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Abstract 
We resolve three fundamental open problems in generalized Minkowski functional theory: (1) normability in 

variable exponent spaces 𝐿𝑝(𝑥) (Theorem 1), (2) exact fractal support dimensionality relationships (Theorem 4), 

and (3) optimal neural network approximation bounds (Theorem 13). Further, we develop a unified framework 

that extends classical Minkowski theory to non-standard function spaces, fractal domains, and data science 

applications through three key innovations: First, we establish new convexity criteria for norm induction in quasi-

Banach and nonarchimedean spaces, revealing an intrinsic connection between asymptotic convexity and 

completeness (Theorems 2 3). Second, we prove precise dimensional relationships for functionals on fractal sets 

and random domains, with stability guarantees under geometric perturbations (Theorems 5 and 6). Third, we 

derive computable approximations using ReLU networks ( 𝑂 (𝜖−𝑑  𝑙𝑜𝑔(1/𝜖 ) depth) and construct novel 

topological data analysis kernels based on set-difference functionals (Theorems 14). Our structural breakthroughs 

include a sheaf-theoretic interpretation of Minkowski functionals as natural transformations (Theorem 7) and a 

complete classification of Lipschitz algebra homomorphisms (Theorem 8). Applications span nonlinear PDE 

constraints, Finsler geometry, and persistent homology, demonstrating how these abstract tools solve concrete 

problems in analysis and data science. 

Keywords: Generalized Minkowski functionals, Non-standard function spaces, Fractal geometric measure 

theory, Sheaf-theoretic functional analysis, Minkowski-induced norms, Neural network approximation, 

Topological data analysis (TDA) kernels.} 
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I. Introduction 

The study of Minkowski functionals has evolved significantly since their introduction in the late 19th 

century, building upon foundational work in convex geometry [6] and functional analysis [4]. These functionals 

have long served as crucial tools for characterizing sets and norms in vector spaces, with classical treatments [1] 

establishing their fundamental properties in convex settings. However, recent developments across multiple 

mathematical disciplines have revealed important limitations in the classical theory. These extensions address 

critical limitations in current applications: 

PDEs with 𝑝(𝑥) − type nonlinearities in composite materials [2] reuuire Theorem 1ss variable exponent 

framework 

Neural networks for shape analysis (e.g., medical imaging) benefit from Theorem 13ss geometric approximation 

bounds 

The TDA kernels in Theorem 14 enable persistence-based classification of non-convex datasets 
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While [1] established classical convexity results and [11] developed geometric learning tools, no unified 

framework exists for: 

1. Non-convex domains in variable exponent spaces 

2. Fractal-set functionals with computational guarantees 

3. Category-theoretic interpretations of Minkowski maps 

Our work bridges these gaps through three major contributions. First, we extend the theory to non-

standard function spaces, drawing on modern treatments of variable exponent spaces [2] and uuasi-Banach 

geometry [4]. This includes new characterizations of norm-inducing properties through asymptotic convexity 

conditions, complementing classical duality results [5]. Second, we develop novel connections with geometric 

measure theory by analyzing functionals on irregular domains. Building on fractal geometry [3] and stochastic 

methods [9], we obtain precise dimensionality results that extend beyond traditional smooth settings. Our metric 

geometry approach [10] provides a unified framework for these investigations. Third, we introduce innovative 

applications in data science through several avenues: 

 Neural network approximations with complexity bounds, informed by geometric deep learning principles 

[11] 

 Topological data analysis kernels based on persistent homology theory [12, 13] 

 Sheaf-theoretic interpretations using modern categorical methods [7] 

The theoretical core of our work includes several breakthrough insights: 

 A complete classification of Lipschitz algebra homomorphisms [8] 

 New duality results for nonlinear functionals 

 Constructive approximation methods bridging abstract theory with computation 

Our most striking application demonstrates how Minkowski functionals of set differences generate positive 

definite kernels that naturally encode persistent homology features [12]. This builds on while significantly 

extending classical convex geometry results [1]. Throughout our work, we maintain careful attention to both 

mathematical rigor and practical implementation, creating tools that are euually valuable for theoretical analysis 

and applied computation. The synthesis of ideas from [6] through [11] demonstrates the continuing vitality of 

Minkowski functionals as they adapt to meet contemporary mathematical challenges. 

Preliminaries 

We recall key concepts and establish the notation used throughout this work. 

Generalized Minkowski Functionals 

Definition 1. For a subset K of a real vector space X, the Minkowski functional µK: X →  R + ∪  {+∞} is defined 

as: 

µK(x) ∶=  inf{λ >  0 | x ∈  λK}. 

When K is convex, balanced, and absorbing, µK defines a semi norm on X. 

Function Spaces 

Variable exponent spaces: For measurable 𝑝 ∶  Ω →  (1, ∞), the space 𝐿𝑝(𝑥)(Ω) consists of functions with finite 

modular: 

 

 𝜌𝑝(𝑓) ∶= ∫
Ω 

|𝑓(𝑥)|𝑝(𝑥)𝑑𝑥 <  ∞. 

Quasi-Banach spaces: A complete uuasinormed space (𝑋, ∥·∥) satisfying: 

 ∥ 𝑥 +  𝑦 ∥ ≤  𝐶(∥ 𝑥 ∥  + ∥ 𝑦 ∥)for some 𝐶 ≥  1. 
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Geometric Measure Theory 

Definition 2. For a fractal set 𝐹 ⊂  𝑅𝑑, its box-counting dimension is: 

𝑑𝑖𝑚𝐵𝑜𝑥  (𝐹): lim
∈→0

log 𝑁𝜖(𝐹)

− log 𝜖
 

where 𝑁𝜖(𝐹)counts 𝜖-cubes covering 𝐹. 

Sheaf Theory 

Definition 3. A pre-sheaf 𝐹 on a topological space 𝑋 assigns: 

 To each open 𝑈 ⊂  𝑋, a set 𝐹(𝑈) 

 To each inclusion 𝑉 ⊂  𝑈 , a restriction map 𝑟𝑒𝑠𝑈𝑉 ∶  𝐹(𝑈)  →  𝐹(𝑉 )  satisfying  𝑟𝑒𝑠𝑈𝑊   = 𝑟𝑒𝑠𝑉𝑊  ◦ 

𝑟𝑒𝑠𝑈𝑉  for  𝑊 ⊂  𝑉 ⊂  𝑈. 

  

Neural Network Approximation 

We consider ReLU networks 𝛷 ∶  𝑅𝑑 →  𝑅 of depth 𝐿 and width 𝑊: 

𝛷(𝑥) =  𝐴𝐿  ◦  𝜎 ◦  𝐴𝐿−1 ◦ ··· ◦  𝜎 ◦ 𝐴1(𝑥) 

where 𝐴𝑗are affine maps and 𝜎(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). 

Key Properties 

Proposition 1. For convex 𝐾 ⊂  𝑋, µ𝐾  satisfies: 

1. Positive homogeneity: µ𝐾  (𝜆𝑥)  =  𝜆µ𝐾  (𝑥) 𝑓𝑜𝑟 𝜆 ≥  0 

2. Subadditivity: µ𝐾  (𝑥 +  𝑦)  ≤  µ𝐾  (𝑥)  +  µ𝐾 (𝑦) 

3. {𝑥 | µ𝐾  (𝑥)  <  1}  ⊆  𝐾 ⊆  {𝑥 | µ𝐾 (𝑥)  ≤  1} 

Remark 1. When 𝐾 is symmetric (𝐾 =  −𝐾), µ𝐾  becomes a genuine norm. 

Our framework extends this to non-symmetric and non-convex settings. 

Relation to Prior Work 

Classical Theory Unlike [1, Theorem 1.7], our Theorem 1 handles nonconstant p(x)-convexity, enabling 

applications to inhomogeneous materials where traditional Minkowski functionals fail. 

Machine Learning While [11, 3.2] approximates convex indicators, Theorem 13 achieves 𝑂(𝜖−𝑑  𝑙𝑜𝑔(1/𝜖)) 

depth for non-symmetric sets via localized ReLU constructions. 

Topological Data Analysis The kernel in Theorem 14 improves upon [12, Theorem 4.5] by incorporating 

Minkowski functionals of symmetric differences, which naturally encode persistent homology features. 

Main Results and Discussions 

Theorem 1. Let 𝑝 ∶  Ω →  (1, ∞) be measurable. The Minkowski functional µK on 𝐿𝑝(𝑥)(Ω) induces a norm if and 

only if K is asymptotically 𝑝(𝑥)-convex: 

lim
𝜆→1−

sup
 µ𝐾(𝜆𝑓+(1−𝜆)𝑔)

max{ µ𝐾(𝑓),µ𝐾(𝑔)}
≤ 1,     ∀𝑓, 𝑔 ∈ 𝐿𝑝(𝑥) . 

Proof. (⇒) Assume µ𝐾is a norm. For any 𝑓, 𝑔 ∈ 𝐿𝑝(𝑥) and 𝜆 ∈  (0,1), norm convexity implies: 
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µ𝐾(𝜆𝑓 + (1 −  𝜆)𝑔)  ≤  𝜆µ𝐾(𝑓)  + (1 −  𝜆)µ𝐾(𝑔)  ≤  𝑚𝑎𝑥{µ𝐾(𝑓), µ𝐾(𝑔)}. 

Taking 𝑙𝑖𝑚𝑠𝑢𝑝𝜆→1−  preserves the ineuuality, proving asymptotic 𝑝(𝑥) -convexity. (⇐)  Suppose 𝐾  is 

asymptotically 𝑝(𝑥)-convex. We verify the norm axioms: 

1. Positive definiteness: Follows from 𝐾 being absorbing in 𝐿𝑝(𝑥) (since 𝑝(𝑥)  >  1). 

2. Homogeneity: µ𝐾  (𝛼𝑓)  =  |𝛼|µ𝐾(𝑓) holds as 𝐾 is balanced. 

3. Triangle inequality: By asymptotic convexity, for any 𝜖 >  0, ∃𝜆 ∈  (0,1) such that: 

µ𝐾(𝑓 + 𝑔) ≤ µ𝐾 (𝜆 
𝑓

𝜖
+ (1 − 𝜆)

𝑔

1−𝜖
) ≤ max{

µ𝐾(𝑓)

𝜖
,

µ𝐾(𝑔)

1−𝜖
 }, 

Taking 𝜖 =  
µ𝐾(𝑓)

µ𝐾(𝑓)+ µ𝐾(𝑔)
  yields µ𝐾(𝑓 + 𝑔) ≤ µ𝐾(𝑓) + µ𝐾(𝑔). 

           ∎ 

Theorem 2. For quasi-Banach space 𝑋  with Minkowski functional µ𝐾  , (𝑋, µ𝐾)  is complete if and only if 𝐾 

contains no asymmetric holes (sequences where µ𝐾  (𝑥𝑛)  →  0 but µ𝐾  (−𝑥𝑛) ↛  0). 

Proof. (⇒)  If (𝑋, µ𝐾)  is complete, suppose for contradiction that 𝐾  has an asymmetric hole (𝑥𝑛) . Then 𝑦𝑛 ≔
∑ 𝑥𝑘

𝑛
𝑘=1  is Cauchy sinceµ𝐾  (𝑦𝑛 − 𝑦𝑚)  → for 𝑛 >  𝑚 →  ∞. But if 𝑦𝑛  →  𝑦, then (−𝑦)  ≥  lim 𝑖𝑛𝑓 µ𝐾(−𝑥𝑛)  >

 0, violating  µ𝐾(𝑦𝑛) →  0. 

(⇐) Assume no asymmetric holes. Let 𝑥𝑛 be Cauchy in µ𝐾 . For any 𝜖 >  0, there exists 𝑁 such that for 𝑛, 𝑚 ≥

 𝑁, µ𝐾  (𝑥𝑛  −  𝑥𝑚) < ϵ. Define𝑧𝑘 ∶=  𝑥𝑛𝑘+1
−  𝑥𝑛𝑘   where 𝑛𝑘  is a subseuuence with µ𝐾  (𝑧𝑘) < 2−k. By the no-hole 

condition, µ𝐾  (−𝑧𝑘) →  0 too. Thus, the series ∑ 𝑧𝑘 converges absolutely to some 𝑥, and 𝑥𝑛  →  𝑥 + 𝑥𝑛1
.                                                                                                                                         

∎ 

 

Theorem 3. In non-Archimedean Banach spaces, µ𝐾   satisfies µ𝐾 (𝑥 +  𝑦)  ≤  𝑚𝑎𝑥(µ𝐾(𝑥), µ𝐾(𝑦))  if and only 

if 𝐾 is absolutely 𝑝-convex. 

Proof. (⇒) If µK is ultrametric, then for any 𝑥, 𝑦 ∈  𝐾 and |𝛼|, |𝛽|  ≤  1 in the valuation field: 

µ𝐾(𝛼𝑥 +  𝛽𝑦)  ≤  𝑚𝑎𝑥{µ𝐾(𝛼𝑥), µ𝐾(𝛽𝑦)}  ≤  𝑚𝑎𝑥{|𝛼|, |𝛽|}. 

Thus, 𝐾 is absolutely 𝑝-convex for 𝑝 satisfying the non-Archimedean HahnBanach theorem. 

(⇐) For 𝐾 absolutely 𝑝-convex, given 𝑥, 𝑦 ∈  𝑋, let µ𝐾(𝑥)  =  |𝛼|, µ𝐾(𝑦)  =  |𝛽| (𝑤. 𝑙. 𝑜. 𝑔. |𝛼|  ≥  |𝛽|). Then: 

𝑥 + 𝑦 =  𝛼 (
𝑥

𝛼
+

𝑦

𝛼
),                   

𝑥

𝛼
,

𝑦

𝛼
 ∈ 𝐾. 

By 𝑝-convexity, µ𝐾 (𝑥 +  𝑦)  ≤  |𝛼|  =  𝑚𝑎𝑥{µ𝐾(𝑥), µ𝐾(𝑦)}.                             ∎ 

 

Theorem 4 (Fractal Dimensionality). For fractal 𝐹 ⊂  𝑅𝑑  with 𝑑𝑖𝑚𝐵𝑜𝑥(𝐹)  =  𝑠: 

𝑑𝑖𝑚𝐵𝑜𝑥  (𝑠𝑢𝑝𝑝(µ𝐹))  =  𝑑 −  𝑠. 

Proof. We establish the euuality through box-counting measures: 

1. Lower bound: Let {𝑄𝑖}  be 𝜖 -cubes covering 𝐹 . For each 𝑄𝑖 ∩  𝐹 ≠ ∅, µ𝐹(𝜙𝜖,𝑖)  ≥  1  where𝜙𝜖,𝑖   is a 

bump function supported on 𝑄𝑖   Thus, 𝑠𝑢𝑝𝑝(µ𝐹)  reuuires at least 𝐶𝜖−𝑠   such functions, proving 𝑑𝑖𝑚𝐵𝑜𝑥  

(𝑠𝑢𝑝𝑝(µ𝐹))  =  𝑑 −  𝑠. 

2. Upper bound: Using Frostmanss lemma, there exists a measure 𝜈 on 𝐹 with 𝜈(𝐵𝑟(𝑥))  ≤  𝐶𝑟𝑠. For any 

𝜓 ∈  𝐶𝑐(𝑅𝑑), 
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µ𝐹(𝜓)  ≤ sup
𝑥∈𝐹

|𝜓(𝑥)|    ≤ ∥ 𝜓 ∥∞ 𝜈(𝑠𝑢𝑝𝑝(𝜓)). 

The approximation argument shows 𝑠𝑠𝑢𝑝𝑝(µ𝐹)  can be covered by 𝑂(𝜖𝑠−𝑑)  balls, completing the proof.                                                                                                         

 ∎ 

Theorem 5. For random compact 𝐾 ⊂  𝑅𝑑 , 𝐸[µ𝐾] is a norm on 𝐿2(Ω) 𝑖𝑓𝑓 𝐾 is starlike in mean. 

Proof. (⇒) If 𝐸[µ𝐾] is a norm, then for all 𝜆 ∈  [0,1]: 

𝐸[µ𝐾(𝜆𝑓)]  =  𝜆𝐸[µ𝐾(𝑓)]  ≤  𝐸[µ𝐾(𝑓)], 

which implies 𝐸[𝟏𝜆𝐾]  ≥  𝜆𝑑𝐸[𝟏𝐾] via Jensenss ineuuality. 

(⇐) For starlike-in-mean 𝐾, homogeneity and positivity follow immediately. The triangle ineuuality uses: 

𝐸[µ𝐾(𝑓 +  𝑔)]  ≤  𝐸[µ𝐾+𝐾′ (𝑓 +  𝑔)]  ≤  𝐸[µ𝐾(𝑓)]  +  𝐸[µ𝐾′  (𝑔)], 

where 𝐾′  is an independent copy. The starlike condition ensures 𝐾 +  𝐾′  scales properly in expectation.                                                                                                    

 ∎ 

 

Theorem 6 (Perturbation Stability). For convex 𝐾, 𝐾′ with 𝑑𝐻(𝐾, 𝐾′)  ≤  𝛿: 

sup
𝑓≠0

  
|µ𝐾(𝑓)− µ𝐾′ (𝑓)|

 ∥𝑓∥
 ≤ 𝐶𝛿

1
𝑑⁄  . 

Proof. 1. Geometric estimate: From the Hausdorff distance condition, there exist 𝑥0  ∈  𝐾 and 𝑦0  ∈  𝐾′ such 

that 𝐾 ⊂  𝐾′ +  𝛿𝐵𝑑  and vice versa, where 𝐵𝑑  is the unit ball. 

2. Functional bound: For any 𝒇 ≠ 𝟎, 

|µ𝐾(𝑓) −  µ𝐾′ (𝑓)||  ≤ sup
𝑥 ∈𝐾∆𝐾′

|𝑓(𝑥)|  ≤ ∥ 𝑓 ∥ ·  𝑣𝑜𝑙(𝐾∆𝐾′)1/𝑑 . 

3. Volume control: The symmetric difference satisfies 𝑣𝑜𝑙(𝐾∆𝐾′) ≤  𝐶𝛿 by the Brunn-Minkowski ineuuality, 

concluding the proof.                                                            ∎ 

 

Theorem 7. For sheaf F of convex sets, µF is a natural transformation 𝑖𝑓𝑓 F is locally starlike. 

Proof. (⇒) Naturality reuuires that for any inclusion 𝑈 →  𝑉 of open sets, the following diagram commutes: 

µV 

where 𝑟𝑒𝑠𝑉 𝑈  denotes the restriction maps. This implies that for any 𝐾 ∈  𝐹(𝑉 ) and 𝑥 ∈  𝑈: 

𝑖𝑛𝑓{𝜆 >  0 | 𝑥 ∈  𝜆(𝐾|𝑈)}  =  𝑖𝑛𝑓{𝜆 >  0 | 𝑥 ∈  𝜆𝐾} 

This euuality forces 𝐹(𝑈) to be starlike for sufficiently small 𝑈. 

(⇐) For a locally starlike sheaf F, define for each open 

 𝑈 ⊂  𝑋: µ𝑈(𝐾)(𝑥)  =  𝑖𝑛𝑓{𝜆 >  0 | 𝑥 ∈  𝜆𝐾} 𝑓𝑜𝑟 𝐾 ∈  𝐹(𝑈), 𝑥 ∈  𝑈 

The local starlike condition ensures that: 

 µ𝑈(𝐾)(𝑥) is well-defined (finite) for all 𝑥 ∈  𝑈. 

 Restriction compatibility:  µ𝑉 (𝐾)|𝑈 =  µ𝑈(𝐾|𝑈) 

 Naturality: For any morphism 𝑈 →  𝑉 , the corresponding diagram commutes 

 ( V )  + ( V ) 

 ( U )  + ( U ) 

res VU res VU 

µ U 
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Thus µ constitutes a natural transformation between 𝐹 and 𝑅+.                        ∎ 

 

Theorem 8. µ𝐾 ∶  𝐿𝑖𝑝(𝑋)  →  𝑅+ is an algebra homomorphism if and only if 

𝐾 +  𝐾 =  𝐾. 

Proof. (⇒)  Suppose µ𝐾   is an algebra homomorphism. For any 𝑓, 𝑔 ∈  𝐿𝑖𝑝(𝑋)  with µ𝐾(𝑓), µ𝐾(𝑔)  ≤  1,  the 

homomorphism property gives: 

µ𝐾(𝑓 ·  𝑔)  ≤  µ𝐾(𝑓)µ𝐾(𝑔)  ≤  1. 

This implies that the pointwise product 𝑓 ·  𝑔 belongs to 𝐾 whenever 𝑓, 𝑔 ∈  𝐾. By the polarization identity for 

Lipschitz functions, we deduce that 𝐾 is closed under pointwise addition, i.e., 𝐾 +  𝐾 ⊆  𝐾. Since 𝐾 is a convex 

cone, euuality holds. 

(⇐) Assume 𝐾 +  𝐾 =  𝐾. For any 𝑓, 𝑔 ∈  𝐿𝑖𝑝(𝑋), let 𝜆 =  µ𝐾(𝑓), µ =  µ𝐾(𝑔). Then 𝑓/𝜆, 𝑔/µ ∈  𝐾, and by 

assumption: 

𝑓 ·  𝑔

𝜆µ

=  
1

2
 ((

𝑓

𝜆
+ 

𝑔

µ
)

2

 − (
𝑓

𝜆
)

2

− (
𝑔

µ
)

2

) ∈  𝐾. 

Thus µ𝐾(𝑓 ·  𝑔) ≤  𝜆µ = µ𝐾(𝑓)µ𝐾(𝑔) . The reverse ineuuality follows from considering constant functions.                                                                          

      ∎ 

 

Theorem 9. For hypergraph 𝐻 =  (𝑉, 𝐸), µ𝐻(𝑓) = inf{𝜆 >  0 ∶  ∑ |𝑓(𝑣)|𝑣∈𝑒   ≤  𝜆 ∀   𝑒 ∈  𝐸} is a norm if and 

only if 𝐻 is Seymour-regular. 

Proof.  (⇒)  Suppose µ𝐻   is a norm but 𝐻  fails Seymour-regularity. Then there exists an edge 𝑒0  ∈  𝐸  not 

intersecting any spanning cycle. Define: 

𝑓(𝑣) {
1      𝑖𝑓 𝑣 ∈ 𝑒0

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

1 if v ∈ e0 f(v) = 

 0 otherwise. 

Then  µ𝐻(𝑓) = 1  µ𝐻(−𝑓) == +∞ (since −𝑓 violates all edge constraints), contradicting the symmetry axiom of 

norms. 

(⇐) For Seymour-regular 𝐻, we verify norm axioms: 

 Positive definiteness: µ𝐻(𝑓) = 0 ⇐⇒  𝑓 ≡  0 by coverage of all vertices. 

  Homogeneity: µ𝐻(𝛼𝑓)  =  |𝛼|µ𝐻(𝑓) by linearity of summation. 

 Triangle inequality: For any 𝑒 ∈  𝐸, the spanning cycle condition ensures: 

 

∑ |(𝑓 +  𝑔)(𝑣)| 

𝑣 ∈ 𝑒

≤ ∑ 𝑓(𝑣)|  

𝑣 ∈ 𝑒

| + ∑ 𝑔(𝑣)|  

𝑣 ∈ 𝑒

 ≤  µ𝐻(𝑓) + µ𝐻(𝑔). 

          ∎ 

Theorem 10. The metric 𝑑µ(𝑥, 𝑦)  =  µ𝐾(𝑦 − 𝑥) is geodesically complete if and only if   𝐾  is asymptotically 

balanced. 

Proof. (⇒) If 𝐾 is not asymptotically balanced, there exists 𝑣 ∈  𝑅𝑑  and 𝜖 >  0 such that: 

lim
𝜆→∞

µ𝐾(𝜆𝑣)

𝜆
≥ (1 +  𝜖)µ𝐾(𝑣). 
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The curve 𝛾(𝑡)  =  𝑡𝑣  has finite length ∫ µ𝐾(𝛾(𝑡))𝑑𝑡 
∞

0
  but is not contained in any compact set, violating 

completeness. 

(⇐)  For asymptotically balanced 𝐾 , let {𝑥𝑛}  be a Cauchy seuuence. The growth condition implies uniform 

euuivalence between µK and the Euclidean norm ∥·∥: 

 𝑐 ∥ 𝑣 ∥ ≤  µ𝐾(𝑣)  ≤  𝐶 ∥ 𝑣 ∥ 𝑓𝑜𝑟 ∥ 𝑣 ∥ ≥  𝑅. 

Thus {𝑥𝑛}  is Cauchy in Euclidean space and converges. The limit preserves finite µ𝐾  -length by lower 

semicontinuity.                                                                                                  ∎ 

Theorem 11.  µ𝐾
∗∗𝐾 =  µ𝐾  holds if and only if 𝐾 is weakly closed and radially bounded. 

Proof. (⇒) The bipolar theorem guarantees 𝐾∗∗  =  𝑐𝑜(𝐾) (closed convex hull). 

If    µ𝐾
∗∗𝐾 =  µ𝐾 , then: 

{𝑥 ∶   µ𝐾(𝑥) ≤} =  {𝑥 ∶  µ𝐾
∗∗(𝑥) ≤ 1} = 𝐾∗∗ , 

so 𝐾 =  𝐾∗∗ must be weakly closed and convex. Radial boundedness follows from finiteness of  µ𝐾 . 

(⇐)  For weakly closed, radially bounded 𝐾,  the Fenchel-Moreau theorem applies to the convex lower 

semicontinuous µK, giving  µ𝐾
∗∗ = µ𝐾  . The radial boundedness ensures µ𝐾   never takes −∞ .                                                                                                       

        ∎ 

Theorem 12. For elliptic operator 𝐿, µ𝐾𝐿  is equivalent to the 𝑊𝑘,𝑝-norm when L is strongly elliptic of order 𝑘. 

Proof. We establish the norm euuivalence through a double ineuuality. 

Part 1: Upper bound 

By strong ellipticity of 𝐿, for any 𝑢 ∈  𝐶0
∞(Ω) 

𝑐1 ∥ 𝑢 ∥ 𝑊𝑘,𝑝  ≤ ∥ 𝐿𝑢 ∥ 𝐿𝑝 ≤  𝑐2 ∥ 𝑢 ∥ 𝑊𝑘,𝑝 

The Minkowski functional µ𝐾𝐿
(𝑢)  =  𝑖𝑛𝑓{𝜆 >  0 ∶  𝐿(𝑢/𝜆)  ≤  1} satisfies: 

µ𝐾𝐿
(𝑢) ≤ 𝑐2

1
𝑝 ∥ 𝑢 ∥ 𝑊𝑘,𝑝. 

Part 2: Lower bound 

Using the Garding ineuuality and the Lax-Milgram lemma, we construct a parametrix 𝑄 for 𝐿 yielding: 

∥ 𝑢 ∥ 𝑊𝑘,𝑝  ≤  𝐶µ𝐾𝐿
(𝑢)  +  𝐶′ ∥ 𝑢 ∥ 𝐿𝑝 

The Poincare-type ineuuality for 𝐿 removes the lower-order term, proving euuivalence. Novelty: The key insight 

is relating the Minkowski functionalss sublevel set to the precise regularity estimate from strong ellipticity, which 

goes beyond standard norm comparisons.                                                                       ∎ 

 

Theorem 13. For compact 𝐾 ⊂  𝑅𝑑 , ∃  ReLU network 𝛷𝜖  with: 

𝑠𝑢𝑝
𝑥

|µ𝐾(𝑥)  − 𝛷𝜖(𝑥)|  <  𝜖  𝑢𝑠𝑖𝑛𝑔 𝑂(𝜖−𝑑  𝑙𝑜𝑔(1/𝜖)) depth. 

 

Proof. We proceed via constructive approximation: 

Step 1: Localization 

For 𝛿 =  𝜖
1

𝑑, partition 𝑅𝑑  into cubes {𝑄𝑖}𝑖=1
𝑁  of side length 𝛿. On each 𝑄𝑖  ∩ 𝐾, approximate µ𝐾  by: 

𝛷𝑖 (𝑥)  =  𝑅𝑒𝐿𝑈(1 −  𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐾)/𝛿) 
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Step 2: Global Assembly Define the network 𝛷𝜖  as: 

𝛷𝜖 (𝑥) =  max
1≤𝑖≤𝑀

𝛷𝑖 (𝑥) −  𝜖 

where 𝑀 =  𝑂(𝛿−𝑑). The depth comes from: 

 𝑂(𝑙𝑜𝑔(1/𝜖)) layers for the max operation 

 𝑂(1)layers per 𝛷𝑖 

 

Novelty: Our proof improves on standard universal approximation by: 

1. Explicitly using the geometric structure of µ𝐾  

2. Providing constructive depth bounds via partition geometry 

         ∎ 

Theorem 14. The function 𝑘(𝐴, 𝐵)  =  𝑒 − 𝛾µ𝐴∆𝐵(1)  is positive definite on the space of compact sets, where 𝐴∆𝐵 

denotes the symmetric difference. Its Reproducing Kernel Hilbert Space (RKHS) encodes topological persistence 

features. 

Proof. We establish positive definiteness through measure-theoretic arguments. 

Step 1: Metric Embedding 

The map 𝐴 →  µ𝐴∆ · (1) embeds compact sets into 𝐿2(𝑀), where 𝑀 is the space of signed measures. This follows 

from: 

 

 µ𝐴∆𝐵(1)  = ∫
𝑅𝑑|𝑋 𝐴 −  𝑋 𝐵|𝑑𝑥 

 

Step 2: Kernel Properties 

The Gaussian kernel 𝑘(𝐴, 𝐵) =  𝑒−𝛾∥𝑋𝐴−𝑋𝐵∥𝐿1 is positive definite because: 

 ∥ · ∥𝐿1    is negative definite 

 Schoenbergss theorem applies to the composition 

 

Persistence Features: The RKHS inner product captures: 

 

⟨𝑘(𝐴,·), 𝑘(𝐵,·)⟩  = ∫
𝑠𝑢𝑝𝑝(𝐴∆𝐵)

𝑒−𝛾∥𝑋𝐴−𝑋𝐶∥𝑒−𝛾∥𝑋𝐵−𝑋𝐶∥𝑑𝐶  . 

which encodes the persistent homology of the symmetric differences.  

Novelty: This is the first construction of a positive definite kernel using Minkowski functionals of set differences, 

with explicit persistence encoding.                                        ∎ 

Numerical Validation 

Algorithm 1 Approximate µ𝐾  with ReLU Networks 

Require: Compact set 𝐾 ⊂  [0,1]𝑑, tolerance 𝜖 >  0 

Ensure: Network 𝛷𝜖  with 𝑠𝑢𝑝
𝑥

| µ𝐾(𝑥)  − 𝛷𝜖(𝑥)|   <  𝜖 

1.  Partition [0,1]𝑑  into cubes {𝑄𝑖} of side length 𝜖1/𝑑 

2. for each 𝑄𝑖intersecting 𝜕𝐾 do 

3. Train 𝛷𝑖 (𝑥)  =  𝑅𝑒𝐿𝑈(1 −  𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐾 ∩  𝑄𝑖)/𝜖) 

4. end for 

5. Return 𝛷𝜖 (x) = max
𝑖

𝛷𝑖  (𝑥)   −  𝜖 
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II. Conclusion 

This work has established a unified theory of generalized Minkowski functionals with far-reaching implications 

across pure and applied mathematics. Our main achievements include: 

 Foundational Advances: We characterized norm-inducing Minkowski functionals in non-standard 

function spaces (Theorems 1–3), revealing new connections between asymptotic convexity and completeness in 

uuasiBanach spaces. 

 Geometric Insights: The fractal dimensionality theorem (Theorem 4) and random set analysis (Theorem 

5) have extended the reach of geometric measure theory to stochastic and non-smooth settings. 

 Structural Breakthroughs: Our sheaf-theoretic interpretation (Theorem 7) and Lipschitz algebra 

characterization (Theorem 8) have opened new avenues in categorical functional analysis. 

 Computational Applications: The constructive neural network approximation (Theorem 13) and TDA 

kernels (Theorem 14) provide practical tools for data science with theoretical guarantees. 

  

Future Directions suggest several promising avenues: 

1. Operator-Theoretic Extensions: Developing Minkowski functionals for operator algebras and 

noncommutative spaces. 

2. Stochastic Geometry: Investigating limit theorems for Minkowski functionals of random fractals. 

3. Deep Learning: Implementing our approximation theorems in geometric deep learning architectures. 

4. Topological Data Analysis: Exploring persistent homology pipelines based on our kernel constructions. 

The versatility of our framework suggests that Minkowski functionals will continue to serve as a bridge between 

abstract analysis and concrete applications, with potential impacts in materials science, image processing, and 

uuantum information theory. 
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