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Abstract:

This research paper is related to the degree of approximation of the conjugate of 2w —periodic function belonging

to the Lip(e, 7)(0 < a < 1,r = 1)-class by using (E, ¢)(C, 1)((E, qg) means of the conjugate Fourier series. Our
result may be for the coming researchers in the future.
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Introduction

Let ¥iog Wy be @ given infinite series and the sequence {s,} its nth partial sum.The sequence-to-
seguence transform

Cf:ll = LEE:D S M= u"l'z"" {1]

R+l

define the Cesara means of order one of {s,}. If lim,__CL = s, the series T w,, is said to be (C, 1) summable
tos.

The sequence-to-sequence transform
q_ 1 n Y n-k - —n-
Ef = 1o Theo (1)a"*sig>0n=012.. 2)

define the Euler mean of order g = 0 of {s,}.

ger1pd _ 1 n n ! ok 1 ey .
EpChEy —WEH {quﬂ mEm Z;,-:u{ )qu sy (3)

a (L+gi™ v

The series Yo, u,, is said to be (E, q){(C, 1){(E.g) summable ta s, ifim ,_ __EfCLE} = s.

For a 2 periadic signal which is integrable in the sense of Lebesgue aver (—m, ).
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The conjugste of Fourier series iz defined by
Ty (byeoskx —aycoskx) (4]
and nth partial sum is defined by
0 Fix) =0 (bycoskx — aycoskx) (5]
The conjugate of f denoted b*,r?is defined by
fixy= —ﬁ limg o j:r witcos [E}r.it
where W(t) = flx + 1) — flx — £}

& function f € Lipa, if
[flz+t)—Ffilx+&) =008} for P<a< L

and f € Lipla, r)if

(B iy =0, 0<agirz1,

L .- morm is defined by

fo= (T 1F@P)f. pz 1.
Le-norm of a function f: B = R is defined by £,

fo = sup{|fix)l/f: R — R}
The degree of appraximation of function 1 B — R by a trigonometric polynomial £, [1] is defined by
[Ite = Fll = supfle, — fl:x € R}
This method of approximation iz called trigonometric Fourier approximation.

We also write

t:+1

0 i 1 . n=k 1 - 1 - u L-FDS }t
E.Cq El‘il =m; [E}q m; (1 '|'|f_'|'::'"le::':}{|| S‘[(J‘!—[%T

Vi
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andt = [i], the integral part ﬂf%.

r

Known theorem
Various investigators such as Dhakzl[2], Lal and Singh[8], Mittal et al. [5,7), Qureshi[4.5] Sonker and

Zinzh[3] have studied the degree of approximation in various function spaces such as Lip & , Uiple, v), Up{fithv)
and weighted (L,.£0t)) by using triangular matrix summability and product summakilicy [C,1)(E,1), (M0, JIE.1).
Zonker and Singh[3] have determined the degres of approximation of the conjugate of signals (functions)
belonging to Lip(e, v )-class by(C, 11(E, q) means of conjugate trigonometric Fourier series. Sonker and Singh have
prowved the following:

Theorem 1
[9] Let fix) be & 2Zm-periodic, Lebezsue integrable function and belonging to the Lip(a, »)- class with r =

1 and @r = 1. Then the degree of approximation of fx), the conjugate of Fix) by (€, 11(E, ) means of its
conjugste Fourier series is given by

c,}s,‘,'—f:a[n.i “Jn =012 (5)

Main theorem
The objective of this paper is to astzblizh the following theorem.

Theorem 2
Let f{x) be a 2Zr-pericdic, Lebesgus integrable function znd belonging to the Lip{a, »)- class with » = 1

and ar = 1. Then the degree of approximation of Hx), the conjugate of F(x) by (E g)(C 1)(E,q) means of its
conjugste Fourier series is given by

ECiEd — f =..f;l(»mi “Yn= 01200 (7]

provided

(S (woseyar)

o). (2]

(_r". (e " /e) dr) = oftn +1)%), (5)

Where J is an arbitrary numbersuch that (e + s < —land 1/fs =1 — Lfrforr > L

3. Lemmas
We need the following lemmas for the proof of our theoram.
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3.1 Lemma

&, ()] =G[f¢}+u((n+1}:] for0<ts-— <

Proaf.

T (i
D P

= s B (D) B rip Y, (i) gt e el
= s oo (1) 0 s Do ), (o) @ [0.5) # otsino = 0]
= [z @ By ()]

i () mZa ) (e w0

o[t (v + 1) + 0[5 (n + D+ 1]

= c:[_;}+ of(n + 13¢),

K ()] = o | Tice (1) " o B

i 1
Inviewaofsiniv+ 1t < (v+ 1gford <t < % and [S:-ﬂ [;}} =2 for

D<= w [3, p247].

3.2 Lemma
|E, ()] = G[}}+u(1}fm%5 t<m

Proaf.

If'-|||:|:}|—=-7 g |Ek-._.[ } H k.l.'::1 "_I-, Z-“F u .ul
T (e Y (e
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<o B () B Y, (5) et
= s B () B iy (2)a [0 () + o)

= [Tt (o et i), (D)0

T (o T iy ()]

—n+1)] + [ (n + 1)]

= o[§}+ o1},

) - T ! =
In view of | zine + 1)e] =< 1 and Ii.s'm I:;}} = - for0<t<m [3 p.247]

4. Proof of main Theorem
The integral reprasentatian of 5, (f; x) is given by

.. I
= |= sl B |r

T

wiz)
Therefore, we have

£|'\.H.

E(fix)— fla) =[] wit)—

Mow, denoting (£, g )(C, 10 E. q) transform of £, (f; x) by EJ CLE.l, wee write

EICIE —f=—— [EJ, T (i}%z'" (*) g *cos (v +_;}t] (10}
= [j.r-"% +II:T+I]1M3}K¢|:3HT =1, + L.say. (11}

Using Lemma 3.1, Halder's inequzlity, condition (8} and Minkwiski's inequality, we have

8] = [F7 || |K () e
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< [17 ey | [im. o 75 otk O]

= O(n+1) '}[Hm,. W I O+ 1 '}‘dz]?

= O(n+1) '}\(zzﬂh o [T “-‘dr}?l +(r.fm,. W+ 1}rﬁﬂﬂ=‘dzﬂ

=0(n+1y Y(n+ 1) = 1 £ (n 4+ 1)+ 101

=0(n+1y Yn+ 1) + (n+ 1) n+ 1yt

=0[tn+ 1) b1y

:a[[:z+ 1)~ ) (12}

Mo, we consider

Il = [ B IIK @l

Using Lemma 3.2, condition (9} and Minkowiski’s inequality, we have

L i

<1z, (2 o [, ()T

= o((n+ 1) Jr_ (_ (0(2)+ au;.].)‘ dz]'

= oftn+ 1) [ (e + =0 ae |

m+i n=1

=o((n+ 1)) (Jl gless “*‘dc}%+ (_r'*n c*='ﬁi=¢-;r}%l

=o(n+ 1) [+ D" ST+ )] A+ @+ e 0)
=ofin+ 1" T+ i+ 1)

=ofin+ 1T +(n+ 1)1
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:a[(n+1} BT+ (n+ 1) ’}]

=ﬂ((”+l} =',1—} (13)
Combining (12} and (13}, we have
|EfciEs — fl = 0 (n+ 1)),

Hence,

ESCiE: —f = (J.,-,H |EfClES —fl:x}l'd.s:}F = -D(;'z "".1‘}.
This completes the proof of theorem 2.
5 Corollaries
5.1 Corollary
Ifone (E,g0 = L, then (E, g3 (C, 1)(E, ) means reduces to (£, 1J(E, g} means.

Hence, Theorem 2 reduces to theoram 1.

5.2 Corollary
When g = 1 then (E,g)(C, 13(E, g means reduces to (E, 13(C, 13(E, 1} means.

53 Corollary
IF{C, 1) = 1, then (E, g (L, 13(E, g} means reduces to (E, g (E, g} means.

6. Conclusion
The result established here is 2 more general form than some earlier existing results in the zenze that, one

(E,q} = 1 our proposed mean is reduced to (£, 11(E, g) Mean.
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