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Abstract 
Optimization issues are an inherent part of various disciplines like engineering, economics, and artificial 

intelligence to solve problems of resource allocation and training neural networks. Classical methods of 

optimization such as gradient descent and Newton’s method give successful answers, although they do not work 

with challenges such as non-convexity, local optimum, and high dimension. In this paper, an attempt to present 

new numerical methods of optimizing classical optimization methods is made, applying the Rosenbrock function 

as a performance metric. The focus of the research is on the metaheuristic algorithms, for example, genetic 

algorithms (GAs) and particle swarm optimization (PSO), the machine learning-based optimized algorithms, 

and the mixed algorithms that combine conventional and metaheuristic algorithms. These alternatives are 

notable for their benefits in solving non-convex, multimodal, or noisy tasks by avoiding getting stuck in local 

minima and expanding the search in many areas of the solution’s space. The study also incorporates algorithm 

implementation in the Python programming language and the use of Python coding to depict results in detail, 

giving a real outlook on the different optimization techniques to be used. Thus, the presented results show that 

other numerical techniques can enhance the optimization results for such issues—setting the base for further 

developments in the given field. 
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I. Introduction 
Optimization problems are the important and common subject in many field of study such as 

mathematics, computer science engineering and economics which involve many problem solving in resources 

utilization, Neural network training and others. Comparison of first classical approaches like Gradient Descent 

and Newton Method, proves to be basic and effective but sometimes leads to the issue with non convex 

surfaces, local optima or high dimensional data. 

Optimization is arguably one of the paramount ideas of applied mathematics, and forms the basis of 

the solution of problems with application in engineering design, economic modeling, artificial intelligence and 

logistics, among others. Historically, classical optimization techniques including linear programming, quadratic 

programming, and gradient based approaches gave good solution for optimization. These methods employ 

rigorous computation of objective functions and professional mathematics results in the finding of minima or 

maxima of functions subjected to some constraints. Despite these encouraging results, applying classical 

methods to solve non-linear, non-convex, or high dimensional optimization problem poses great difficulties 

since basic assumptions such as convexity or differentiability do not hold. 

 

Consider a general optimization problem defined as: 

 

min
𝑥∈ℝ𝑛

𝑓(𝑥) ,               𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0 

 

where 𝑓: ℝ𝑛  → ℝ is the objective function, 𝑔(𝑥): ℝ𝑛  → ℝ𝑚 represents inequality constraints, and 

ℎ(𝑥): ℝ𝑛 →   ℝ𝑃   represents equality constraints. Traditional methods solve such problems using gradient-based 

techniques such as the Karush-Kuhn-Tucker (KKT) conditions or Lagrange multipliers, provided 𝑓(𝑥) and 

constraints are smooth functions. 
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However, these approaches are inapplicable for non-smooth or complex problems in most of the time. 

For instance, in optimization landscapes containing local minima or discontinuities such as in the field of neural 

networks or many other applications that employ gradient descent, classical techniques may lock on and never 

escape a sub-optima or in extreme cases may never converge at all. In the same way, the “curse of 

dimensionality” intensifies an operational slowness in high-dimensional environments. 

 

New developments have presented other methods for solving numerical problems they exclude 

classical assumptions. These approaches include: 

 

Metaheuristic Algorithms: These methods that include Genetic Algorithms (GAs), Particle Swarm 

Optimization (PSO) Simulated Annealing (SA) essentially use a population based or stochastic approaches to 

determine global solutions: 

 

𝑥(𝑡+1) =  𝑥(𝑡) +  𝑣(𝑡+1) = 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝑣(𝑡), 𝑥(𝑡), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), 

 

where 𝑥(𝑡) and 𝑣(𝑡) represent the candidate solution and its velocity at iteration t, respectively . 

 

Machine Learning-Assisted Optimization: Some of the approaches, including the neural networks and 

reinforcement learning, are used for optimization in the non-analytic context. For instance, reinforcement 

learning can optimize policies for dynamic systems through the Bellman equation: 

 

𝑄(𝑠, 𝑎) =  𝑟(𝑠, 𝑎) +  𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) 

 

where Q(s,a) represents the expected reward for state s and action a, and γ is the discount factor. 

 

Hybrid Methods: The types of these combine both the typical, classic approaches alongside the numerical 

ones, making use of the advantages of both kinds. For example, PSO integrated with gradient descent can 

rapidly approximate optima before refining them with local search techniques: 

 

𝑥(𝑡+1) =  𝑥(𝑡) −  𝛼∇f(𝑥(𝑡)) =  𝛼 > 0. 

 

These methods demonstrate higher efficiency in solving optimization problems with multifarious, non-

convex or noisy objectives. Thereby, they avoid getting trapped into local optimum and inventing new areas of 

the search space efficiently. 

 

The Rosenbrock function, commonly referred to as the “banana function,” is used as the benchmark 

often because of its non-convex nature of the landscape. It is particularly well-adapted to gradient-based 

methods, but its theoretical properties pose considerable difficulties for heuristic methods. Thus, this paper 

examines other numerical methods applied to the solve regular optimization problems with the functional of 

Rosenbrock as the criterion of performance. 

 

II. Literature Review 
The field of optimization has seen significant advances, with research spanning analytical methods, 

computational techniques, and hybrid approaches. 

 

Literature Review 

Optimization of general problems remained a part of classical mathematics and uses deterministic and 

gradients to solve problems. Most optimization problems meeting the convexity condition are well solved using 

linear programming (LP) and quadratic programming (QP). In particular, first order gradient-based approaches 

such as steepest descent, conjugate gradient and Newton-Raphson are well suited when minimizing smooth and 

twice continuously differentiable functions. Nevertheless, these methods are not well suited for non-smooth, 

multimodal or nonconvex applications. Research shows that the combination of these techniques mostly 

depends on the starting solution which is also associated with the convexity of the objective function. However, 

these approaches are still used because of the mathematical structure and effectiveness in less complex problem 

spaces Boyd and Vandenberghe (2024). 

It is necessary to classify metaheuristic methods as GA, PSO, and SA, which are based on natural 

searches and stochastic characteristics. These techniques are more precise when applied to non-convex 

problems and problems involving several modes when the traditional approach is not suitable. GAs use 



Alternative Numerical Solutions To Classical Optimization Problems Using Rosenbrock Function 

DOI: 10.9790/0661-2101013036                              www.iosrjournals.org                                                32 | Page  

mutation, crossover, and selection as its genetic operators to search the solution space and PSO uses iterative 

social behavior to optimize functions. Internally, prior studies show that these methods are highly effective for 

global optimization but have issues with convergence speed and parameter tuning. Recent developments include 

using heuristics machine learning for optimizing the metaheuristic solutions, and development of Kirkpatrick, et 

al (1983). 

Certain key themes have occurred today, which include Machine learning (ML), an application that 

offers predictive and operational optimization. Among the used and reviewed approaches, optimization 

problems are solved with the help of such methods as neural networks and reinforcement learning (RL). RL 

uses the Bellman equation for optimizing the sequential decision making activities on the other hand deep 

learning is a powerful tool for approximating high dimensional function with better capability of generalization 

Sutton (2018). Research and examples show how the ML models help the solution of optimization problems 

which cannot be solved analytically. Integrating ML with numerical methods yields even higher solution 

accuracy and faster convergence, and thus pure ML-algorithms can be applied to a broad range of engineering 

problems. 

Hybrid optimization approaches combine the strengths of classical and alternative techniques to 

enhance solution quality and computational efficiency. For example, PSO combined with gradient descent 

achieves global exploration with local refinement; while GAs integrated with LP ensure feasibility in 

constrained optimization problems. Research highlights the effectiveness of hybrid methods in handling multi-

objective optimization tasks, reducing computational costs, and improving convergence rates. Adaptive hybrid 

strategies, which adjust the balance between exploration and exploitation dynamically, are an area of active 

investigation. 

In performance analysis approaches, constants, heuristics, and metaheuristic algorithms are compared 

in benchmark functions and target problems. These studies further underscore the relationships between 

solution quality and convergence rate and the time taken to arrive at such qualities. For instance, metaheuristics 

provide better solutions than the classical techniques in large numbers of features and higher dimensions, but at 

what may be higher computational time, Talbi, (2011). Hybrid methods use features of the best solving 

methods, which is suitable in problems having dynamic constraints or several objectives. 

 

The Rosenbrock Function as a Benchmark 

Originally, the Rosenbrock function was presented in 1960 and was widely used for the estimation of 

optimization algorithms. Challenges of solving it have been handled in the recent past through utilization of 

more complex approaches that entails the use of a combination of hybrid heuristics and machine learning-

inspired techniques. Such findings show an example of contemporary developments that confirm that the 

integration of classical mathematical and heuristic methods to form combined algorithms can increase 

optimization speed. These are learning rates, ensemble methods and model surrogates. 

 

III. Materials And Methods 
Mathematical Definition of the Rosenbrock Function 

The Rosenbrock function, often used as a performance test problem for optimization algorithms, is 

defined mathematically as follows: 

 

𝑓(𝑥, 𝑦) = (𝑎 − 𝑥)2 +  𝑏(𝑦 − 𝑥2)2 

 

where: 

 a and b are constants (commonly set to a = 1 and b = 100). 

 (x,y) are the variables. 

The function has a global minimum at the point (𝑥, 𝑦) = (𝑎, 𝑎2), which is (1,1) for the standard 

parameters. The function is known for its narrow, curved valley, which makes it challenging for optimization 

algorithms to converge. 

 

Numerical Simulations 

To illustrate the method, we consider the example of Non-linear function optimization 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑠𝑖𝑛 (𝑥𝑦) 
With the help python programming 

 

Example 1 

The Rosenbrock function is commonly used as a test function for optimization, but the function is 

different. It's a multimodal, non-convex function suitable for testing optimization algorithms. 
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Consider the optimization function: 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑠𝑖𝑛 (𝑥𝑦) 

 

Using the Rosenbrock method we define the function above and implement the function in Python 

programming we also calculate the gradient. 

 

Calculate the gradient of the function: 

 

∇𝑓(𝑥, 𝑦) =  (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) 

 

Calculating the partial derivatives: 

 
𝜕𝑓

𝜕𝑥
= 2𝑥 + 𝑦 𝑐𝑜𝑠(𝑥𝑦) 

 
𝜕𝑓

𝜕𝑦
= 2𝑦 + 𝑥 𝑐𝑜𝑠(𝑥𝑦) 

 

Optimization Algorithm and visualization 

 
Figure 1, Graphical view of the Optimization Algorithm 

 

Example 2 

The Rosenbrock function is commonly used as a test function for optimization, but the function is 

different. It's a multimodal, non-convex function suitable for testing optimization algorithms. 

 

Consider the non-linear function optimization problem. 

 

𝑓(𝑥, 𝑦) = 𝑒−(𝑥2+ 𝑦2) +  
1

2
(𝑥2 + 𝑦2) 

 

This function is non-convex and has a global minimum 

 

Using the Rosenbrock method we define the function above and implement the function in Python 

programming we also calculate the gradient. 
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Calculate the gradient of the function: 

 

∇𝑓(𝑥, 𝑦) =  (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) 

Calculating the partial derivatives: 

 
𝜕𝑓

𝜕𝑥
= −2𝑥𝑒−(𝑥2+ 𝑦2) + 𝑥 

 
𝜕𝑓

𝜕𝑦
= −2𝑦𝑒−(𝑥2+ 𝑦2) + 𝑦 

Optimization Algorithm and visualization 

 
Figure 2, Graphical view of the Optimization Algorithm and visualization 

 

Example 3 

The Rosenbrock function is commonly used as a test function for optimization, but the function is 

different. It's a multimodal, non-convex function suitable for testing optimization algorithms. 

 

Consider the non-linear function optimization problem. 

 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + sin(𝑥) . cos (𝑦) 

 

Using the Rosenbrock method we define the function above and implement the function in Python 

programming we also calculate the gradient. 

 

Calculate the gradient of the function: 

 

∇𝑓(𝑥, 𝑦) =  (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) 

Calculating the partial derivatives: 

 
𝜕𝑓

𝜕𝑥
= 2𝑥 + cos(𝑥) cos(𝑦) 

 
𝜕𝑓

𝜕𝑦
= 2𝑦 − sin(𝑥) sin(𝑦) 
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Optimization Algorithm and visualization 

 
Figure 3, Graphical view of the Optimization 3D Surface 

 

IV. Conclusion 
The research shows that the Rosenbrock function can be effectively applied as a challenging test model 

for optimization techniques. It consists of multiple sub-problems and has a non-convex structure fully suitable 

for proving the state of the art solution performance. This research also shows how optimization can be done 

and the results visualized using Python, thus providing practical ideas and analysis based on gradient 

comparisons and the use of algorithms. The current work has laid a foundation for future research, which may 

focus on using different optimization approaches or may expand the usage of the method to approximate other, 

more realistic functions. 
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