎 
 𝑒−𝜇 𝑎 𝑡                                                                     2.6.30 

Applying Birkoff and Rota’s theorem on differential inequality (Birkoff and Rota 1982), gives 

0 ≤ 𝑃 ≤
𝑏 𝑎 

𝜇  𝑎 
   as 𝑡 → ∞ 

The total population approaches 
𝑏 𝑎 

𝜇  𝑎 
 . Therefore, the feasible solution set of the model enters the region Ω . in 

this region, the model equations (2.6.1) – (2.6.6) are epidemiologically meaningful and mathematically well 

posed. 

 

2.7Disease Free Equilibrium (DFE) 
The disease-free equilibrium (DFE) point is a state where there is absence of COVID-19 infection in the 

population. Steady state solutions play an important role in studying the qualitative properties of the solution 

when the explicit form of the solution is not known. The disease-free equilibrium points 

ℰ0 =  𝑆0 𝑎 , 𝑉0 𝑎 , 𝐸0 𝑎 , 𝑀0 𝑎 , 𝐼0 𝑎 , 𝐻0 𝑎   of model system (2.5.1) – (2.5.6) is obtained by setting 

𝜕𝑆

𝜕𝑡
=

𝜕𝑉

𝜕𝑡
=

𝜕𝐸

𝜕𝑡
=

𝜕𝑀

𝜕𝑡
=

𝜕𝐼

𝜕𝑡
=

𝜕𝐻

𝜕𝑡
= 0                                                                             2.7.1 

And in the absence of disease,  

𝜆 = 𝐸 = 𝑀 = 𝐼 = 𝐻 = 0                                                                                                     2.7.2 
So that from equation (2.4.1), we have 

𝑑𝑆0

𝑑𝑎
+  𝜇 𝑎 + 𝑘𝜙 𝑎  𝑆0 = 𝑏 𝑎                                                                                     2.7.3 

Solving (2.7.3) gives 

𝑆0 𝑎 = 𝐵𝑒− σ0 𝑥 𝑑𝑥
𝑎

0 +  𝑏 𝜏 𝑒− σ0 𝑥 𝑑𝑥
𝑎
𝜏

𝑎

0

𝑑𝜏                                                       2.7.4 

Where σ0 𝑎 = μ a + kϕ a  

Also, from equation (2.4.2), we have 

𝑑𝑉0

𝑑𝑎
+ 𝜇 𝑎 𝑉0 = 𝑘𝜙 𝑎 𝑆0                                                                                                2.7.5 

Solving (2.7.5) gives 

𝑉0 𝑎 =  σ1 𝜏 𝑒− 𝜇 𝑥 𝑑𝑥
𝑎
𝜏  𝐵𝑒− σ0 𝑥 𝑑𝑥

𝑎
0 +  𝑏 𝜎 𝑒− σ0 𝑥 𝑑𝑥

𝜏
𝜎

𝜏

0

𝑑𝜎 𝑑𝜏
𝑎

0

     2.7.6 

Where σ1 𝑎 = kϕ a  

Hence the DFE states  ℰ0 =  𝑆0, 𝑉0, 𝐸0 , 𝑀0, 𝐼0, 𝐻0   is thus given by (2.7.2), (2.7.4) and (2.7.6) 

 

2.8Endemic Equilibrium (EE). 

Let  𝑆∗, 𝑉∗, 𝐸∗, 𝑀∗, 𝐼∗, 𝐻∗  represents any arbitrary endemic equilibrium point of the model equations (2.5.1) – 

(2.5.6). this equilibrium satisfies the following equations: 
𝑑𝑆∗ 𝑎 

𝑑𝑎
+  σ0 + σ8𝜆

∗ 𝑆∗ 𝑎 = 𝑏 𝑎                                                                                  2.8.1 

𝑑𝑉∗ 𝑎 

𝑑𝑎
+ μ a 𝑉∗ 𝑎 = σ1𝑆∗ 𝑎 + n a 𝐻∗ 𝑎                                                              2.8.2 

𝑑𝐸∗ 𝑎 

𝑑𝑎
+ σ2𝐸∗ 𝑎 =  σ8𝜆∗𝑆∗ 𝑎                                                                                       2.8.3 

𝑑𝑀∗ 𝑎 

𝑑𝑎
+ σ3𝑀∗ 𝑎 =  σ4𝐸∗ 𝑎                                                                                         2.8.4 

𝑑𝐼∗ 𝑎 

𝑑𝑎
+ σ5𝐼∗ 𝑎 =  σ6𝐸∗ 𝑎                                                                                             2.8.5 

𝑑𝐻∗ 𝑎 

𝑑𝑎
+ σ7𝐻

∗ 𝑎 = q a 𝐼∗ 𝑎 + z a 𝑀∗ 𝑎                                                             2.8.6 

Solving (2.8.1) using integrating factor method, gives 

𝑆∗ 𝑎 = 𝑒−  σ0+σ8𝜆∗ 𝑑𝑥
𝑎

0   𝑏 𝜏 𝑒−  σ0+σ8𝜆∗ 𝑑𝑦
𝜏

0

𝑎

0

𝑑𝜏 + 𝐵                                    2.8.7 

Also, solving (3.8.2) – (3.8.6) gives 

𝐸∗ 𝑎 = 𝑒− σ2 𝑑𝑥
𝑎

0   σ8𝜆∗𝑆∗ 𝜏 𝑒 σ2 𝑑𝑦
𝜏

0

𝑎

0

𝑑𝜏                                                            2.8.8 

𝑀∗ 𝑎 = 𝑒− σ3 𝑑𝑥
𝑎

0   σ4𝐸
∗ 𝜏 𝑒 σ3 𝑑𝑦

𝜏
0

𝑎

0

𝑑𝜏                                                               2.8.9 
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𝐼∗ 𝑎 = 𝑒− σ5 𝑑𝑥
𝑎

0   σ6𝐸∗ 𝜏 𝑒 σ5 𝑑𝑦
𝜏

0

𝑎

0

𝑑𝜏                                                                  2.8.10 

𝐻∗ 𝑎 = 𝑒− σ7 𝑑𝑥
𝑎

0    𝑞 𝜏 𝐼∗ 𝜏 + 𝑧 𝜏 𝑀∗ 𝜏  𝑒 σ7 𝑑𝑦
𝜏

0

𝑎

0

𝑑𝜏                                 2.8.11 

𝑉∗ 𝑎 = 𝑒− μ 𝑥 𝑑𝑥
𝑎

0    σ1𝑆∗ 𝜏 + 𝑛 𝜏 𝐻∗ 𝜏  𝑒 μ 𝑥 𝑑𝑦
𝜏

0

𝑎

0

𝑑𝜏                               2.8.12 

So, the endemic equilibrium state  𝑆∗, 𝑉∗, 𝐸∗, 𝑀∗, 𝐼∗, 𝐻∗  isgiven by equations (2.8.7) - (2.8.12) 

 

3.9Basic Reproduction Number (𝕽𝟎) 

Epidemiologically, ℜ0 is the number of secondary cases produced by one infectious individual in an 

entirely susceptible population during the lifespan as infectious. Mathematically ℜ0 is a reproduction number if 

it serves as threshold for the stability of the disease-free equilibrium. (Li et al, 2020) 

One of the fundamental questions of mathematical epidemiology is to find the reproduction number, 

which determines whether an infectious disease spreads in a susceptible population when the disease is 

introduced into the population. For an age-structured model, a possible formula for ℜ0 can be derived by 

determining the condition for stability of the disease-free equilibrium (Li & Brauer, 2008). Thus, whether a 

disease becomes persistent or dies out in a population depends on the value of  ℜ0 

Following the approach by Wang & Zhang (2016) and Ashezua (2015). 

Let 

ℜ0 = σ8 𝑎 𝑆0 𝑎  𝛽 𝑎  𝐼∗ 𝑎 + 𝑀∗ 𝑎  𝑑𝑎
𝐴

0

                                                               2.9.1 

According to Dickmann et al (1990),Basic reproduction number ℜ0 of our COVID-19 model is in the form 

(3.9.1) and this is explained as follows, Since the total or overall infectivity at time t is the sum of the infectivity 

of each infected compartment, we define 

ℜ0 = ℜ𝐼 + ℜ𝑀                                                                                                                            2.9.2 

The basic reproduction number ℜ0 can be seen as a weighted value of the basic reproduction number due to 

asymptomatic infectious class and the basic reproduction number due to symptomatic infectious class.ℜ0 is a 

mix of how much the disease spread from people without symptoms and from people with symptoms. It gives 

us a big picture of how the disease spreads in the entire population since it reflects the combined impact of both 

groups. 

Where 

ℜ𝐼 = σ8 𝑎 𝑆0 𝑎  𝛽 𝑎 𝐼∗ 𝑎 𝑑𝑎
𝐴

0

                                                                                    2.9.3 

is the number of secondary cases generated by individuals in the symptomatic infected class; 

ℜ𝑀 = σ8 𝑎 𝑆0 𝑎  𝛽 𝑎 𝑀∗ 𝑎 𝑑𝑎
𝐴

0

                                                                                   2.9.4 

is the number of secondary cases generated by individuals in the asymptomatic infected class and 

𝑆0 𝑎 = 𝐵𝑒− σ0 𝑥 𝑑𝑥
𝑎

0 +  𝑏 𝜏 𝑒− σ0 𝑥 𝑑𝑥
𝑎
𝜏

𝑎

0

𝑑𝜏                                                             2.9.5 

is the number of susceptible individuals in the absence of COVID-19. 

When ℜ0 < 1, the number of infections decreases toward zero. The basic reproductive number ℜ0 must exceed 

one for the disease to persist in the population. 

 

2.10LocalStability Analysis of the Disease-Free Equilibrium Point 
Here, we investigate the local stability of the DFE state  

ℰ0 =  𝑆0 𝑎 , 𝑉0 𝑎 , 𝐸0 𝑎 , 𝑀0 𝑎 , 𝐼0 𝑎 , 𝐻0 𝑎  =  𝑆0 𝑎 , 𝑉0 𝑎 , 0,0,0,0           2.10.1 

Let 𝑥 𝑎, 𝑡 , 𝑦 𝑎, 𝑡 , 𝑢 𝑎, 𝑡 , 𝑕 𝑎, 𝑡 , 𝑤 𝑎, 𝑡 , 𝑟 𝑎, 𝑡  be the perturbation in ℰ0 respectively, defined as follows; 

𝑆 𝑎, 𝑡 = 𝑆0 𝑎 + 𝑥 𝑎, 𝑡 

𝑉 𝑎, 𝑡 = 𝑉0 𝑎 + 𝑦 𝑎, 𝑡 

𝐸 𝑎, 𝑡 = 𝑢 𝑎, 𝑡 

𝑀 𝑎, 𝑡 = 𝑕 𝑎, 𝑡 

𝐼 𝑎, 𝑡 = 𝑤 𝑎, 𝑡 

𝐻 𝑎, 𝑡 = 𝑟 𝑎, 𝑡 

 

Linearizing equations (2.5.1) – (2.5.8) about ℰ0, give the following equations 
𝜕𝑥

𝜕𝑡
+

𝜕𝑥

𝜕𝑎
= 𝑏 𝑎 − σ0 𝑎 𝑥 𝑎, 𝑡 − σ8 𝑎 𝑆0 𝑎 𝜆 𝑡                                        2.10.2 
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𝜕𝑦

𝜕𝑡
+

𝜕𝑦

𝜕𝑎
= σ1 𝑎 𝑥 𝑎, 𝑡 + n 𝑎 𝑟 𝑎, 𝑡 − 𝜇 𝑎 𝑦 𝑎, 𝑡                                     2.10.3 

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑎
= σ8 𝑎 𝑆0 𝑎 𝜆 𝑡 − σ2 𝑎 𝑢 𝑎, 𝑡                                                       2.10.4 

𝜕𝑕

𝜕𝑡
+

𝜕𝑕

𝜕𝑎
= σ4 𝑎 𝑢 𝑎, 𝑡 − σ3 𝑎 𝑕 𝑎, 𝑡                                                             2.10.5 

𝜕𝑤

𝜕𝑡
+

𝜕𝑤

𝜕𝑎
= σ6 𝑎 𝑢 𝑎, 𝑡 − σ5 𝑎 𝑤 𝑎, 𝑡                                                           2.10.6 

𝜕𝑟

𝜕𝑡
+

𝜕𝑟

𝜕𝑎
= q 𝑎 𝑤 𝑎, 𝑡 + 𝑧 𝑎 𝑕 𝑎, 𝑡 − σ7 𝑎 𝑟 𝑎, 𝑡                                     2.10.7 

λ t =  𝛽 𝑎  w a, t + h a, t  da
A

0

                                                                   2.10.8 

𝑥 0, 𝑡 = 𝑦 0, t = u 0, t = h 0, t = w 0, t = r 0, t = 0                        2.10.9 

To analyze the asymptotic behavior of ℰ0, we look for exponential separable solutions of the form: 

 𝑥 𝑎, 𝑡 = 𝑥 𝑎 𝑒𝜑𝑡 , 𝑦 𝑎, 𝑡 = 𝑦 𝑎 𝑒𝜑𝑡 , 𝑢 𝑎, 𝑡 = 𝑢 𝑎 𝑒𝜑𝑡

𝑕 𝑎, 𝑡 = 𝑕 𝑎 𝑒𝜑𝑡 , 𝑤 𝑎, 𝑡 = 𝑤 𝑎 𝑒𝜑𝑡 , 𝑟 𝑎, 𝑡 = 𝑟 𝑎 𝑒𝜑𝑡                           2.10.10 

 

This is because exponential separable solutions of the form 3.10.10 captures the temporal growth or decay rates 

of the perturbations. It simplifies the process of finding the eigenvalues and determining the stability of the 

equilibrium in a system of PDEs.Hence, we consider the following linear eigen-value problems: 
𝑑𝑥 𝑎 

𝑑𝑎
+  𝜑 + σ0 𝑎  𝑥 𝑎 =  𝑏 𝑎 − σ8 𝑎 𝑆0 𝑎 𝜆                                      2.10.11 

𝑑𝑦 𝑎 

𝑑𝑎
+  𝜑 + μ 𝑎  𝑦 𝑎 = σ1 𝑎 𝑥 𝑎 + 𝑛 𝑎 𝑟 𝑎                                       2.10.12 

𝑑𝑢 𝑎 

𝑑𝑎
+  𝜑 + σ2 𝑎  𝑢 𝑎 = σ8 𝑎 𝑆0 𝑎 𝜆                                                       2.10.13 

𝑑𝑕 𝑎 

𝑑𝑎
+  𝜑 + σ3 𝑎  𝑕 𝑎 = σ4 𝑎 𝑢 𝑎                                                              2.10.14 

𝑑𝑤 𝑎 

𝑑𝑎
+  𝜑 + σ5 𝑎  𝑤 𝑎 = σ6 𝑎 𝑢 𝑎                                                            2.10.15 

𝑑𝑟 𝑎 

𝑑𝑎
+  𝜑 + σ7 𝑎  𝑟 𝑎 = q 𝑎 𝑤 𝑎 + 𝑧 𝑎 𝑕 𝑎                                        2.10.16 

λ =  𝛽 𝑎  w a + h a  da
A

0

                                                                                2.10.17 

𝑥 0, 𝑡 = 𝑦 0, t = u 0, t = h 0, t = w 0, t = r 0, t = 0                         2.10.18 

Solving (3.10.11), (3.10.14) and (3.10.15) we obtain 

𝑢 𝑎 = 𝜆  σ8 𝜏 𝑆
0 𝜏 𝑒−𝜑 𝑎−𝜏 𝑒− σ2 𝑠 𝑑𝑠

𝑎
𝜏 𝑑𝜏

𝑎

0

                                              2.10.19 

𝑕 𝑎 =  σ4 𝜏 𝑢 𝜏 𝑒−𝜑 𝑎−𝜏 𝑒− σ3 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏

𝑎

0

                                                   2.10.20 

𝑤 𝑎 =  σ6 𝜏 𝑢 𝜏 𝑒−𝜑 𝑎−𝜏 𝑒− σ5 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏

𝑎

0

                                                  2.10.21 

Substituting (2.10.19) into (2.10.20) – (2.10.21) and changing the order of integration, we get 

𝑕 𝑎 = 𝜆  σ4 𝜏   σ8 𝜂 𝑆0 𝜂 𝑒−𝜑 𝑎−𝜂 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂 𝑑𝜂

𝜏

0

 𝑒− σ3 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏

𝑎

0

 

= 𝜆  σ8 𝜂 𝑆0 𝜂 𝑒−𝜑 𝑎−𝜂  σ4 𝜏 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜂

𝑒− σ3 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏𝑑𝜂

𝑎

0

 

𝑕 𝑎 = 𝜆  σ8 𝜏 𝑆0 𝜏 𝑒−𝜑 𝑎−𝜏  σ4 𝜂 𝑒− σ2 𝑠 𝑑𝑠
𝜂
𝜏

𝑎

𝜏

𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂 𝑑𝜂𝑑𝜏

𝑎

0

     2.10.22 

𝑤 𝑎 = 𝜆  σ6 𝜏   σ8 𝜂 𝑆0 𝜂 𝑒−𝜑 𝑎−𝜂 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂 𝑑𝜂

𝜏

0

 𝑒− σ5 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏

𝑎

0

 

= 𝜆  σ8 𝜂 𝑆0 𝜂 𝑒−𝜑 𝑎−𝜂  σ6 𝜏 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜂

𝑒− σ5 𝑠 𝑑𝑠
𝑎
𝜏 𝑑𝜏𝑑𝜂

𝑎

0

 

𝑤 𝑎 = 𝜆  σ8 𝜏 𝑆
0 𝜏 𝑒−𝜑 𝑎−𝜏  σ6 𝜂 𝑒− σ2 𝑠 𝑑𝑠

𝜂
𝜏

𝑎

𝜏

𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂 𝑑𝜂𝑑𝜏

𝑎

0

     2.10.23 
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Substituting (2.10.22) and (2.10.23) into (2.10.17), it follows that 

𝜆 = 𝜆  𝛽 𝑎 
𝐴

0

 σ8 𝜏 𝑆
0 𝜏 𝑒−𝜑 𝑎−𝜏 

𝑎

0

 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜏

 σ4 𝜂 𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂 𝑍

+ σ6 𝜂 𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂  𝑑𝜂𝑑𝜏𝑑𝑎                                                           2.10.24 

By dividing both sides of (2.10.24) by 𝜆  𝜆 ≠ 0 , we get the following characteristic equation about the 

eigenvalue𝜑 

1 =  𝛽 𝑎 
𝐴

0

 σ8 𝜏 𝑆0 𝜏 𝑒−𝜑 𝑎−𝜏 
𝑎

0

 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜏

 σ4 𝜂 𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂

+ σ6 𝜂 𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂  𝑑𝜂𝑑𝜏𝑑𝑎                                                          2.10.25 

denote the expression on the right-hand side of (3.10.25) by 𝐹 𝜑 , i.e., 

𝐹 𝜑 =  𝛽 𝑎 
𝐴

0

 σ8 𝜏 𝑆0 𝜏 𝑒−𝜑 𝑎−𝜏 
𝑎

0

 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜏

 σ4 𝜂 𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂

+ σ6 𝜂 𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂  𝑑𝜂𝑑𝜏𝑑𝑎                                                         2.10.26 

and define the basic reproductive number as ℜ0 = 𝐹 0 , i.e., 

ℜ0 =  𝛽 𝑎 
𝐴

0

 σ8 𝜏 𝑆0 𝜏 
𝑎

0

 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜏

 σ4 𝜂 𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂

+ σ6 𝜂 𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂  𝑑𝜂𝑑𝜏𝑑𝑎                                                        2.10.27 

Now, we establish the following results from equation (3.10.25) 

 

Theorem 2.3 

The disease-free equilibrium of the system (2.5.1) – (2.5.8) is locally asymptotically stable, if ℜ0 < 1 and 

unstable if ℜ0 > 1. 

Proof:  Suppose we differentiate 𝐹 𝜑 , we then have 

𝐹′ 𝜑 = −  𝛽 𝑎 
𝐴

0

  𝑎 − 𝜏 σ8 𝜏 𝑆0 𝜏 𝑒−𝜑 𝑎−𝜏 
𝑎

0

 𝑒
− σ2 𝑠 𝑑𝑠

𝜏
𝜂

𝑎

𝜏

 σ4 𝜂 𝑒
− σ3 𝑠 𝑑𝑠

𝑎
𝜂

+ σ6 𝜂 𝑒
− σ5 𝑠 𝑑𝑠

𝑎
𝜂  𝑑𝜂𝑑𝜏𝑑𝑎 

it is observed that 𝐹 is a decreasing function of 𝜑 as 

𝐹′ 𝜑 < 0,     lim𝜑→∞ 𝐹 𝜑 = 0, lim𝜑→−∞ 𝐹 𝜑 = +∞ 

we know that equation (2.10.25) has a unique negative real solution 𝜑∗, if and only if 𝐹 0 < 1, or ℜ0 < 1. and 

a unique positive (zero) real solution if  𝐹 0 > 1 𝐹 0 = 1 , or ℜ0 > 1 ℜ0 = 1 . To show that 𝜑∗ is the 

dominant real part of the roots of 𝐹 𝜑 , we let 𝜑 = 𝑥 + 𝑖𝑦 (𝑥, 𝑦 ∈ ℝ, where 𝑖 is the imaginary unit and ℝ is the 

set of real numbers) be an arbitrary complex solution to equation (2.10.25).we note that 

1 = 𝐹 𝜑 =  𝐹 𝑥 + 𝑖𝑦  ≤ 𝐹 𝑥  

which indicates that Re𝜑 ≤ 𝜑∗, where Re denotes the real part. It follows that the disease-free equilibrium is 

locally asymptotically stable if ℜ0 < 1, and unstable if ℜ0 > 1.  

 

2.11Analytical Solution of the Model Using Laplace Transform 

Our model equations are coupled. It cannot be solved analytically without breaking the couplings. To decoupled 

the equations, we have to perturbed the equations.At this point, S0,V0, E0, M0 , I0, H0 are the varying 
compartments and 𝑆0

∗, V0
∗, E0

∗, M0
∗, I0

∗, H0
∗ are the Laplace transform of the compartments respectively. 

Let  0 < 𝛽 a < 1and let us define the following 
S a, t = S0 a, t + β a S1 a, t + ⋯

V a, t = V0 a, t + β a V1 a, t + ⋯

 E a, t = E0 a, t + β a E1 a, t + ⋯

M a, t = M0 a, t + β a M1 a, t + ⋯

I a, t = I0 a, t + β a I1 a, t     + ⋯

H a, t = H0 a, t + β a H1 a, t + ⋯

 

Then, we have for 

β a 0(Order zero): 
∂S0

∂𝑡
+

∂S0

∂𝑎
+  μ a + kϕ a  S0 = b a                                                                  2.11.1 

∂V0

∂𝑡
+

∂V0

∂𝑎
+ μ a V0 =  kϕ a S0 + n a H0                                                           2.11.2 
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∂E0

∂𝑡
+

∂E0

∂𝑎
+  μ a + θ a  E0 = 0                                                                           2.11.3 

∂M0

∂𝑡
+

∂M0

∂𝑎
+  μ a + z a  M0 =  1 − j θ a E0                                                 2.11.4 

∂I0

∂𝑡
+

∂I0

∂𝑎
+  μ a + q a + 𝛼 𝑎  I0 = jθ a E0                                                    2.11.5 

∂H0

∂𝑡
+

∂H0

∂𝑎
+  μ a + n a + 𝛼 𝑎  H0 = q a I0 + z a M0                              2.11.6 

β a 1(Order one): 

∂S1

∂𝑡
+

∂S1

∂𝑎
+  μ a + kϕ a  S1 = − 1 − k g a    I0 + M0 da

A

0

 S0           2.11.7 

∂V1

∂𝑡
+

∂V1

∂𝑎
+ μ a V1 =  kϕ a S1 + n a H1                                                            2.11.8 

∂E1

∂𝑡
+

∂E1

∂𝑎
+  μ a + θ a  E1 =  1 − k g a    I0 + M0 da

A

0

 S0                 2.11.9 

∂M1

∂𝑡
+

∂M1

∂𝑎
+  μ a + z a  M1 =  1 − j θ a E1                                               2.11.10 

∂I1

∂𝑡
+

∂I1

∂𝑎
+  μ a + q a + 𝛼 𝑎  I1 = jθ a E1                                                2.11.11 

∂H1

∂𝑡
+

∂H1

∂𝑎
+  μ a + n a + 𝛼 𝑎  H1 = q a I1 + z a M1                            2.11.12 

P a, t = S a, t + V a, t + E a, t + M a, t + I a, t + H a, t                     2.11.13 
For conveniency, let 

σ0 = μ a + kϕ a  ,  σ1 = kϕ a  ,  σ2 = μ a + θ a   ,   σ3 = μ a + z a   ,    

σ5 = μ a + q a + α a   ,  σ4 =  1 − j θ a   ,  σ6 = jθ a   ,   

σ7 = μ a + n a + α a  ,   σ8 =  1 − 𝑘 g a  

Now, consider equation (3.11.2) in the form 
∂S0

∂𝑡
+

∂S0

∂𝑎
+ σ0S0 = b a                                                                                        2.11.14 

Applying the Laplace transform to all terms in (2.11.14), we have 

Lt  
∂S0

∂a
 + Lt  

∂S0

∂t
 + σ0Lt S0 = Lt b a   

That is 
dS0

∗ a, s 

da
+ sS0

∗ a, s − S0 a, 0 + σ0S0
∗ a, s =

b a 

s
 

dS0
∗ a, s 

da
+  s + σ0 S0

∗ a, s =
b a 

s
+ S0 a                                                       2.11.15 

Solving equation (2.11.15), we obtain 

S0
∗ a, s = 𝑒− s+σ0 a   

b a 

s
+ S0 a  

a

0

𝑒 s+σ0 x dx + f s 𝑒− s+σ0 a  

= 𝑒− s+σ0 a
1

s + σ0

 
b a 

s
+ S0 a   𝑒 s+σ0 x  

0

a
+ f s 𝑒− s+σ0 a  

S0
∗ a, s =

1

s + σ0

 
b a 

s
+ S0 a   1 − 𝑒− s+σ0 a + f s 𝑒− s+σ0 a  

S0
∗ 0, s =  f s =

B

s
 

Therefore, 

S0
∗ a, s =

b a 

σ0

 
1

𝑠
 +  S0 a −

b a 

σ0

  
1

s + σ0

 +  B −
b a 

σ0

  
1

𝑠
𝑒− s+σ0 a 

−  S0 a −
b a 

σ0

  
1

s + σ0

𝑒− s+σ0 a  

So, 
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S0 a, t = Lt
−1 S0

∗ a, s  =
b a 

σ0

+  S0 a −
b a 

σ0

 𝑒−σ0𝑡 +  B −
b a 

σ0

 𝑒−σ0𝑎𝑢𝑎 𝑡 

−  S0 a −
b a 

σ0

 𝑢𝑎 𝑡 𝑒−σ0𝑎𝑒−σ0 𝑡−𝑎 2.11.16 

Where, 

𝑢𝑎 𝑡 =  
1, 𝑡 ≥ 𝑎
0, 𝑡 < 𝑎

   , for 𝑎 ≥ 0 

Unit step function (delayed) 

Consider equation (2.11.3) in the form: 
∂E0

∂𝑡
+

∂E0

∂𝑎
+ σ2E0 = 0                                                                                       2.11.17 

Applying the Laplace transform to all terms in (2.11.17), we have 
dE0

∗ a, s 

da
+  s + σ2 E0

∗ a, s = E0 a                                                              2.11.17 

Solving equation (2.11.17), we obtain 

E0
∗ a, s = 𝑒− s+σ2 a  E0 a 

a

0

𝑒 s+σ2 x dx + f s 𝑒− s+σ2 a  

= 𝑒− s+σ2 a
E0 a 

s + σ2

 𝑒 s+σ2 x 
0

a
+ f s 𝑒− s+σ2 a  

E0
∗ a, s =

E0 a 

s + σ2

 1 − 𝑒− s+σ2 a +  f s 𝑒− s+σ2 a  

E0
∗ 0, s =  f s = 0 

Therefore, 

E0
∗ a, s =

E0 a 

s + σ2

 1 − 𝑒− s+σ2 a 2.11.19 

So, 

E0 a, t = Lt
−1 E0

∗ a, s  = E0 a  𝑒−σ2𝑡 − 𝑒−σ2𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎   

E0 a, t = E0 a 𝑒−σ2𝑡 1 − ua t                                                                          2.11.20 

Also, consider equation (2.11.5) in the form 
∂M0

∂a
+

∂M0

∂t
+ σ3M0 = σ4E0 𝑎, 𝑡  

That is, 
∂M0

∂a
+

∂M0

∂t
+ σ3M0 = σ4E0 a 𝑒−σ2𝑡 1 − ua t                                             2.11.21 

Applying the Laplace transform to all terms in (2.11.2), we have 
dM0

∗ a, s 

da
+  s + σ3 M0

∗ a, s = M0 a + σ4E0 a  
1

s + σ2

−
𝑒−𝑎𝑠

𝑠 s + σ2 
                               2.11.22 

Solving equation (2.11.22), we obtain 

M0
∗ a, s = 𝑒− s+σ3 a  𝑒 s+σ3 x

a

0

 M0 a + σ4E0 a  
1

s + σ2

−
𝑒−𝑥𝑠

𝑠 s + σ2 
  dx + f s 𝑒− s+σ3 a  

= 𝑒− s+σ3 a    M0 a + σ4E0 a  
1

s + σ2

  𝑒 s+σ3 x −
σ4E0 a 

𝑠 s + σ2 
𝑒σ3x 

a

0

dx + f s 𝑒− s+σ3 a  

= 𝑒− s+σ3 a   
1

s + σ3

 M0 a + σ4E0 a  
1

s + σ2

  𝑒 s+σ3 x −
σ4E0 a 

σ3𝑠 s + σ2 
𝑒σ3x  

0

𝑎

+ f s 𝑒− s+σ3 a  

=
1

s + σ3

 M0 a + σ4E0 a  
1

s + σ2

   1 − 𝑒− s+σ3 a −
σ4E0 a 

σ3𝑠 s + σ2 
 𝑒−𝑎𝑠 − 𝑒− s+σ3 a + f s 𝑒− s+σ3 a  

M0
∗ a, s =

M0 a 

s + σ3

+
σ4E0 a 

 s + σ2  s + σ3 
−

M0 a 

s + σ3

𝑒− s+σ3 a −
σ4E0 a 

 s + σ2  s + σ3 
𝑒− s+σ3 a −

σ4E0 a 

σ3𝑠 s + σ2 
𝑒−𝑎𝑠

+
σ4E0 a 

σ3𝑠 s + σ2 
𝑒− s+σ3 a + f s 𝑒− s+σ3 a  

M0
∗ 0, s = f s = 0 

Therefore, 
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M0
∗ a, s =

M0 a 

s + σ3

+
σ4E0 a 

 σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

 − M0 a 𝑒−σ3𝑎  
𝑒−𝑎𝑠

s + σ3

 

−
σ4E0 a 

 σ3 − σ2 
𝑒−σ3𝑎  

1

s + σ2

−
1

s + σ3

 𝑒−𝑎𝑠 −
σ4E0 a 

σ3σ2

 
1

s
−

1

s + σ2

 𝑒−𝑎𝑠

+
σ4E0 a 

σ3σ2

𝑒−σ3𝑎  
1

s
−

1

s + σ2

 𝑒−𝑎𝑠  

So, 

M0 a, t = 𝐿𝑡
−1 M0

∗ a, s   

= M0 a 𝑒−σ3𝑡 +
σ4E0 a 

 σ3 − σ2 
 𝑒−σ2𝑡 − 𝑒−σ3𝑡 − M0 a 𝑒−σ3𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 

−
σ4E0 a 

 σ3 − σ2 
𝑒−σ3𝑎𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ3 𝑡−𝑎  −

σ4E0 a 

σ3σ2

𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  

+
σ4E0 a 

σ3σ2

𝑒−σ3𝑎𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  3.11.24 

Also, consider equation (3.11.6) in the form: 
∂I0

∂a
+

∂I0

∂t
+ σ5I0 = σ6E0 𝑎, 𝑡  

That is, 
∂I0

∂a
+

∂I0

∂t
+ σ5I0 = σ6E0 a 𝑒−σ2𝑡 1 − ua t                                                 2.11.23 

Applying the Laplace transform to all terms in (2.11.23), we have 
dI0

∗ a, s 

da
+  s + σ5 I0

∗ a, s = I0 a + σ6E0 a  
1

s + σ2

−
𝑒−𝑎𝑠

𝑠 s + σ2 
           2.11.24 

Solving equation (3.11.26), we obtained 

I0
∗ a, s = 𝑒− s+σ5 a  𝑒 s+σ5 x

a

0

 I0 a + σ6E0 a  
1

s + σ2

−
𝑒−𝑥𝑠

𝑠 s + σ2 
  dx + f s 𝑒− s+σ5 a  

= 𝑒− s+σ5 a    I0 a + σ6E0 a  
1

s + σ2

  𝑒 s+σ5 x −
σ6E0 a 

𝑠 s + σ2 
𝑒σ5x 

a

0

dx + f s 𝑒− s+σ5 a  

=
1

s + σ5

 I0 a + σ6E0 a  
1

s + σ2

   1 − 𝑒− s+σ5 a −
σ6E0 a 

σ5𝑠 s + σ2 
 𝑒−𝑎𝑠 − 𝑒− s+σ5 a + f s 𝑒− s+σ5 a  

That is, 

I0
∗ a, s =

I0 a 

s + σ5

+
σ6E0 a 

 s + σ2  s + σ5 
−

I0 a 

s + σ5

𝑒− s+σ5 a −
σ6E0 a 

 s + σ2  s + σ5 
𝑒− s+σ5 a −

σ6E0 a 

σ5𝑠 s + σ2 
𝑒−𝑎𝑠

+
σ6E0 a 

σ5𝑠 s + σ2 
𝑒− s+σ5 a + f s 𝑒− s+σ5 a  

I0
∗ 0, s =  f s = 0 

Therefore, 

I0
∗ a, s =

I0 a 

s + σ5

+
σ6E0 a 

 σ5 − σ2 
 

1

s + σ2

−
1

s + σ5

 − I0 a 𝑒−σ5𝑎  
𝑒−𝑎𝑠

s + σ5

 

−
σ6E0 a 

 σ5 − σ2 
𝑒−σ5𝑎  

1

s + σ2

−
1

s + σ5

 𝑒−𝑎𝑠 −
σ6E0 a 

σ5σ2

 
1

s
−

1

s + σ2

 𝑒−𝑎𝑠

+
σ6E0 a 

σ5σ2

𝑒−σ5𝑎  
1

s
−

1

s + σ2

 𝑒−𝑎𝑠  

So, 

I0 a, t = 𝐿𝑡
−1 I0

∗ a, s   

= I0 a 𝑒−σ5𝑡 +
σ6E0 a 

 σ5 − σ2 
 𝑒−σ2𝑡 − 𝑒−σ5𝑡 − I0 a 𝑒−σ5𝑎𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 

−
σ6E0 a 

 σ5 − σ2 
𝑒−σ5𝑎𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ5 𝑡−𝑎  −

σ6E0 a 

σ5σ2

𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  

+
σ6E0 a 

σ5σ2

𝑒−σ5𝑎𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  3.11.27 

Also, consider equation (2.11.7) in the form: 
∂H0

∂a
+

∂H0

∂t
+ σ7H0 = q a I0 + z a M0                                                              2.11.25 

Applying the Laplace transform to all terms in (2.11.25), we have 
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dH0
∗ a, s 

da
+  s + σ7 H0

∗ a, s 

= H0 a 

+ q a  
I0 a 

s + σ5

+
σ6E0 a 

 σ5 − σ2 
 

1

s + σ2

−
1

s + σ5

 −
I0 a 

s + σ5

𝑒− s+σ5 a

−
σ6E0 a 

 σ5 − σ2 
 

1

s + σ2

−
1

s + σ5

 𝑒− s+σ5 a −
σ6E0 a 

σ5σ2

 
1

s
−

1

s + σ2

 𝑒−𝑎𝑠

+
σ6E0 a 

σ5σ2

 
1

s
−

1

s + σ2

 𝑒− s+σ5 a 

+ z a  
M0 a 

s + σ3

+
σ4E0 a 

 σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

 −
M0 a 

s + σ3

𝑒− s+σ3 a

−
σ4E0 a 

 σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

 𝑒− s+σ3 a −
σ4E0 a 

σ3σ2

 
1

s
−

1

s + σ2

 𝑒−𝑎𝑠

+
σ4E0 a 

σ3σ2

 
1

s
−

1

s + σ2

 𝑒− s+σ3 a                                                         2.11.26 

Solving equation (2.11.26), we obtained 

H0
∗ a, s = 𝑒− s+σ7 a  𝑒 s+σ7 x

a

0

 H0 a 

+ q a  
I0 a 

s + σ5

+
σ6E0 a 

 σ5 − σ2 
 

1

s + σ2

−
1

s + σ5

 −
I0 a 

s + σ5

𝑒− s+σ5 x

−
σ6E0 a 

 σ5 − σ2 
 

1

s + σ2

−
1

s + σ5

 𝑒− s+σ5 x −
σ6E0 a 

σ5σ2

 
1

s
−

1

s + σ2

 𝑒−𝑠𝑥

+
σ6E0 a 

σ5σ2

 
1

s
−

1

s + σ2

 𝑒− s+σ5 x 

+ z a  
M0 a 

s + σ3

+
σ4E0 a 

 σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

 −
M0 a 

s + σ3

𝑒− s+σ3 x

−
σ4E0 a 

 σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

 𝑒− s+σ3 x −
σ4E0 a 

σ3σ2

 
1

s
−

1

s + σ2

 𝑒−𝑠𝑥

+
σ4E0 a 

σ3σ2

 
1

s
−

1

s + σ2

 𝑒− s+σ3 x  𝑑𝑥 + f s 𝑒− s+σ7 a  

H0
∗ a, s =

H0 a 

s + σ7

 1 − 𝑒− s+σ7 a +
q a I0 a 

 s + σ5  s + σ7 
 1 − 𝑒− s+σ7 a 

+
q a σ6E0 a 

 σ5 − σ2 
 

1

 s + σ2  s + σ7 
−

1

 s + σ5  s + σ7 
  1 − 𝑒− s+σ7 a 

−
q a I0 a 

 σ7 − σ5  s + σ5 
 𝑒− s+σ5 a − 𝑒− s+σ7 a 

−
q a σ6E0 a 

σ2σ5σ7

 
1

s
−

1

s + σ2

  𝑒−𝑠a − 𝑒− s+σ7 a 

+
q a σ6E0 a 

σ2σ5 σ7 − σ5 
 

1

s
−

1

s + σ2

  𝑒− s+σ5 a − 𝑒− s+σ7 a +
z a M0 a 

 s + σ3  s + σ7 
 1 − 𝑒− s+σ7 a 

+
z a σ4E0 a 

 σ3 − σ2 
 

1

 s + σ2  s + σ7 
−

1

 s + σ3  s + σ7 
  1 − 𝑒− s+σ7 a 

−
z a M0 a 

 σ7 − σ3  s + σ3 
 𝑒− s+σ3 a − 𝑒− s+σ7 a 

−
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

  𝑒− s+σ3 a − 𝑒− s+σ7 a 

+
z a σ4E0 a 

σ2σ3σ7

 
1

s
−

1

s + σ2

  𝑒−𝑠a − 𝑒− s+σ7 a 

+
z a σ4E0 a 

σ2σ3 σ7 − σ3 
 

1

s
−

1

s + σ2

  𝑒− s+σ3 a − 𝑒− s+σ7 a + f s 𝑒− s+σ7 a  

 

H0
∗ 0, s =  f s = 0 
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H0
∗ a, s =

H0 a 

s + σ7

 1 − 𝑒−σ7a . 𝑒−as  +
q a I0 a 

σ7 − σ5

 
1

 s + σ5 
−

1

 s + σ7 
  1 − 𝑒−σ7a . 𝑒−as  

+
q a σ6E0 a 

 σ5 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ5 
 

1

 s + σ5 
−

1

 s + σ7 
   1

− 𝑒−σ7a . 𝑒−as  −
q a I0 a 

 σ7 − σ5  s + σ5 
 𝑒−σ5a − 𝑒−σ7a 𝑒−as

−
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 𝑒−σ5a − 𝑒−σ7a  

1

 s + σ2 
−

1

 s + σ5 
 𝑒−as

−
q a σ6E0 a 

σ2σ5σ7

 1 − 𝑒−σ7a  
1

s
−

1

s + σ2

 𝑒−as

+
q a σ6E0 a 

σ2σ5 σ7 − σ5 
 𝑒−σ5a − 𝑒−σ7a  

1

s
−

1

s + σ2

 𝑒−as

+
z a M0 a 

 σ7 − σ3 
 

1

s + σ3

−
1

s + σ7

  1 − 𝑒−σ7a . 𝑒−as  

+
z a σ4E0 a 

 σ3 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ3 
 

1

 s + σ3 
−

1

 s + σ7 
   1

− 𝑒−σ7a . 𝑒−as  −
z a M0 a 

 σ7 − σ3  s + σ3 
 𝑒−σ3a − 𝑒−σ7a 𝑒−as

−
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 𝑒−σ3a − 𝑒−σ7a  

1

s + σ2

−
1

s + σ3

 𝑒−as

−
z a σ4E0 a 

σ2σ3σ7

 1 − 𝑒−σ7a  
1

s
−

1

s + σ2

 𝑒−as

+
z a σ4E0 a 

σ2σ3 σ7 − σ3 
 𝑒−σ3a − 𝑒−σ7a  

1

s
−

1

s + σ2

 𝑒−as  

So, 

H0 a, t = 𝐿𝑡
−1 H0

∗ a, s   

= H0 a  𝑒−σ7t − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  +
q a I0 a 

σ7 − σ5

 𝑒−σ5t − 𝑒−σ7t − 𝑒−σ7a𝑢𝑎 𝑡  𝑒−σ5 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎   

+
q a σ6E0 a 

 σ5 − σ2 
 

1

 σ7 − σ2 
 𝑒−σ2𝑡 − 𝑒−σ7𝑡 −

1

 σ7 − σ5 
 𝑒−σ5𝑡 − 𝑒−σ7𝑡 

−
𝑒−σ7a

 σ7 − σ2 
𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎  +

𝑒−σ7a

 σ7 − σ5 
𝑢𝑎 𝑡  𝑒−σ5 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎   

−
q a I0 a 

 σ7 − σ5 
 𝑒−σ5a − 𝑒−σ7a 𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 

−
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 𝑒−σ5a − 𝑒−σ7a 𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ5 𝑡−𝑎  

−
q a σ6E0 a 

σ2σ5σ7

 1 − 𝑒−σ7a 𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  

+
q a σ6E0 a 

σ2σ5 σ7 − σ5 
 𝑒−σ5a − 𝑒−σ7a 𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  

+
z a M0 a 

 σ7 − σ3 
 𝑒−σ3t − 𝑒−σ7t − 𝑒−σ7a𝑢𝑎 𝑡  𝑒−σ3 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎   

+
z a σ4E0 a 

 σ3 − σ2 
 

1

 σ7 − σ2 
 𝑒−σ2t − 𝑒−σ7t −

1

 σ7 − σ3 
 𝑒−σ3t − 𝑒−σ7t 

−
𝑒−σ7a

 σ7 − σ2 
𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎  +

𝑒−σ7a

 σ7 − σ3 
𝑢𝑎 𝑡  𝑒−σ3 𝑡−𝑎 − 𝑒−σ7 𝑡−𝑎   

−
z a M0 a 

 σ7 − σ3 
 𝑒−σ3a − 𝑒−σ7a 𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 

−
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 𝑒−σ3a − 𝑒−σ7a 𝑢𝑎 𝑡  𝑒−σ2 𝑡−𝑎 − 𝑒−σ3 𝑡−𝑎  

−
z a σ4E0 a 

σ2σ3σ7

 1 − 𝑒−σ7a 𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎  

+
z a σ4E0 a 

σ2σ3 σ7 − σ3 
 𝑒−σ3a − 𝑒−σ7a 𝑢𝑎 𝑡  1 − 𝑒−σ2 𝑡−𝑎                               3.11.30 
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Also, consider equation (3.11.3) in the form: 
∂V0

∂𝑡
+

∂V0

∂𝑎
+ μ a V0 =  σ1S0 + n a H02.11.27 

Applying the Laplace transform to all the terms in (2.11.27), we have  
dV0

∗ a, s 

da
+  s + μ a  V0

∗ a, s 

= 𝑉0 𝑎 + σ1  
b a 

σ0

 
1

𝑠
 +  S0 a −

b a 

σ0

  
1

s + σ0

 +  B −
b a 

σ0

  
1

𝑠
𝑒− s+σ0 a 

−  S0 a −
b a 

σ0

  
1

s + σ0

𝑒− s+σ0 a  

+ n a  
H0 a 

s + σ7

 1 − 𝑒− s+σ7 a +
q a I0 a 

σ7 − σ5

 
1

 s + σ5 
−

1

 s + σ7 
  1 − 𝑒− s+σ7 a 

+
q a σ6E0 a 

 σ5 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ5 
 

1

 s + σ5 
−

1

 s + σ7 
   1

− 𝑒− s+σ7 a −
q a I0 a 

 σ7 − σ5  s + σ5 
 𝑒− s+σ5 a − 𝑒− s+σ7 a 

−
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 

1

 s + σ2 
−

1

 s + σ5 
  𝑒− s+σ5 a − 𝑒− s+σ7 a 

−
q a σ6E0 a 

σ2σ5σ7

 
1

s
−

1

s + σ2

  𝑒−as − 𝑒− s+σ7 a 

+
q a σ6E0 a 

σ2σ5 σ7 − σ5 
 

1

s
−

1

s + σ2

  𝑒− s+σ5 a − 𝑒− s+σ7 a 

+
z a M0 a 

 σ7 − σ3 
 

1

s + σ3

−
1

s + σ7

  1 − 𝑒− s+σ7 a 

+
z a σ4E0 a 

 σ3 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ3 
 

1

 s + σ3 
−

1

 s + σ7 
   1

− 𝑒− s+σ7 a  −
z a M0 a 

 σ7 − σ3  s + σ3 
 𝑒− s+σ2 a − 𝑒− s+σ7 a 

−
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

  𝑒− s+σ3 a − 𝑒− s+σ7 a 

−
z a σ4E0 a 

 σ7 − σ2  σ3 − σ2 
 

1

s + σ2

  𝑒− s+σ2 a − 𝑒− s+σ7 a 

+
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 

1

s + σ2

  𝑒− s+σ3 a − 𝑒− s+σ7 a                             2.11.28 

 

Solving equation (2.11.28we obtained 
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V0
∗ a, s = 𝑒− s+μ 𝑎  a  𝑒 s+μ 𝑎  x

a

0

 𝑉0 𝑎 + σ1  
b a 

σ0

 
1

𝑠
 +  S0 a −

b a 

σ0

  
1

s + σ0

 

+  B −
b a 

σ0

  
1

𝑠
𝑒− s+σ0 x −  S0 a −

b a 

σ0

  
1

s + σ0

𝑒− s+σ0 x  

+ n a  
H0 a 

s + σ7

 
1

 s + σ5 
−

1

 s + σ7 
  1 − 𝑒− s+σ7 x 

+
q a σ6E0 a 

 σ5 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ5 
 

1

 s + σ5 
−

1

 s + σ7 
   1

− 𝑒− s+σ7 x −
q a I0 a 

 σ7 − σ5  s + σ5 
 𝑒− s+σ5 x − 𝑒− s+σ7 x 

−
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 

1

 s + σ2 
−

1

 s + σ5 
  𝑒− s+σ5 x − 𝑒− s+σ7 x 

−
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 

1

s + σ2

  𝑒− s+σ2 x − 𝑒− s+σ7 x 

+
q a σ6E0 a 

 σ5 − σ2  σ7 − σ5 
 

1

s + σ2

  𝑒− s+σ5 x − 𝑒− s+σ7 x 

+
z a M0 a 

 σ7 − σ3 
 

1

s + σ3

−
1

s + σ7

  1 − 𝑒− s+σ7 x 

+
z a σ4E0 a 

 σ3 − σ2 
 

1

 σ7 − σ2 
 

1

 s + σ2 
−

1

 s + σ7 
 −

1

 σ7 − σ3 
 

1

 s + σ3 
−

1

 s + σ7 
   1

− 𝑒− s+σ7 x  −
z a M0 a 

 σ7 − σ3  s + σ3 
 𝑒− s+σ2 x − 𝑒− s+σ7 x 

−
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 

1

s + σ2

−
1

s + σ3

  𝑒− s+σ3 x − 𝑒− s+σ7 x 

−
z a σ4E0 a 

 σ7 − σ2  σ3 − σ2 
 

1

s + σ2

  𝑒− s+σ2 x − 𝑒− s+σ7 x 

+
z a σ4E0 a 

 σ7 − σ3  σ3 − σ2 
 

1

s + σ2

  𝑒− s+σ3 x − 𝑒− s+σ7 x  𝑑𝑥 + 𝑓 𝑠 𝑒− s+μ 𝑎  a  
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V0
∗ a, s =

1

s + μ 𝑎 
 𝑉0 𝑎 + σ1  

b a 

σ0

 
1

𝑠
 +  S0 a −

b a 

σ0

  
1

s + σ0

   1 − 𝑒− s+μ 𝑎  a 

+
σ1

 μ 𝑎 − σ0 
 B −

b a 

σ0

 
1

𝑠
 𝑒− s+σ0 a − 𝑒− s+μ 𝑎  a 

−
σ1

 μ 𝑎 − σ0 
 S0 a −

b a 

σ0

 
1

 s + σ0 
 𝑒− s+σ0 a

− 𝑒− s+μ 𝑎  a 
𝑛 𝑎 𝐻0 𝑎 

 s + σ7 
 

1

 s + μ 𝑎  
 1 − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7 − σ5 
 

1

s + σ5

−
1

s + σ7

  
1

 s + μ 𝑎  
 1 − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑞 𝑎 σ6𝐸0 𝑎 

 σ5 − σ2 
 

1

 σ7 − σ2 
 

1

s + σ2

−
1

s + σ7

 

−
1

 σ7 − σ5 
 

1

s + σ5

−
1

s + σ7

  
1

 s + μ 𝑎  
 1 − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a   

−
𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7 − σ5  s + σ5 
 

1

 μ 𝑎 − σ5 
 𝑒− s+σ5 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

−
𝑛 𝑎 𝑞 𝑎 σ6𝐸0 𝑎 

 σ5 − σ2  σ7 − σ5 
 

1

s + σ2

−
1

s + σ5

  
1

 μ 𝑎 − σ5 
 𝑒− s+σ5 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

−
𝑛 𝑎 𝑞 𝑎 σ6𝐸0 𝑎 

 σ5 − σ2  σ7 − σ2 
 

1

s + σ2

  
1

 μ 𝑎 − σ2 
 𝑒− s+σ2 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑞 𝑎 σ6𝐸0 𝑎 

 σ5 − σ2  σ7 − σ5 
 

1

s + σ2

  
1

 μ 𝑎 − σ5 
 𝑒− s+σ5 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7 − σ3 
 

1

s + σ3

−
1

s + σ7

  
1

 s + μ 𝑎  
 1 − 𝑒− s+μ 𝑎  a 



Modelling Covid-19 Transmissions and Vaccine Response In An Age-Structured Population 

DOI: 10.9790/0661-2006016393   www.iosrjournals.org                      81 | Page 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑧 𝑎 σ4𝐸0 𝑎 

 σ3 − σ2 
 

1

σ7 − σ2

 
1

s + σ2

−
1

s + σ7

 

−
1

σ7 − σ3

 
1

s + σ3

−
1

s + σ7

   
1

 s + μ 𝑎  
 1 − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

−
𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7 − σ3  s + σ3 
 

1

 μ 𝑎 − σ3 
 𝑒− s+σ3 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

−
𝑛 𝑎 𝑧 𝑎 σ4𝐸0 𝑎 

 σ3 − σ2  σ7 − σ3 
 

1

s + σ2

−
1

s + σ3

  
1

 μ 𝑎 − σ3 
 𝑒− s+σ3 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

−
𝑛 𝑎 𝑧 𝑎 σ4𝐸0 𝑎 

 σ3 − σ2  σ7 − σ3 
 

1

s + σ2

  
1

 s + μ 𝑎  
 𝑒− s+σ2 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  

+
𝑛 𝑎 𝑧 𝑎 σ4𝐸0 𝑎 

 σ3 − σ2  σ7 − σ3 
 

1

s + σ2

  
1

 μ 𝑎 − σ3 
 𝑒− s+σ3 a − 𝑒− s+μ 𝑎  a 

−
1

 μ 𝑎 − σ7 
 𝑒− s+σ7 a − 𝑒− s+μ 𝑎  a  + 𝑓 𝑠 𝑒− s+μ 𝑎  a  

𝑉0
∗ 0, 𝑠 = 𝑓 𝑠 = 0 

 

,V0
∗ a, s = 𝑉0 𝑎  

1

s+μ 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

σ1𝑏 𝑎 

 μ 𝑎 −σ0 
 

1

𝑠
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

σ1

 μ 𝑎 −σ0 
 𝑆0 𝑎 −

𝑏 𝑎 

σ0
  

1

𝑠+σ0
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ0
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 𝐻0 𝑎 

 μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
−

𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ5 
 

1

𝑠+σ5
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ2 
 

1

𝑠+σ2
−

1

𝑠+𝜇 𝑎 
−

𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ5 
 

1

𝑠+σ5
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ3 
 

1

𝑠+σ3
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ2 
 

1

𝑠+σ2
−

1

𝑠+𝜇 𝑎 
−

𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ3 
 

1

𝑠+σ3
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ7 
 

1

𝑠+σ7
−

1

𝑠+𝜇 𝑎 
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+μ 𝑎 
 +

σ1

 μ 𝑎 −σ0 
 𝐵 −

𝑏 𝑎 

σ0
 𝑒−σ0𝑎 𝑒−𝑎𝑠

s
−

σ1

 μ 𝑎 −σ0 
 𝐵 −

𝑏 𝑎 

σ0
 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s
−

σ1

 μ 𝑎 −σ0 
 𝑆0 𝑎 −

𝑏 𝑎 

σ0
 𝑒−σ0𝑎 𝑒−𝑎𝑠

s+σ0
+

σ1

 μ 𝑎 −σ0 
 𝑆0 𝑎 −

𝑏 𝑎 

σ0
 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ0
−

𝑛 𝑎 𝐻0 𝑎 

 μ 𝑎 −σ7 
𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+
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𝑛 𝑎 𝐻0 𝑎 

 μ 𝑎 −σ7 
𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
−

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 +

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
−

𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ5
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ3
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
−

𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ3
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
− 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ7
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ7
 +

𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ3
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
−

𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ3
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ7 
 𝑒−σ7𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 +

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ5 
 𝑒−σ5𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ5 
 𝑒−σ5𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ5 
 𝑒−σ5𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
−

𝑒−σ5𝑎 𝑒−𝑎𝑠

s+σ5
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ5
 −

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ2 
 𝑒−σ2𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ2 
 𝑒−σ2𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 +

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ3 
 𝑒−σ3𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
 −

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ3 
 𝑒−σ3𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ2
− 𝑒−σ3𝑎 𝑒−𝑎𝑠

s+σ3
+ 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
 −

𝑛 𝑎 𝑧 𝑎 𝑀 0 𝑎 

 σ7−σ3  μ 𝑎 −σ3 
 𝑒−σ3𝑎 𝑒−𝑎𝑠

s+σ3
− 𝑒−𝜇 𝑎 𝑎 𝑒−𝑎𝑠

s+σ3
  

So  
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V0 a, t = 𝐿𝑡
−1 V0

∗ a, s  

= V0 a  𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵11 1 − 𝑒−μ 𝑎 t − 𝑢𝑎 𝑡 𝑒−μ 𝑎 a + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵12 𝑒−σ0𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ0 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵13 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵14 𝑒−σ5𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵15 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵16 𝑒−σ2𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵17 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵18 𝑒−σ5𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵19 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵20 𝑒−σ3𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵21 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵22 𝑒−σ2𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵23 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

− 𝐵24 𝑒−σ3𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵25 𝑒−σ7𝑡 − 𝑒−μ 𝑎 t − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−μ 𝑎  𝑡−𝑎  

+ 𝐵26𝑒−σ0𝑎𝑢𝑎 𝑡 − 𝐵26𝑒−μ 𝑎 a𝑢𝑎 𝑡 − 𝐵12𝑒−σ0𝑎𝑢𝑎 𝑡 𝑒−σ0 𝑡−𝑎 

+ 𝐵12𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ0 𝑡−𝑎 − 𝐵13𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 + 𝐵13𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

− 𝐵15 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  

+ 𝐵17 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  

− 𝐵17 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  + 𝐵15 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎  

+ 𝐵19 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎  + 𝐵17 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵19 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵21 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  

− 𝐵23 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  

+ 𝐵25 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ7 𝑡−𝑎  + 𝐵21 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎  

+ 𝐵25 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ7a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎  + 𝐵23 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵25 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

+ 𝐵18 𝑒−σ7𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵14 𝑒−σ5𝑎𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎  

− 𝐵18 𝑒−σ5𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ5a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ5 𝑡−𝑎  − 𝐵16 𝑒−σ2𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵22 𝑒−σ2𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

+ 𝐵24 𝑒−σ3𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎  

− 𝐵24 𝑒−σ3𝑎𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ2 𝑡−𝑎 − 𝑒−σ3𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 

+ 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎  − 𝐵20 𝑒−σ3𝑎𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎 − 𝑒−μ 𝑎 a𝑢𝑎 𝑡 𝑒−σ3 𝑡−𝑎   

 

𝐵11 =
σ1𝑏 𝑎 

 μ 𝑎 −σ0 
 , 𝐵12 =

σ1

 μ 𝑎 −σ0 
 𝑆0 𝑎 −

𝑏 𝑎 

σ0
  , 𝐵13 =

𝑛 𝑎 𝐻0 𝑎 

 μ 𝑎 −σ7 
 , 𝐵14 =

𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ5 
 

𝐵15 =
𝑛 𝑎 𝑞 𝑎 𝐼0 𝑎 

 σ7−σ5  μ 𝑎 −σ7 
 , 𝐵16 =

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ2 
 , 𝐵17 =

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ2  μ 𝑎 −σ7 
 

𝐵18 =
𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ5 
 , 𝐵19 =

𝑛 𝑎 σ6𝑞 𝑎 𝐸0 𝑎 

 σ5−σ2  σ7−σ5  μ 𝑎 −σ7 
 , 𝐵20 =

𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ3 
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𝐵21 =
𝑛 𝑎 𝑧 𝑎 𝑀0 𝑎 

 σ7−σ3  μ 𝑎 −σ7 
 , 𝐵22 =

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ2 
 , 𝐵23 =

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ2  μ 𝑎 −σ7 
 

𝐵24 =
𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ3 
 , 𝐵25 =

𝑛 𝑎 σ4𝑧 𝑎 𝐸0 𝑎 

 σ3−σ2  σ7−σ3  μ 𝑎 −σ7 
 , 𝐵26 =

σ1

 μ 𝑎 −σ0 
 𝐵 −

𝑏 𝑎 

σ0
  

 

 

Table 2.2: Values for Variables used for the Graphical Presentation 

     
Variables Values per year Source 

 0,aS  
2000 Assumed 

 0,aV  
1000 Assumed 

 0,aE  
1800 Assumed 

 0.aM  
900 Assumed 

 0,aI  
600 Assumed 

 0,aH  
100 Assumed 

 0,aP  
6400 Estimated 

 

Table 2.3: Values for Parameters used for the Graphical Presentation 

 
Parameters Value Description Unit Source 

 a  
0.0404 Transmission rate /Day Wang et al. (2021) 

 ab  
0.075 Recruitment rate for all ages /Day Assumed 

a  [0, 80] Age of individual at time t /Year Assumed 

 a  
0.01 Force of mortality rate /Day Assumed 

 ag  
0.033 Contact ratio /Day Assumed 

 a  
0.85 Vaccinated rate for susceptible 

individuals 

/Year Signorelli and Odone (2020) 

 a  
0.018 Natural death rate /Year Assumed 

 a  
0.1923 Exit rate from latent class /Year Wang et al. (2021) 

 an  
0.85 Vaccinated rate for hospitalized 

individuals 

/Year Signorelli and Odone (2020)   

 aq  
0.06 Hospitalized rate of 

symptomatic individuals 

/Day Wang et al. (2021) 

 az  
0.04 Hospitalized rate of 

asymptomatic individuals 
/Day Wang et al. (2021) 

 

III. RESULTS AND DISCUSSION 

3.0   Analysis of Results  

In this Dissertation, an epidemic model for the transmission dynamics of COVID-19 was formulated 

and analyzed. The main objective of this study was to assess the impact of the vaccines and hospitalization on 

the transmission dynamics of the disease. Simulations of analytical solutions of model system (2.5.1) – (2.5.8) 

are carried out using a set of baseline and other assumed parameter values given in Tables 2.1 and 2.2. MAPLE 

2015 version is used for the simulations. Since most of the parameter’s values were not readily available; we 

used baseline data from literatures (Wang et al., 2021; Signorelli and Odone, 2020) and the unknown data were 

assumed. Tables 2.1 and 2.2 show the set of parameter values which were used. 

3.1    Graphical Presentation of Results and Discussion 

In the presence of different parameter values, we performed numerical simulations of the system of 

differential equations (2.5.1) – (2.5.8) for the susceptible individuals,asymptomatic infectious individuals, 

symptomatic infectious individuals in order to study the transmissions dynamics of the disease in various 

populations of these compartments, with time and age. We also performed simulations of the vaccinated 

individuals to study the extends to which individuals between the age 0 to 80 accepted COVID-19 vaccines.  

 

3.1.1   simulation graphs 

Graphical representations showing the variations in human population in relation to age a and time t are 
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provided in Figures 4.1 – 4.10. 

 

 
Figure 2.1: Plot of vaccinated population versus age a 

 

Figure 2.1Here, we found that an increase in vaccination rate  a , lead tocorrespondingincrease in vaccinated 

population across different age group. Figure 2.1 also indicates that up to 85% of world populace between the 

age of 0 to 80 accepted vaccination campaign despite the propaganda on the COVID-19 vaccines by both some 

health workers and the society. 
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Figure 2.2: Plot of hospitalized population versus time t 

Figure 2.2 showed that there is a decrease in the hospitalized population as vaccination rate  an of recovered 

individuals increases over time. This occurs because as hospitalized people received vaccines after treatment, 

they gain immunity. Hence, reduce the population of the susceptible class 

 

 

 

 

 

 

 

 



Modelling Covid-19 Transmissions and Vaccine Response In An Age-Structured Population 

DOI: 10.9790/0661-2006016393   www.iosrjournals.org                      87 | Page 

 
Figure 2.3: Plot of asymptomatic infectious population versus time t 

Figure 2.3 showed that there is a decrease in the asymptomatic infectious population over time as asymptomatic 

hospitalized rate 𝑧 𝑎  increases. This occurs because asymptomatic infected individuals who are detected are 

hospitalized, treatedand vaccinated after recovery. 
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Figure 2.4: Plot of asymptomatic infectious population versus age a and time t 

Figure 2.4 showed that there is a decrease in the asymptomatic infectious class over time and across all ages as 

the rate of asymptomatic hospitalized increases. This occurs because asymptomatic infected individuals who are 

detected are hospitalized, treated as a result of medical attention are vaccinated and move to vaccination class, 

hence increasing the vaccinated population and reducing the susceptible class which in turns lead to the 

decrease in the number of individuals who become exposed to the disease. Figure 2.4 also revealed that this rate 

of movement ofasymptomatic infectious individuals into the hospitalized class for treatment is not influenced 

by age. This means that asymptomatic infectious individuals are detected and treated equally across all age 

groups. 

 

 

 
Figure 2.5: Plot of symptomatic infectious population versus time t 

Figure 2.5 Here, we found that there is a decrease in the symptomatic infectious population as symptomatic 

hospitalized rate 𝑞 𝑎  increases. This occurs because symptomatic infectious individuals are hospitalized, 

treated as a result of medical attention are vaccinated. 
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Figure 2.6: Plot of symptomatic infectious population versus age a and time t 

Figure 2.6 showed that there is a decrease in the symptomatic infectious class over time and across all ages as 

symptomatic hospitalized rate increases. This occurs because symptomatic individuals are hospitalized, treated, 

get vaccinated and move to vaccination class. Figure 2.6 also revealed that the rate of hospitalization of 

symptomatic infectious individuals has nothing to do with age of people. 
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Figure 2.7: Plot of asymptomatic infectious population versus time t 

Figure 2.7 showed that there is a decrease in the asymptomatic infectious class as vaccination rate 𝜙 𝑎  of 

susceptible individuals increases. This suggests that vaccinating more people helps reduce the number of 

asymptomatic carriers. 
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Figure 2.8: Plot of asymptomatic infectious population versus age a and time t 

Figure 2.8 showed that over time, there is a decrease in the asymptomatic infectious population across all ages 

as the vaccination rate of susceptible individuals increases. Thisoccurs as a result of decrease in the number of 

both the susceptible and exposed population as vaccination rate of susceptible individuals increases. 

 
Figure 2.9: Plot of symptomatic infectious population versus time t 

Figure 2.9 showed that there is a decrease in the symptomatic infectious class as vaccination rate 𝜙 𝑎  of 

susceptible individuals increases. 
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Figure 2.10: Plot of symptomatic infectious population versus age a and time t 

 

Figure 2.10 showed that there is a decrease in the symptomatic infectious population over time and 

across all ages as the vaccination rate of susceptible individuals increases. This occurs as a result of decrease in 

the number of both the susceptible and exposed population as vaccination rate of susceptible individuals 

increases. 

From figure 2.7 – 2.10, the infectious compartments decrease towards 0 as the vaccination rate 

increases to 85%. This indicates that vaccination is effective in reducing the number of infectious classes due to 

fewer people being susceptible and exposed to the disease as more get vaccinated. Furthermore, figure 2.2 - 

2.10 suggest that medical interventions, such as hospitalization and vaccination, effectively reduce the number 

of infectious compartments. Simulations results obtained showed that the nationwide eradication of COVID-19 

can be done if at least 85% of the population is vaccinated. 

 

5.0Conclusion  

In this research work, we have formulated and analyzed an age-structured SVEMIH epidemic model 

for transmission dynamics of COVID-19 incorporated Vaccinated and Hospitalized compartment. We 

determined the steady states of the model and prove local stability results for the disease-free equilibrium under 

certain conditions. From the model we have derived the basic reproduction number, and proved that the DFE is 

locally asymptotically stable when 10 R . 

we have also performed numerical simulation of the model using Laplace transform method, from 

which we have shown the effect of parameters on the disease dynamics. 

Numerical simulations of the model indicates that COVID-19 can be controlled in the community with 

the implementation of vaccination and hospitalization of infected individuals. Our results suggest that both 

vaccination and hospitalization as control strategies have greater impacts in mitigating the spread of COVID-19 

disease. Furthermore, simulation result indicates that perfect vaccination and treatment does not only reduce the 

peak of COVID-19 disease outbreak but also shortened the duration of the disease as shown in figure 2.2 – 2.10. 

On the other hand, figure 2.2 highlights the importance of boosting immunity after treatment as its 

clearly shows that increase in vaccination rate of recovered individuals leads to decrease in hospitalized 

population. 

From this study, we can conclude that the administration of COVID-19 vaccines, hospitalization of 

infected individuals and treatment is more effectivein eradicating the COVID-19 from the population. 
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