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Abstract 
Solidification and fusion are important processes applied in several fields of science and technology. Recently, 

FAR beyond the realms of materials science and metallurgy, many applications have risen in latent heat thermal 

energy storage and melting and growth of ice plates. Due to the relative difficulty in obtaining numerical solutions 

for moving boundary problems for a wide range of space and time scales. No studies in the literature consider a 

comprehensive first and second-order treatment of Biot number for phase change. This work proposes four 

closed-form solutions for the transient solidification of pure and eutectic materials for one- and three-dimensional 

semi-infinite slabs considering convective boundary conditions and melting superheat. This approach can predict 

wide space and time scales by adding a first-order term in the parabolic profile to address the transition from 

second to first-order similarity variables. 
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I. Introduction 
It is well established that solidification and fusion are important processes applied in several fields of 

science and technology [1]. Recently, for example, far beyond the fields of materials science and metallurgy, 

many applications have emerged with regard to latent heat thermal energy storage (LHTES) and other methods 

related to the melting and growth of ice sheets. On the other hand, the properties of materials are strongly 

dependent on their composition, manufacturing process and particularly their structure. Solidification, for 

example, plays a fundamental role in obtaining homogeneous materials and in controlling their structure in some 

industrial processes, such as casting, laser welding, surface remelting and continuous casting. Therefore, the study 

of the complex relationship between solidification parameters and the resulting microstructure is of growing 

importance in the field of metallurgy for the development of increasingly suitable methods for quality casting in 

the shipping, automotive, electronics and aerospace industries since the physical, metallurgical, mechanical, and 

electrochemical properties of most materials depend mainly on the level of control that can be achieved during 

liquid-solid phase change. Nevertheless, in many cases, complete details of the physical mechanisms related to 

the formation of various types of structures in the obtained materials are not yet known [2]. 

By analysing theoretically and experimentally the solidification process, certain variables that effectively 

act on the liquid-solid transformation are investigated because, during phase change, various physical-chemical 

effects occur, which, if not properly controlled, can compromise the performance and quality of the final casting 

part. In the initial moments when the phenomenon occurs, heat transfer is one of the main factors that has a 

significant effect on the thermal variables involved, especially the cooling rate (TR) [3,4]. Thus, a better 

understanding of the effect of thermal parameters on the formation of structural aspects is essential for planning 

some industrial manufacturing processes. 

It is known that heat conduction with phase change due to melting-freezing occurs in the transient 

regime. The mathematical treatment of solidification becomes more challenging because it results in differential 

equations with nonlinear boundary conditions at the moving interface [5-7], almost always requiring the 

establishment of physical or mathematical simplifying hypotheses from real conditions so that analytical solutions 

may be made viable. Despite this, numerous mathematical approaches have been proposed to provide an adequate 

theoretical background for modelling the mechanisms by which heat is transferred in both the solid and liquid 

domains in transformation as well as in the cooling fluid. 

Studies have proposed analytical methods and numerical solutions to describe solidification, the results 

of which, in some cases, are very close to those observed in various cases of practical interest. Nonetheless, it is 

imperative to emphasize that the precision and control of their respective outcomes are directly correlated with 

the properties of interest of the material under investigation, the boundary conditions assumed, and the physical 
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and/or mathematical simplifications accepted. In this sense, the analytical methods [8-19] are limited to the study 

of solidification in slabs due to the greater simplicity of the mathematical treatment as a result of their geometric 

characteristics, which is the only case for which an exact solution has been obtained thus far. Therefore, they 

present considerable limitations from the point of view of their practical application. One of the main advantages 

of numerical methods [20-34] is that they allow more realistic boundary conditions to be accepted, for which it 

would not be possible to obtain analytical solutions. The accuracy of these methods is generally quite high, but 

they require the use of computational resources as well as a certain amount of complexity. These methods 

generally lead to greater agreement with the results observed in practice. On the other hand, a large number of 

experimental studies have also been performed to fulfil the same objective [35-54]. Another interesting technique 

that has been widely used to determine the unsteady thermal variables acting during solid‒liquid phase change is 

the inverse heat conduction problem (IHCP), which is based on a mathematical description of the physical 

mechanisms of the process supplemented with experimentally obtained temperature measurements in metals 

and/or molds. The inverse problem is solved by adjusting the parameters in the mathematical description to 

minimize the difference between the model-computed values and the experimental measurements [55-57]. 

In this work, closed-form solutions for the transient solidification of both pure and eutectic materials are 

derived for one- and three-dimensional semi-infinite slabs considering convective boundary conditions and 

melting superheat. 

 

II. Mathematical Formulation 
Analytical solutions are derived for one-phase and two-phase transient solidification of pure and eutectic 

materials in one- and three-dimensional problems considering anisotropic media. An anisotropic medium can be 

characterised by a dependency on thermophysical properties and space coordinates, i.e., for density 𝜌 =

𝜌(𝑥, 𝑦, 𝑧) = √ 𝜌𝑥
2 + 𝜌𝑦

2 + 𝜌𝑧
2 , specific heat 𝑐𝑃 = 𝑐𝑃(𝑥, 𝑦, 𝑧) = √ 𝑐𝑃𝑥

2 + 𝑐𝑃𝑦
2 + 𝑐𝑃𝑧

2  , thermal conductivity 𝑘 =

𝑘(𝑥, 𝑦, 𝑧) = √ 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2  and thermal diffusivity, 𝛼 = 𝛼(𝑥, 𝑦, 𝑧) = √ 𝛼𝑥

2 + 𝛼𝑦
2 + 𝛼𝑧

2 . It is true, as for a 3D 

problem, solutions are independently obtained in each direction 𝜃(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃𝑥(𝑥, 𝑡) ∙ 𝜃𝑦(𝑦, 𝑡) ∙ 𝜃𝑧(𝑧, 𝑡) and 

coupled with the solution of the similarity variable 𝜑  considering the moving boundary interface, 𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
=

(𝑘𝑆∇T𝑆)|𝑋= 𝑠− − (𝑘𝐿∇T𝐿)|𝑋= 𝑠+ , and position 𝑠 = √𝑠𝑥
2 + 𝑠𝑦

2 + 𝑠𝑧
2. 

 

One-dimensional One-Phase Moving Boundary Problem 

For the freezing/solidification of a pure metal/compound at the fusion temperature or eutectic 

temperature, as shown in Figure 1, the governing partial differential equation and the initial and boundary 

conditions for a semi-infinite slab are given by 

 
𝜕2𝑇𝑆

𝜕𝑥2
=

1

𝛼𝑆

𝜕𝑇𝑆

𝜕𝑡
   0 < 𝑥 < 𝑠(𝑡)        (1) 

 

𝑡 = 0,  0 < 𝑥 < +∞,  𝑇 = 𝑇𝐹          (2) 

 

𝑡 > 0, 𝑥 = 0, −𝑘
𝜕𝑇

𝜕𝑥
|
𝑥=0

= ℎ(𝑇 − 𝑇∞)        (3) 

 

𝑡 > 0, 𝑥 = 𝑠(𝑡), 𝑇𝑆 = 𝑇𝐹           (4) 

 

𝑡 > 0, 𝑥 → +∞, 𝑇𝑆 = 𝑇𝐹          (5) 

 

𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
= 𝑘𝑆

𝜕𝑇𝑆

𝜕𝑥
|
𝑥=−𝑠

          (6) 
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Figure 1 Schematic representation of one-phase transient solidification. 

 

The base solution for the solid phase is a well-known 1D one for a semi-infinite slab whose boundary 

condition at 𝑧 = 0 is of the third kind [58] for nonreaction problems. The temperature profile dependence on time 

and space can be expressed as 

 

𝑇(𝑥, 𝑡) − 𝑇∞ = 𝐴𝑆 + 𝐵𝑆 {erfc (
𝑥

2√𝛼𝑆𝑡
) − exp (

ℎ 𝑥

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 ) erfc (

𝑥

2√𝛼𝑆𝑡
+

ℎ √𝛼𝑆 𝑡

𝑘𝑆
)}    (7) 

 

where 𝐴𝑆 and 𝐵𝑆 are constants determined from the solid interface at 𝑠(𝑡) = 0 and 𝑠(𝑡) = 𝑠. 
 

For 𝑠 = 0, 

𝑇𝑆(𝑠 = 0, 𝑡) = 𝑇∞ = 𝐴𝑆 + 𝐵𝑆          (8) 

 

which is a consequence of a convective boundary condition already applied in the solution for 𝑥 = 0 

when the base function 𝑇(𝑥, 𝑡) is derived, so that 𝑇𝑆(𝑠 = 0, 𝑡) cannot be admitted by 𝑇𝑆(𝑥, 𝑡). In this sense, 𝐵𝑆 is 

a constant value that can be found as a function of the temperature profile at 𝑥 = 0. 

 

For 𝑥 = 𝑠, 

 

𝑇𝑆(𝑥 = 𝑠, 𝑡) = 𝑇𝐹 = 𝐴𝑆 + 𝐵𝑆 {erfc (
𝑠

2√𝛼𝑆𝑡
) − exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 ) erfc (

𝑠

2√𝛼𝑆𝑡
+

ℎ √𝛼𝑆 𝑡

𝑘𝑆
)}    (9) 

 

By taking the parabolic profile 
𝑠

2√𝛼𝑆𝑡
 and writing it as a similarity variable 𝜑(𝑠, 𝑡) =

𝑠

2√𝛼𝑆𝑡
, Eq. (9) becomes 

 

𝑇𝐹 = 𝐴𝑆 + 𝐵𝑆 {erfc(𝜑) − exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)}      (10) 

 

and, 

𝑇∞ = 𝐴𝑆 + 𝐵𝑆            (11) 

 

𝑇𝐹 = 𝐴𝑆 + 𝐵𝑆 {erfc(𝜑) − exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)}      (12) 

 

Subtracting Eq. (12) from Eq. (11) leads to 

 

𝑇∞ − 𝑇𝐹 = 𝐵𝑆 {1 − erfc(𝜑) + exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)}     (13) 

 

which gives 𝐵𝑆 as 
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𝐵𝑆 =
𝑇∞−𝑇𝐹

{1−𝑒𝑟𝑓𝑐(𝜑)+𝑒𝑥𝑝(
ℎ 𝑠

𝑘𝑆
+
ℎ2𝑠2

4𝜑2𝑘𝑠
2) 𝑒𝑟𝑓𝑐(𝜑+

ℎ 𝑠

2𝜑 𝑘𝑆
)}

          (14) 

 

Similarly, the constant 𝐴𝑆 can be determined as follows: 

 

𝐴𝑆 = 𝑇𝐹 −
(𝑇∞−𝑇𝐹)

{1−𝑒𝑟𝑓𝑐(𝜑)+𝑒𝑥𝑝(
ℎ 𝑠

𝑘𝑆
+
ℎ2𝑠2

4𝜑2𝑘𝑠
2)𝑒𝑟𝑓𝑐(𝜑+

ℎ 𝑠

2𝜑 𝑘𝑆
)}
{𝑒𝑟𝑓𝑐(𝜑) − 𝑒𝑥𝑝 (

ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) 𝑒𝑟𝑓𝑐 (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)}  (15) 

 

The temperature profile can now be expressed in terms of constant 𝐴𝑆 and 𝐵𝑆, 

 
𝑇𝑆(𝑥, 𝑡) − 𝑇𝐹
𝑇∞ − 𝑇𝐹

=

{erfc (
𝑥

2√𝛼𝑆𝑡
) − exp (

ℎ 𝑥
𝑘𝑆

+
ℎ2𝛼𝑆𝑡
𝑘𝑠
2 ) erfc (

𝑥

2√𝑎𝑠𝑡
+
ℎ √𝛼𝑆 𝑡
𝑘𝑆

)−erfc(𝜑) + exp (
ℎ 𝑠
𝑘𝑆
+
ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠
2𝜑 𝑘𝑆

)}

{1 − erfc(𝜑) + exp (
ℎ 𝑠
𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠
2𝜑 𝑘𝑆

)}
 

            (16) 

 

Aiming to express the temperature profile in a more suitable form, the following auxiliary functions 

𝜓(𝑠, 𝜑) and 𝜁(𝑠, 𝜑) can be defined as 

 

𝜓(𝑠, 𝑡) = {1 − erfc(𝜑) + exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 ) erfc (𝜑 +

ℎ √𝛼𝑆 𝑡

𝑘𝑆
)}                 (17a) 

 

 

𝜓(𝑠, 𝜑) = {1 − erfc(𝜑) + exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)}                 (17b) 

 

and, 

 

𝜁(𝑠, 𝑡) = −erfc(𝜑) + exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 ) erfc (𝜑 +

ℎ √𝛼𝑆 𝑡

𝑘𝑆
)                 (18a) 

 

𝜁(𝑠, 𝜑) = −erfc(𝜑) + exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝑠2

4𝜑2𝑘𝑠
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
)                 (18b) 

 

Substituting Eq. (17) and Eq. (18) into Eq. (16) yields 

 

𝑇𝑆(𝑥,𝑡)−𝑇𝐹

𝑇∞−𝑇𝐹
=

{erfc(
𝑥

2√𝛼𝑆𝑡
)−exp(

ℎ 𝑥

𝑘𝑆
+
ℎ2𝛼𝑆𝑡

𝑘𝑠
2 )erfc(

𝑥

2√𝛼𝑆𝑡
+
ℎ √𝛼𝑆 𝑡

𝑘𝑆
)+𝜁(𝑠,𝑡)}

𝜓(𝑠,𝑡)
                 (19a) 

 

 

𝑇𝑆(𝑥,𝑠)−𝑇𝐹

𝑇∞−𝑇𝐹
=

{erfc(𝜑
𝑥

𝑠
)−exp(

ℎ 𝑥

𝑘𝑆
+
ℎ2𝑠2

4𝜑2𝑘𝑠
2)erfc(𝜑

𝑥

𝑆
+

ℎ 𝑠

2𝜑 𝑘𝑆
)+𝜁(𝑠,𝜑)}

𝜓(𝑠,𝜑)
                (19b) 

 

 

The thermal gradient 𝑇𝑆(𝑥, 𝑡) in the vicinity of boundary 𝑥 = 𝑠−  is found by deriving the temperature 

profile with respect to 𝑥, which has the following form: 

 

𝜕𝑇𝑆(𝑠,𝑡)

𝜕𝑥
|
𝑥= 𝑠−

=
(𝑇𝐹−𝑇∞)

𝜓(𝑠,𝑡)
{
ℎ

𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 ) exp (𝜑 +

ℎ √𝛼𝑆 𝑡

𝑘𝑆
) +

2𝜑

√𝜋 𝑠 exp(𝜑2)
−

2𝜑

√𝜋 𝑠 exp[(𝜑+
ℎ √𝛼𝑆 𝑡

𝑘𝑆
)

2

]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2𝛼𝑆𝑡

𝑘𝑠
2 )}                      (20a) 
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𝜕𝑇𝑆(𝑠,𝜑)

𝜕𝑥
|
𝑥= 𝑠−

=
(𝑇𝐹−𝑇∞)

𝜓(𝑠,𝜑)
{
ℎ

𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2) exp (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
) +

2𝜑

√𝜋 𝑠 exp(𝜑2)
−

2𝜑

√𝜋 𝑠 exp[(𝜑+
ℎ 𝑠

2𝜑 𝑘𝑆
)
2
]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2)}                      (20b) 

 

A common way to write a solution of a partial differential equation to avoid instability concerning the 

magnitude of the involved dimensional variables in the function evaluation is to express this in terms of 

dimensionless numbers with physical meaning, such as Ste, Biot and Biot2Fo, 

 

𝑡 =
𝑠2

4𝛼𝑆𝜑
2            (21) 

 

𝐹𝑜 =
𝛼𝑆 𝑡

𝑠2
            (22) 

 

𝐵𝑖𝑜𝑡 =
ℎ 𝑠

𝑘𝑆
            (23) 

 

𝑆𝑡𝑒 =
𝐶𝑃𝑆(𝑇𝐹−𝑇∞)

𝐿
            (24) 

 

𝐵𝑖𝑜𝑡2𝐹𝑜 =
ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2 =

𝐵𝑖𝑜𝑡2

4 𝜑2
           (25) 

 

 

𝜓(𝐵𝑖𝑜𝑡, 𝜑) = {1 − 𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡 +
𝐵𝑖𝑜𝑡2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡

2𝜑 
)}      (26) 

 

The derivative of 𝑠 with respect to 𝑡 gives 

 
𝑑𝑠

𝑑𝑡
=

2𝜑2𝛼𝑆

𝑠
            (27) 

 

and by substituting the temperature gradient 
𝜕𝑇𝑆(𝑥,𝑡)

𝜕𝑥
|
𝑥= 𝑠−

 into the moving boundary heat balance, Eq. (26), the 

similarity root 𝜑 can be obtained as 

 

𝜌𝑆𝐿
2𝜑2𝛼𝑆

𝑠
= 𝑘𝑆

(𝑇𝐹−𝑇∞)

𝜓(𝑠,𝜑)
{
ℎ

𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
) +

2𝜑

√𝜋 𝑠 exp(𝜑2)
−

2𝜑

√𝜋 𝑠 exp[(𝜑+
ℎ 𝑠

2𝜑 𝑘𝑆
)
2
]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2)}            (28) 

 

Eq. (28) is rearranged to the following form: 

 

𝜑
𝐿

𝐶𝑃𝑆(𝑇𝐹−𝑇∞) 
=

1

𝜓(𝑠,𝜑)
{

ℎ 𝑠

2𝜑𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
ℎ 𝑠

2𝜑 𝑘𝑆
)
2
]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2)}            (29) 

 

Eq. (29), expressed in terms of dimensionless numbers and parameters of heat conduction, becomes 
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𝜑 =
𝑆𝑡𝑒

 𝜓(𝐵𝑖𝑜𝑡,𝜑)
{
𝐵𝑖𝑜𝑡

2𝜑
exp (𝐵𝑖𝑜𝑡 +

𝐵𝑖𝑜𝑡2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡

2𝜑
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
𝐵𝑖𝑜𝑡

2𝜑
)
2
]

exp (𝐵𝑖𝑜𝑡 +
𝐵𝑖𝑜𝑡2

4 𝜑2
)}  

            (30) 

 

Similarly, the temperature profile 𝜃𝑆(𝑥, 𝑡) =
𝑇𝑆(𝑥,𝑡)−𝑇𝐹

𝑇∞−𝑇𝐹
 and the auxiliary function 𝜁(𝑠, 𝜑) can be written as a 

function of 𝐵𝑖𝑜𝑡 and the interface position 𝑠 according to the following expressions: 

 

𝑇𝑆(𝑥,𝑠)−𝑇𝐹

𝑇∞−𝑇𝐹
=

{𝑒𝑟𝑓𝑐(𝜑
𝑥

𝑠
)−𝑒𝑥𝑝(𝐵𝑖𝑜𝑡

𝑥

𝑠
+
𝐵𝑖𝑜𝑡2

4𝜑2
) 𝑒𝑟𝑓𝑐(𝜑

𝑥

𝑠
+
𝐵𝑖𝑜𝑡

2𝜑
)+𝜁(𝐵𝑖𝑜𝑡,𝜑)}

𝜓(𝐵𝑖𝑜𝑡,𝜑)
       (31) 

 

and 

 

𝜁(𝐵𝑖𝑜𝑡, 𝜑) = −𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡 +
𝐵𝑖𝑜𝑡2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡

2𝜑
)      (32) 

 

Wagner, cited by Jost [59], assumed tentatively that the plane of discontinuity is shifted proportionally 

with √𝑡 when analysing one-phase solid-state diffusion, which is valid only for high Biot numbers. In the present 

study, the relationship between the position of the interface and time is better posed by a combination of parabolic 

and linear profiles, whose linear profile represents the ratio between any position 𝑠 and the 𝐵𝑖𝑜𝑡 related to the 

material diffusion capacity 
ℎ 𝛼𝑠𝑡

𝑘𝑆
, i.e., dimensional 

 

𝑡 =
𝑠2

4𝛼𝑆𝜑
2 +

2 𝑠 𝑘𝑆 𝜑 

ℎ 𝛼𝑆
                      (33a) 

and dimensionless time, 

𝑡∗ =
𝑠∗2

4 𝐹𝑜 𝜑2
+

2 𝑠∗ 𝜑 

 𝐵𝑖𝑜𝑡 𝐹𝑜
                      (33b) 

 

Three-dimensional One-Phase Moving Boundary Problem 

A three-dimensional one-phase transient solution for the freezing/solidification of a semi-infinite slab 

can be described by the PDE in Eq. (34), the initial Eq. (35)-(37), and the boundary conditions Eq. (38)-(46) as 

follows: 

 
𝜕2𝑇𝑆

𝜕𝑥2
+

𝜕2𝑇𝑆

𝜕𝑦2
+

𝜕2𝑇𝑆

𝜕𝑧2
=

1

𝛼𝑆

𝜕𝑇𝑆

𝜕𝑡
;  0 < 𝑥 < 𝑠𝑥(𝑡),   0 < 𝑦 < 𝑠𝑦(𝑡), 𝑎𝑛𝑑  0 < 𝑧 < 𝑠𝑧(𝑡)   (34) 

 

𝑡 = 0, 0 < 𝑥 < +∞, 𝑇𝑆 = 𝑇𝐹          (35) 

 

𝑡 = 0, 0 < 𝑦 < +∞, 𝑇𝑆 = 𝑇𝐹           (36) 

 

𝑡 = 0, 0 < 𝑧 < +∞, 𝑇𝑆 = 𝑇𝐹          (37) 

 

𝑡 > 0, 𝑥 = 0, ℎ𝑥(𝑇 − 𝑇∞𝑥
) = −𝑘𝑆𝑥

𝜕𝑇𝑆

𝜕𝑥
|
𝑥= 𝑠𝑥

−
       (38) 

 

𝑡 > 0, 𝑦 = 0, ℎ𝑦 (𝑇 − 𝑇∞𝑦
) = −𝑘𝑆𝑦

𝜕𝑇𝑆

𝜕𝑦
|
𝑦= 𝑠𝑦

−
       (39) 

 

𝑡 > 0, 𝑧 = 0, ℎ𝑧(𝑇 − 𝑇∞𝑧
) = −𝑘𝑆𝑧

𝜕𝑇𝑆

𝜕𝑧
|
𝑧= 𝑠𝑧

−
        (40) 

 

𝑡 > 0, 𝑥 = 𝑠𝑥(𝑡), 𝑇𝑆 = 𝑇𝐹           (41) 

 

𝑡 > 0, 𝑦 = 𝑠𝑦(𝑡), 𝑇𝑆 = 𝑇𝐹          (42) 

 

𝑡 > 0, 𝑧 = 𝑠𝑧(𝑡), 𝑇𝑆 = 𝑇𝐹           (43) 

 

𝑡 > 0, 𝑥 → +∞, 𝑇𝑆 = 𝑇𝐹           (44) 
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𝑡 > 0, 𝑦 → +∞, 𝑇𝑆 = 𝑇𝐹           (45) 

 

𝑡 > 0, 𝑧 → +∞, 𝑇𝑆 = 𝑇𝐹           (46) 

 

𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
= 𝑘𝑆𝑥

𝜕𝑇𝑆

𝜕𝑥
|
𝑥=−𝑠𝑥

+ 𝑘𝑆𝑦
𝜕𝑇𝑆

𝜕𝑦
|
𝑦=−𝑠𝑦

+ 𝑘𝑆𝑧
𝜕𝑇𝑆

𝜕𝑧
|
𝑧=−𝑠𝑧

       (47) 

 

where 𝑠 = 𝑖̂𝑠𝑥 + 𝑗̂𝑠𝑦 + �̂�𝑠𝑧 , �⃗�𝑆 = 𝑖̂𝜌𝑆𝑥 + 𝑗̂𝜌𝑆𝑦 + �̂�𝜌𝑆𝑧 , �⃗⃗�𝑆 = 𝑖�̂�𝑆𝑥 + 𝑗̂𝑘𝑆𝑦 + �̂�𝑘𝑆𝑧  and 𝐶𝑃𝑆 = 𝑖̂𝐶𝑃𝑆𝑥 +

𝑗̂𝐶𝑃𝑆𝑦 + �̂�𝐶𝑃𝑆𝑧 . A three-dimensional solution for the temperature profile can be considered as the product of the 

solutions in 𝑥, 𝑦 and 𝑧 axes, that is, 

 

𝜃(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃𝑥(𝑥, 𝑡) ∙ 𝜃𝑦(𝑦, 𝑡) ∙ 𝜃𝑧(𝑧, 𝑡)         (48) 

 

which, in terms of 
𝑇𝑆(𝑥,𝑦,𝑧,𝑡)−𝑇𝐹

𝑇∞𝑖−𝑇𝐹
 gives 

 
𝑇𝑆(𝑥,𝑦,𝑧,𝑡)−𝑇𝐹

𝑇∞𝑖−𝑇𝐹
= [

𝑇𝑆(𝑥,𝑡)−𝑇𝐹

𝑇∞𝑥−𝑇𝐹
] ∙ [

𝑇𝑆(𝑦,𝑡)−𝑇𝐹

𝑇∞𝑦−𝑇𝐹
] ∙ [

𝑇𝑆(𝑧,𝑡)−𝑇𝐹

𝑇∞𝑧−𝑇𝐹
]        (49) 

 

The solutions for the temperature profiles x, y, and z are designated as 

 

𝑇𝑆(𝑥,𝑡)−𝑇𝐹

𝑇∞𝑥−𝑇𝐹
=

{erfc(
𝑥

2√𝛼𝑆𝑥𝑡
)−exp(

ℎ𝑥 𝑥

𝑘𝑆𝑥
+
ℎ2𝛼𝑆𝑥𝑡

𝑘𝑆𝑥
2 )erfc(

𝑥

2√𝛼𝑆𝑥𝑡
+

ℎ𝑥 √𝛼𝑆𝑥𝑡

𝑘𝑆𝑥
)+𝜁(𝑠𝑥,𝜑)}

𝜓(𝑠𝑥,𝜑)
     (50) 

 

𝑇𝑆(𝑦,𝑡)−𝑇𝐹

𝑇∞𝑦−𝑇𝐹
=

{erfc(
𝑦

2√𝛼𝑆𝑦𝑡
)−exp(

ℎ𝑦 𝑦

𝑘𝑆𝑦
+
ℎ2𝛼𝑆𝑦𝑡

𝑘𝑆𝑦
2 )erfc(

𝑦

2√𝛼𝑆𝑦𝑡
+

ℎ𝑦 √𝛼𝑆𝑦𝑡

𝑘𝑆𝑦
)+𝜁(𝑠𝑦,𝜑)}

𝜓(𝑠𝑦,𝜑)
     (51) 

 

𝑇𝑆(𝑧,𝑡)−𝑇𝐹

𝑇∞𝑧−𝑇𝐹
=

{erfc(
𝑧

2√𝛼𝑆𝑧𝑡
)−exp(

ℎ𝑧 𝑧

𝑘𝑆𝑧
+
ℎ2𝛼𝑆𝑧𝑡

𝑘𝑆𝑧
2 )erfc(

𝑧

2√𝛼𝑆𝑧𝑡
+

ℎ𝑧 √𝛼𝑆𝑧𝑡

𝑘𝑆𝑧
)+𝜁(𝑠𝑧,𝜑)}

𝜓(𝑠𝑧,𝜑)
     (52) 

 

 

By making 𝑖 = {𝑥, 𝑦, 𝑧} and writing the auxiliary functions 𝜓(𝑠𝑖 , 𝜑) and 𝜁(𝑠𝑖 , 𝜑) in terms of 𝑖, result in 

 

𝜓(𝑠𝑖 , 𝑡) = {1 − erfc(𝜑) + exp (
ℎ 𝑠𝑖

𝑘𝑆𝑖
+

ℎ2𝛼𝑆𝑖𝑡

𝑘𝑆𝑖
2 ) erfc (𝜑 +

ℎ𝑖 √𝛼𝑆𝑖  𝑡

𝑘𝑆𝑖
)}                 (53a) 

 

𝜓(𝑠𝑖 , 𝜑) = {1 − erfc(𝜑) + exp (
ℎ𝑖 𝑠𝑖

𝑘𝑆𝑖
+

ℎ𝑖
2 𝑠𝑖

2

4𝜑2𝑘𝑆𝑖
2 ) erfc (𝜑 +

ℎ𝑖 𝑠𝑖

2𝜑 𝑘𝑆𝑖
)}                (53b) 

 

and, 

 

 

𝜁(𝑠𝑖 , 𝑡) = −erfc(𝜑) + exp (
ℎ𝑖 𝑠𝑖

𝑘𝑆𝑖
+

ℎ𝑖
2𝛼𝑆𝑖

𝑡

𝑘𝑆𝑖
2 ) erfc (𝜑 +

ℎ𝑖 √𝛼𝑆𝑖  𝑡

𝑘𝑆𝑖
)                 (54a) 

 

𝜁(𝑠𝑖 , 𝜑) = −erfc(𝜑) + exp (
ℎ𝑖 𝑠𝑖

𝑘𝑆𝑖
+

ℎ𝑖
2 𝑠𝑖

2

4𝜑2𝑘𝑆𝑖
2 ) erfc (𝜑 +

ℎ𝑖 𝑠𝑖

2𝜑 𝑘𝑆𝑖
)                  (54b) 
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By writing Eq. (50)-(52) as a function of position 𝑠  through the similarity variable 𝜑 =
𝑠

2√𝛼𝑆𝑡
, the 

derivatives of the temperature profile at 𝑥 = 𝑠𝑥
− , 𝑦 = 𝑠𝑦

−  and 𝑧 = 𝑠𝑧
−  are 

 

𝜕𝑇𝑆(𝑠,𝑡)

𝜕𝑥
|
𝑥= 𝑠𝑥

−
=

(𝑇𝐹−𝑇∞𝑥_)

𝜓(𝑠𝑥,𝑡)

{
 
 

 
 

ℎ𝑥

𝑘𝑆𝑥
exp (

ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ𝑥
2𝛼𝑆𝑥𝑡

𝑘𝑆𝑥
2 ) exp (𝜑 +

ℎ𝑥 √𝛼𝑆𝑥  𝑡

𝑘𝑆𝑥
) +

2𝜑

√𝜋 𝑠𝑥 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑥 exp

[
 
 
 
(𝜑+

ℎ𝑥 √𝛼𝑆𝑥
 𝑡

𝑘𝑆𝑥
)

2

]
 
 
 
exp (

ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ2𝛼𝑆𝑥𝑡

𝑘𝑆𝑥
2 )

}
 
 

 
 

                   (55a) 

 

𝜕𝑇𝑆(𝑥,𝑡)

𝜕𝑥
|
𝑥= 𝑠𝑥

−
=

(𝑇𝐹−𝑇∞𝑥)

𝜓(𝑠𝑥,𝜑)
{
ℎ𝑥

𝑘𝑆𝑥
exp (

ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 ) exp (𝜑 +

ℎ𝑥 𝑠𝑥

2𝜑 𝑘𝑆𝑥
) +

2𝜑

√𝜋 𝑠𝑥 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑥 exp[(𝜑+
ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

)

2

]

exp (
ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ𝑥
2  𝑠𝑥

2

4 𝜑2 𝑘𝑆
2)}                   (55b) 

𝜕𝑇𝑆(𝑠,𝑡)

𝜕𝑦
|
𝑦= 𝑠𝑦

−
=

(𝑇𝐹−𝑇∞𝑦)

𝜓(𝑠𝑦,𝑡)

{
 
 

 
 

ℎ𝑦

𝑘𝑆𝑦
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2𝛼𝑆𝑦𝑡

𝑘𝑆𝑦
2 ) exp(𝜑 +

ℎ𝑦 √𝛼𝑆𝑦  𝑡

𝑘𝑆𝑦
)+

2𝜑

√𝜋 𝑠𝑦 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑦 exp

[
 
 
 
(𝜑+

ℎ𝑦 √𝛼𝑆𝑦
 𝑡

𝑘𝑆𝑦
)

2

]
 
 
 
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ2𝛼𝑆𝑦𝑡

𝑘𝑆𝑦
2 )

}
 
 

 
 

                  (56a) 

 

𝜕𝑇𝑆(𝑦,𝑡)

𝜕𝑦
|
𝑦= 𝑠𝑦

−
=

(𝑇𝐹−𝑇𝑦)

𝜓(𝑠𝑦,𝜑)
{
ℎ𝑦

𝑘𝑆𝑦
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 ) exp (𝜑 +

ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑦
) +

2𝜑

√𝜋 𝑠𝑦 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑦 exp[(𝜑+
ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑦
)

2

]

exp (
ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 )}                    (56b) 

 

𝜕𝑇𝑆(𝑠,𝑡)

𝜕𝑧
|
𝑧= 𝑠𝑧

−
=

(𝑇𝐹−𝑇∞𝑧)

𝜓(𝑠𝑧,𝑡)

{
 
 

 
 

ℎ𝑧

𝑘𝑆𝑧
exp (

ℎ𝑧 𝑠𝑧

𝑘𝑆𝑧
+

ℎ𝑧
2𝛼𝑆𝑧𝑡

𝑘𝑆𝑧
2 ) exp (𝜑 +

ℎ𝑧 √𝛼𝑆𝑧  𝑡

𝑘𝑆𝑧
) +

2𝜑

√𝜋 𝑠𝑧 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑧 exp

[
 
 
 
(𝜑+

ℎ𝑧 √𝛼𝑆𝑧 𝑡

𝑘𝑆𝑧
)

2

]
 
 
 
exp (

ℎ𝑦 𝑠𝑧

𝑘𝑆𝑧
+

ℎ2𝛼𝑆𝑧𝑡

𝑘𝑆𝑧
2 )

}
 
 

 
 

                   (57a) 
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𝜕𝑇𝑆(𝑧,𝑡)

𝜕𝑧
|
𝑧= 𝑠𝑧

−
=

(𝑇𝐹−𝑇𝑧)

𝜓(𝑠𝑧,𝜑)
{
ℎ𝑧

𝑘𝑆𝑧
exp (

ℎ𝑧 𝑠𝑧

𝑘𝑆𝑧
+

ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 ) exp (𝜑 +

ℎ𝑧 𝑠𝑧

2𝜑 𝑘𝑆𝑧
) +

2𝜑

√𝜋 𝑠𝑧 exp(𝜑
2)
−

2𝜑

√𝜋 𝑠𝑧 exp[(𝜑+
ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

)

2

]

exp (
ℎ𝑦 𝑠𝑧

𝑘𝑆𝑧
+

ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 )}                    (57b) 

 

The similarity variable is applied here to determine its derivative to express the dependence of the 

transformation interface velocity on 𝑠, as shown by Eq. (57): 

 
𝑑𝑠

𝑑𝑡
=

2𝜑2𝛼𝑆

𝑠
                        (58) 

 

By inserting the temperature gradients into the heat balance in the moving transformation interface, as 

shown in Eq. (47), the similarity variable can be determined as follows: 

 

𝜑 =
𝐶𝑃𝑆𝑥(𝑇𝐹−𝑇∞𝑥) 

𝐿𝑥 𝜓𝑥(𝑠𝑥,𝜑)
{
ℎ𝑥 𝑠𝑥

2𝜑 𝑘𝑆𝑥
exp (

ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 ) erfc (𝜑 +

ℎ𝑥 𝑠𝑥

2𝜑 𝑘𝑆𝑥
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

)

2

]

exp (
ℎ𝑥 𝑠𝑥

𝑘𝑆𝑥
+

ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 )} +

𝐶𝑃𝑆𝑦(𝑇𝐹−𝑇∞𝑦) 

𝐿𝑦 𝜓𝑦(𝑠𝑦,𝜑)
{
ℎ𝑦 𝑠𝑦

2𝜑𝑘𝑆𝑦
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 ) erfc (𝜑 +

ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑦
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑦
)

2

]

exp (
ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 )} +

𝐶𝑃𝑆𝑧(𝑇𝐹−𝑇∞𝑧) 

𝐿𝑧 𝜓𝑧(𝑠𝑧,𝜑)
{
ℎ𝑧 𝑠𝑧

2𝜑𝑘𝑆𝑧
exp (

ℎ𝑧 𝑠𝑧

𝑘𝑆𝑧
+

ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 ) erfc (𝜑 +

ℎ𝑧 𝑠𝑧

2𝜑 𝑘𝑆𝑧
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

)

2

]

exp (
ℎ𝑧 𝑠𝑧

𝑘𝑆𝑧
+

ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 )}                    (59) 

 

By writing the expressions for the temperature profile in each direction and auxiliary functions 𝜓(𝑠𝑖 , 𝜑) 
and 𝜁(𝑠𝑖 , 𝜑) in relation to 𝑆𝑡𝑒𝑖, 𝐵𝑖𝑜𝑡𝑖 , and 𝐵𝑖𝑜𝑡𝑖

2𝐹𝑜𝑖  dimensionless numbers, 

 

𝑡 =
𝑠2

4𝛼𝑆𝜑
2 =

𝑠𝑥
2+𝑠𝑦

2+𝑠𝑧
2

4√𝛼𝑆𝑥
2+𝛼𝑆𝑦

2+𝛼𝑆𝑧
2 𝜑2

          (60) 

 

𝐹𝑜𝑖 =
𝛼𝑆𝑖  𝑡

𝑠𝑖
2              (61) 

 

𝐵𝑖𝑜𝑡𝑖 =
ℎ𝑖 𝑠𝑖

𝑘𝑆𝑖
             (62) 

 

𝑆𝑡𝑒𝑖 =
𝐶𝑃𝑆𝑖

(𝑇𝐹−𝑇∞𝑖
)

𝐿𝑖
            (63) 

 

𝐵𝑖𝑜𝑡𝑖
2𝐹𝑜𝑖 =

ℎ𝑖
2 𝑠𝑖

2

4 𝜑2 𝑘𝑆𝑖
2 =

𝐵𝑖𝑜𝑡𝑖
2

4 𝜑2
           (64) 

 

In this case, the functions 𝜓(𝑠𝑖 , 𝜑) are given by 

 

𝜓(𝐵𝑖𝑜𝑡𝑥 , 𝜑) = {1 − 𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑥 +
𝐵𝑖𝑜𝑡𝑥

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑥

2𝜑 
)}     (65) 

 

𝜓(𝐵𝑖𝑜𝑡𝑦 , 𝜑) = {1 − 𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑦 +
𝐵𝑖𝑜𝑡𝑦

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑦

2𝜑 
)}     (66) 
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𝜓(𝐵𝑖𝑜𝑡𝑧 , 𝜑) = {1 − 𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑧 +
𝐵𝑖𝑜𝑡𝑧

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑧

2𝜑 
)}     (67) 

 

Similarly, the functions 𝜁(𝑠𝑖 , 𝜑) in the corresponding directions are 

 

𝜁(𝐵𝑖𝑜𝑡𝑥 , 𝜑) = −𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑥 +
𝐵𝑖𝑜𝑡𝑥

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑥

2𝜑
)      (68) 

 

𝜁(𝐵𝑖𝑜𝑡𝑦 , 𝜑) = −𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑦 +
𝐵𝑖𝑜𝑡𝑦

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑦

2𝜑
)      (69) 

 

𝜁(𝐵𝑖𝑜𝑡𝑧 , 𝜑) = −𝑒𝑟𝑓𝑐(𝜑) + 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑧 +
𝐵𝑖𝑜𝑡𝑧

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑 +

𝐵𝑖𝑜𝑡𝑧

2𝜑
)      (70) 

 

Then, by writing Eq. (59) as a function of the dimensionless heat conduction number, we obtain 

 

𝜑 =
𝑆𝑡𝑒𝑥 

𝜓(𝐵𝑖𝑜𝑡𝑥,𝜑)
{
𝐵𝑖𝑜𝑡𝑥

2𝜑
exp (𝐵𝑖𝑜𝑡𝑥 +

𝐵𝑖𝑜𝑡𝑥
2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑥

2𝜑
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
𝐵𝑖𝑜𝑡𝑥
2𝜑

)
2
]

exp (𝐵𝑖𝑜𝑡𝑥 +

𝐵𝑖𝑜𝑡𝑥
2

4 𝜑2
)} +

𝑆𝑡𝑒𝑦

 𝜓(𝐵𝑖𝑜𝑡𝑦,𝜑)
{
𝐵𝑖𝑜𝑡𝑦

2𝜑
exp (𝐵𝑖𝑜𝑡𝑦 +

𝐵𝑖𝑜𝑡𝑦
2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑦

2𝜑
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
𝐵𝑖𝑜𝑡𝑦

2𝜑
)
2

]

exp (𝐵𝑖𝑜𝑡𝑦 +

𝐵𝑖𝑜𝑡𝑦
2

4 𝜑2
)} +

𝑆𝑡𝑒𝑧 

𝜓(𝐵𝑖𝑜𝑡𝑧,𝜑)
{
𝐵𝑖𝑜𝑡𝑧

2𝜑
exp (𝐵𝑖𝑜𝑡𝑧 +

𝐵𝑖𝑜𝑡𝑧
2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑧

2𝜑
) +

1

√𝜋 exp(𝜑2)
−

1

√𝜋 exp[(𝜑+
𝐵𝑖𝑜𝑡𝑧
2𝜑

)
2
]

exp (𝐵𝑖𝑜𝑡𝑧 +

𝐵𝑖𝑜𝑡𝑧
2

4 𝜑2
)}             (71) 

 

Similarly, for the temperature profiles for the three axes, 

 

𝜃𝑥(𝑥, 𝑠𝑥) =
𝑇𝑆(𝑥,𝑠𝑥)−𝑇𝐹

𝑇∞𝑥−𝑇𝐹
=

{𝑒𝑟𝑓𝑐(𝜑
𝑥

𝑠𝑥
)−𝑒𝑥𝑝(𝐵𝑖𝑜𝑡𝑥

𝑥

𝑠𝑥
+
𝐵𝑖𝑜𝑡𝑥

2

4𝜑2
)𝑒𝑟𝑓𝑐(𝜑

𝑥

𝑠𝑥
+
𝐵𝑖𝑜𝑡𝑥
2𝜑

)+𝜁𝑥(𝐵𝑖𝑜𝑡𝑥,𝜑)}

𝜓𝑥(𝐵𝑖𝑜𝑡𝑥,𝜑)
     (72) 

 

for𝜃𝑦(𝑦, 𝑠𝑦), 

 

𝜃𝑦(𝑦, 𝑠𝑦) =
𝑇𝑆(𝑦,𝑠𝑦)−𝑇𝐹

𝑇∞𝑦−𝑇𝐹
=

{𝑒𝑟𝑓𝑐(𝜑 
𝑦

𝑠𝑦
)−𝑒𝑥𝑝(𝐵𝑖𝑜𝑡𝑦 

𝑦

𝑠𝑦
+
𝐵𝑖𝑜𝑡𝑦

2

4𝜑2
)𝑒𝑟𝑓𝑐(𝜑 

𝑦

𝑠𝑦
+
𝐵𝑖𝑜𝑡𝑦

2𝜑
)+𝜁𝑦(𝐵𝑖𝑜𝑡𝑦,𝜑)}

𝜓𝑦(𝐵𝑖𝑜𝑡𝑦 ,𝜑)
    (73) 

 

and for𝜃𝑧(𝑧, 𝑠𝑧) 
 

𝜃𝑧(𝑧, 𝑠𝑧) =
𝑇𝑆(𝑧,𝑠𝑧)−𝑇𝐹

𝑇∞𝑧−𝑇𝐹
=

{𝑒𝑟𝑓𝑐(𝜑 
𝑧

𝑠𝑧
)−𝑒𝑥𝑝(𝐵𝑖𝑜𝑡𝑧 

𝑧

𝑠𝑧
+
𝐵𝑖𝑜𝑡𝑧

2

4𝜑2
) 𝑒𝑟𝑓𝑐(𝜑 

𝑧

𝑠𝑧
+
𝐵𝑖𝑜𝑡𝑧
2𝜑

)+𝜁𝑧(𝐵𝑖𝑜𝑡𝑧 ,𝜑)}

𝜓𝑧(𝐵𝑖𝑜𝑡𝑧,𝜑)
     (74) 

 

Finally, the three-dimensional solution for the temperature profile can be given by 

 

𝜃𝑆(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) = 𝜃𝑥(𝑥, 𝑠𝑥) 𝜃𝑦(𝑦, 𝑠𝑦) 𝜃𝑧(𝑧, 𝑠𝑧)       (75) 

 

that is, 

𝜃𝑆(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) = [
𝑇𝑆(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) − 𝑇𝐹

𝑇∞𝑖
− 𝑇𝐹

] = 𝜃𝑥(𝑥, 𝑠𝑥) 𝜃𝑦(𝑦, 𝑠𝑦) 𝜃𝑧(𝑧, 𝑠𝑧)

= [
𝑇𝑆(𝑥, 𝑠𝑥) − 𝑇𝐹
𝑇∞𝑥

− 𝑇𝐹
] [
𝑇𝑆(𝑦, 𝑠𝑦) − 𝑇𝐹

𝑇∞𝑦
− 𝑇𝐹

] [
𝑇𝑆(𝑧, 𝑠𝑧) − 𝑇𝐹
𝑇∞𝑧

− 𝑇𝐹
] 
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= {𝑒𝑟𝑓𝑐 (𝜑
𝑥
𝑠𝑥
) − 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑥

𝑥
𝑠𝑥
+
𝐵𝑖𝑜𝑡𝑥

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑

𝑥
𝑠𝑥
+
𝐵𝑖𝑜𝑡𝑥
2𝜑

) + 𝜁𝑥(𝐵𝑖𝑜𝑡𝑥 , 𝜑)}

𝜓(𝐵𝑖𝑜𝑡𝑥 , 𝜑)
 

{𝑒𝑟𝑓𝑐 (𝜑
𝑦
𝑠𝑦
) − 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑦

𝑦
𝑠𝑦
+
𝐵𝑖𝑜𝑡𝑦

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑

𝑦
𝑠𝑦
+
𝐵𝑖𝑜𝑡𝑦
2𝜑

) + 𝜁𝑦(𝐵𝑖𝑜𝑡𝑦 , 𝜑)}

𝜓(𝐵𝑖𝑜𝑡𝑦 , 𝜑)
 

{𝑒𝑟𝑓𝑐 (𝜑
𝑧
𝑠𝑧
) − 𝑒𝑥𝑝 (𝐵𝑖𝑜𝑡𝑧

𝑧
𝑠𝑧
+
𝐵𝑖𝑜𝑡𝑧

2

4𝜑2
) 𝑒𝑟𝑓𝑐 (𝜑

𝑧
𝑠𝑧
+
𝐵𝑖𝑜𝑡𝑧
2𝜑

) + 𝜁𝑧(𝐵𝑖𝑜𝑡𝑧 , 𝜑)}

𝜓(𝐵𝑖𝑜𝑡𝑧 , 𝜑)
 

            (76) 

 

and the freezing/solidification time is given by the Biot number, which transitions from a parabolic to a 

linear profile and vice versa, posed as
 𝑠𝑖

2ℎ𝑖𝛼𝑆𝑖
𝑡

𝑘𝑆𝑖

 dimensional 

 

𝑡 = 𝑡𝑥 + 𝑡𝑦 + 𝑡𝑧 =
𝑠𝑥
2

4𝛼𝑆𝑥𝜑
2 +

𝑠𝑦
2

4𝛼𝑆𝑦𝜑
2 +

𝑠𝑧
2

4𝛼𝑆𝑧𝜑
2 +

2𝑘𝑆𝑥  𝑠𝑥𝜑

ℎ𝑥𝛼𝑆𝑥
+

2𝑘𝑆𝑦  𝑠𝑦𝜑

ℎ𝑦𝛼𝑆𝑦
+

2𝑘𝑆𝑧  𝑠𝑧𝜑

ℎ𝑧𝛼𝑆𝑧
                 (77a) 

and dimensionless time, 

𝑡∗ =
𝑠𝑥
∗2

4 𝐹𝑜𝑥 𝜑
2 +

𝑠𝑦
∗2

4 𝐹𝑜𝑦 𝜑
2 +

𝑠𝑧
∗2

4 𝐹𝑜𝑧  𝜑
2 +

2𝑠𝑥
∗  𝜑 

𝐵𝑖𝑜𝑡𝑥 𝐹𝑜𝑥
+

2𝑠𝑦
∗  𝜑 

𝐵𝑖𝑜𝑡𝑦 𝐹𝑜𝑥
+

2𝑠𝑧
∗ 𝜑 

𝐵𝑖𝑜𝑡𝑧  𝐹𝑜𝑧
                 (77b) 

 

One-dimensional Two-Phase Moving Boundary Problem 

 In the case of two-phase freezing/solidification of a pure or eutectic material with superheating in the 

liquid, as presented in Fig. 2, the governing partial differential equation and the initial and boundary conditions 

for a semi-infinite slab are given by 

 
𝜕2𝑇𝑆

𝜕𝑥2
=

1

𝛼𝑆

𝜕𝑇𝑆

𝜕𝑡
   0 < 𝑥 < 𝑠(𝑡)        (78) 

 
𝜕2𝑇𝐿

𝜕𝑥2
=

1

𝛼𝑙

𝜕𝑇𝐿

𝜕𝑡
   𝑠(𝑡) < 𝑥 < +∞        (79) 

 

𝑡 = 0, 0 < 𝑥 < +∞,  𝑇 = 𝑇𝑃         (80) 

 

𝑡 > 0, 𝑥 = 0,  −𝑘
𝜕𝑇

𝜕𝑥
|
𝑥=0

= ℎ(𝑇 − 𝑇∞)        (81) 

 

𝑡 > 0, 𝑥 = 𝑠(𝑡),  𝑇 = 𝑇𝐹           (82) 

 

𝑡 > 0, 𝑥 → +∞, 𝑇 = 𝑇𝑃           (83) 

 

𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
= 𝑘𝑆

𝜕𝑇𝑆

𝜕𝑥
|
𝑥=−𝑠

− 𝑘𝐿
𝜕𝑇𝐿

𝜕𝑥
|
𝑥=+𝑠

          (84) 

 

 
Figure 2 Schematic representation of two-phase transient solidification. 
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For the liquid phase, the proposed solution is given by 

 

𝑇𝐿(𝑥, 𝑡) = 𝐴𝐿 + 𝐵𝐿 [1 − erf (
𝑥

2√𝛼𝐿𝑡
)]         (85) 

 

A relationship between the diffusivity of the solid and liquid phases is necessary to assess the similarity variable, 

𝑛 = √
𝛼𝑆

𝛼𝐿
            (86) 

Then, the solution becomes 

 

𝑇𝐿 = (𝑥, 𝑡) = 𝐴𝐿 + 𝐵𝐿 [1 − erf (
𝑛𝑥

2√𝛼𝑆𝑡
)]        (87) 

 

The substitution of initial and boundary conditions into the temperature profiles allows the constants 𝐴𝐿 

and 𝐵𝐿  to be determined: 

 

𝑇𝐿(𝑥 = 𝑠(𝑡), 𝑡) = 𝑇𝐹 = 𝐴𝐿 + 𝐵𝐿[1 − erf(𝑛𝜑)]       (88) 

 

for 𝐴𝐿 in 𝑥 → +∞, when 𝑡 > 0, 

 

𝑇𝐿(𝑥 → +∞, 𝑡) = 𝑇𝑃 = 𝐴𝐿 + 0 ∴ 𝐴𝐿 = 𝑇𝑃        (89) 

 

𝑇𝐹 = 𝑇𝑃 + 𝐵𝐿[1 − erf(𝑛𝜑)]          (90) 

 

The constant 𝐵𝐿  can be determined as 

 

𝐵𝐿 =
𝑇𝐹−𝑇𝑃

1−erf(𝑛𝜑)
            (91) 

 

Finally, after the substitution of constants in the liquid-phase temperature profile gives 

 

𝑇𝐿(𝑥, 𝑡) = 𝑇𝑃 +
𝑇𝐹−𝑇𝑃

1−erf(𝑛𝜑)
⋅ [1 − erf (

𝑛𝑥

2√𝛼𝑆𝑡
)]        (92) 

 

However, by knowing that, 

 
1

2√𝛼𝑆𝑡
=

𝜑

𝑠
                        (93a) 

and, 
𝑥

2√𝛼𝑆𝑡
= 𝜑

𝑥

𝑠
                       (93b) 

 

 

and combining Eq. (93) and Eq. (92) results in 

 
𝑇𝐿(𝑥,𝑡)−𝑇𝑃

𝑇𝐹−𝑇𝑃
= 𝜃𝐿(𝑥, 𝑡) =

1

1−erf(𝑛𝜑)
⋅ [1 − erf (

𝑛𝑥

2√𝛼𝑆𝑡
)]                   (94a) 

 
𝑇𝐿(𝑥,𝑠)−𝑇𝑃

𝑇𝐹−𝑇𝑃
= 𝜃𝐿(𝑥, 𝑠) =

1

1−erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝜑

𝑥

𝑠
)]                  (94b) 

 

 

The derivative of 𝑇𝐿(𝑥, 𝑠) with respect to 𝑥 at 𝑥 = 𝑠+ furnishes the temperature gradient for the liquid 

phase at the moving interface, 

 
𝜕𝑇𝐿

𝜕𝑥
|
𝑥=𝑠+

= −
1

√𝜋
⋅

𝑇𝑃−𝑇𝐹

[1−erf(𝑛𝜑)]
⋅ 𝑛 ⋅

1

√𝛼𝑆𝑡
⋅ exp(−𝑛2𝜑2)       (95) 

 

By inserting the similarity variable 𝜑 in Eq. (95), 

 
𝜕𝑇𝐿

𝜕𝑥
|
𝑥=𝑠+

= −
2𝜑 𝑛

√𝜋 𝑠
⋅
(𝑇𝑃−𝑇𝐹)

erfc(𝑛𝜑)
⋅ exp(−𝑛2𝜑2)         (96) 
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It is important to mention that sometimes the thermal gradient is a function of both the interface position 

and time, as presented in Eq. (97): 

 
𝜕𝑇𝐿

𝜕𝑥
|
𝑥=𝑠+

= −
2𝜑 𝑛

√𝜋 𝑠
⋅

(𝑇𝑃−𝑇𝐹)

erfc(𝑛
𝑠

2√𝛼𝑆𝑡
)

⋅ exp(−𝑛2
𝑠2

4𝛼𝑆𝑡
)        (97) 

 

By combining Eq. (20), Eq. (27), Eq. (84), and Eq. (97), the similarity variable can be found: 

 

𝜌𝑆𝐿
2𝜑2𝛼𝑆
𝑠

= 𝑘𝑆
(𝑇𝐹 − 𝑇∞)

𝜓(𝑠, 𝜑)

{
 
 

 
 
ℎ

𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
) +

2𝜑

√𝜋 𝑠 exp(𝜑2)

−
2𝜑

√𝜋 𝑠 exp [(𝜑 +
ℎ 𝑠
2𝜑 𝑘𝑆

)
2

]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2)

}
 
 

 
 

+ 𝑘𝐿
2𝜑 𝑛

√𝜋 𝑠
⋅
(𝑇𝑃 − 𝑇𝐹)

erfc(𝑛𝜑)
⋅ exp(−𝑛2𝜑2) 

(98) 

 

Rearranging the terms in a form for representing heat conduction parameters, 

 

𝜑 =
𝐶𝑃𝑆 (𝑇𝐹 − 𝑇∞)

𝐿 𝜓(𝑠, 𝜑)

{
 
 

 
 
ℎ𝑠

2𝜑𝑘𝑆
exp (

ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2) erfc (𝜑 +

ℎ 𝑠

2𝜑 𝑘𝑆
) +

1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
ℎ 𝑠
2𝜑 𝑘𝑆

)
2

]

exp (
ℎ 𝑠

𝑘𝑆
+

ℎ2 𝑠2

4 𝜑2 𝑘𝑆
2)

}
 
 

 
 

+
𝐶𝑃𝐿(𝑇𝑃 − 𝑇𝐹)

𝐿
 
𝛼𝐿𝜌𝐿
𝛼𝑆𝜌𝑆

 𝑛

√𝜋 erfc(𝑛𝜑)  exp(𝑛2𝜑2)
 

(99) 

in which 

𝑁 =
𝛼𝐿𝜌𝐿

𝛼𝑆𝜌𝑆
                       (100) 

 

By substituting the dimensionless numbers and heat transfer parameters, 

 

𝜑 =
𝑆𝑡𝑒𝑆 

𝜓(𝑠, 𝜑)
{
𝐵𝑖𝑜𝑡

2𝜑
exp (𝐵𝑖𝑜𝑡 +

𝐵𝑖𝑜𝑡2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡

2𝜑
) +

1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
𝐵𝑖𝑜𝑡
2𝜑

)
2

]

exp (𝐵𝑖𝑜𝑡 +
𝐵𝑖𝑜𝑡2

4 𝜑2
)} + 𝑆𝑡𝑒𝐿 𝑁

 𝑛

√𝜋 erfc(𝑛𝜑)  exp(𝑛2𝜑2)
 

(101) 

 

where 𝑆𝑡𝑒𝐿 =
𝐶𝑃𝐿(𝑇𝑃−𝑇𝐹)

𝐿
 is the Stefan number considering the liquid phase. 

 

Three-dimensional Two-Phase Moving Boundary Problem 

 The governing equations and the initial and boundary conditions for three-dimensional unsteady 

solidification are given by 

 
𝜕2𝑇𝑆

𝜕𝑥2
+

𝜕2𝑇𝑆

𝜕𝑦2
+

𝜕2𝑇𝑆

𝜕𝑧2
=

1

𝛼𝑆

𝜕𝑇𝑆

𝜕𝑡
  0 < 𝑥 < 𝑠𝑥(𝑡),   0 < 𝑦 < 𝑠𝑦(𝑡), and  0 < 𝑧 < 𝑠𝑧(𝑡)  

(102) 
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𝜕2𝑇𝐿

𝜕𝑥2
+

𝜕2𝑇𝐿

𝜕𝑦2
+

𝜕2𝑇𝐿

𝜕𝑧2
=

1

𝛼𝑙

𝜕𝑇𝐿

𝜕𝑡
  𝑠𝑥(𝑡) < 𝑥 < +∞, 𝑠𝑦(𝑡) < 𝑦 < +∞, 𝑎𝑛𝑑  𝑠𝑧(𝑡) < 𝑧 < +∞   

                       (103) 

 

𝑡 = 0, 0 < 𝑥 < +∞, 𝑇𝐿 = 𝑇𝑃𝑥                      (104) 

 

𝑡 = 0, 0 < 𝑦 < +∞, 𝑇𝐿 = 𝑇𝑃𝑦                      (105) 

 

𝑡 = 0, 0 < 𝑧 < +∞, 𝑇𝐿 = 𝑇𝑃𝑧                    (106) 

 

𝑡 = 0, 𝑥 = 0, ℎ𝑥(𝑇 − 𝑇∞𝑥
) = −𝑘

𝜕𝑇

𝜕𝑥
|
𝑥= 𝑠𝑥

−
                   (107) 

 

𝑡 = 0, 𝑦 = 0, ℎ𝑦 (𝑇 − 𝑇∞𝑦
) = −𝑘

𝜕𝑇

𝜕𝑦
|
𝑦= 𝑠𝑦

−
                   (108) 

 

𝑡 = 0, 𝑧 = 0, ℎ𝑧(𝑇 − 𝑇∞𝑧
) = −𝑘

𝜕𝑇

𝜕𝑧
|
𝑧= 𝑠𝑧

−
                    (109) 

 

𝑡 > 0, 𝑥 = 𝑠(𝑡), 𝑇𝑆,𝐿 = 𝑇𝐹                      (110) 

 

𝑡 > 0, 𝑦 = 𝑠(𝑡), 𝑇𝑆,𝐿 = 𝑇𝐹                      (111) 

 

𝑡 > 0, 𝑧 = 𝑠(𝑡), 𝑇𝑆,𝐿 = 𝑇𝐹                      (112) 

 

𝑡 > 0, 𝑥 → +∞, 𝑇𝐿 = 𝑇𝑃𝑥                      (113) 

 

𝑡 > 0, 𝑦 → +∞, 𝑇𝐿 = 𝑇𝑃𝑦                      (114) 

 

𝑡 > 0, 𝑧 → +∞, 𝑇𝐿 = 𝑇𝑃𝑧                     (115) 

 

𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
= 𝑘𝑆𝑥

𝜕𝑇𝑆
𝜕𝑥
|
𝑥=−𝑠

+ 𝑘𝑆𝑦
𝜕𝑇𝑆
𝜕𝑦
|
𝑦=−𝑠

+ 𝑘𝑆𝑧
𝜕𝑇𝑆
𝜕𝑧
|
𝑧=−𝑠

 

−(𝑘𝐿𝑥
𝜕𝑇𝐿

𝜕𝑥
|
𝑥=+𝑠

+ 𝑘𝐿𝑦
𝜕𝑇𝐿

𝜕𝑦
|
𝑦=+𝑠

+ 𝑘𝐿𝑧
𝜕𝑇𝐿

𝜕𝑧
|
𝑧=+𝑠

)                  (116) 

where 𝑠 = 𝑖̂𝑠𝑥 + 𝑗̂𝑠𝑦 + �̂�𝑠𝑧 , �⃗�𝑆 = 𝑖̂𝜌𝑆𝑥 + 𝑗̂𝜌𝑆𝑦 + �̂�𝜌𝑆𝑧 , �⃗⃗�𝑆 = 𝑖�̂�𝑆𝑥 + 𝑗̂𝑘𝑆𝑦 + �̂�𝑘𝑆𝑧 , 𝐶𝑃𝑆 = 𝑖�̂�𝑃𝑆𝑥 + 𝑗̂𝐶𝑃𝑆𝑦 +

�̂�𝐶𝑃𝑆𝑧 , �⃗�𝐿 = 𝑖̂𝜌𝐿𝑥 + 𝑗̂𝜌𝐿𝑦 + �̂�𝜌𝐿𝑧 , �⃗⃗�𝐿 = 𝑖�̂�𝐿𝑥 + 𝑗̂𝑘𝐿𝑦 + �̂�𝑘𝐿𝑧  and 𝐶𝑃𝐿 = 𝑖�̂�𝑃𝐿𝑥 + 𝑗̂𝐶𝑃𝐿𝑦 + �̂�𝐶𝑃𝐿𝑧 . A three-

dimensional solution for the temperature profile can be considered the product of the solutions in each 𝑥, 𝑦, and 

𝑧 axis, dimensional 

 

 

𝑡 = 𝑡𝑥 + 𝑡𝑦 + 𝑡𝑧 =
𝑠𝑥
2

4𝛼𝑆𝑥𝜑
2 +

𝑠𝑦
2

4𝛼𝑆𝑦𝜑
2 +

𝑠𝑧
2

4𝛼𝑆𝑧𝜑
2 +

2𝑘𝑆𝑥𝑠𝑥𝜑

ℎ𝑥𝛼𝑆𝑥
+

2𝑘𝑆𝑦𝑠𝑦𝜑

ℎ𝑦𝛼𝑆𝑦
+

2𝑘𝑧 𝑠𝑧𝜑

ℎ𝑧𝛼𝑆𝑧
               (117a) 

 

And dimensionless equation, 

 

𝑡∗ =
𝑠𝑥
∗2

4 𝐹𝑜𝑥 𝜑
2 +

𝑠𝑦
∗2

4 𝐹𝑜𝑦 𝜑
2 +

𝑠𝑧
∗2

4 𝐹𝑜𝑧  𝜑
2 +

2𝑠𝑥
∗  𝜑 

𝐵𝑖𝑜𝑡𝑥 𝐹𝑜𝑥
+

2𝑠𝑦
∗  𝜑 

𝐵𝑖𝑜𝑡𝑦 𝐹𝑜𝑥
+

2𝑠𝑧
∗ 𝜑 

𝐵𝑖𝑜𝑡𝑧  𝐹𝑜𝑧
               (117b) 

 

 

By substituting the similarity variable 𝜑 and setting 𝑛𝑖 = √
𝛼𝑆𝑖

𝛼𝐿𝑖
, 

 
𝜕𝑇𝐿

𝜕𝑥
|
𝑥= 𝑠𝑥

+
= −

2𝜑 𝑛𝑥

√𝜋 𝑠𝑥
⋅
(𝑇𝑃𝑥−𝑇𝐹)

erfc(𝑛𝜑)
⋅ exp(−𝑛2𝜑2)                  (118) 

𝜕𝑇𝐿

𝜕𝑦
|
𝑦= 𝑠𝑦

+
= −

2𝜑 𝑛𝑦

√𝜋 𝑠𝑦
⋅
(𝑇𝑃𝑦−𝑇𝐹)

erfc(𝑛𝜑)
⋅ exp(−𝑛2𝜑2)                  (119) 
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𝜕𝑇𝐿

𝜕𝑧
|
𝑧= 𝑠𝑧

+
= −

2𝜑 𝑛𝑧

√𝜋 𝑠𝑧
⋅
(𝑇𝑃𝑧−𝑇𝐹)

erfc(𝑛𝜑)
⋅ exp(−𝑛2𝜑2)                   (120) 

 

and, by writing 𝑠 in relation to the similarity variables, 

 

2√𝛼𝑆𝑖𝑡 =
𝑠𝑖

𝜑
                      (121) 

 
𝑇𝐿𝑥(𝑥,𝑠𝑥)−𝑇𝑃𝑥

𝑇𝐹−𝑇𝑃𝑥
= 𝜃𝐿𝑥 =

1

1−erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝑥𝜑

𝑥

𝑠𝑥
)]                   (122) 

 
𝑇𝐿𝑦(𝑦,𝑠𝑦)−𝑇𝑃𝑦

𝑇𝐹−𝑇𝑃𝑦
= 𝜃𝐿𝑦 =

1

1−erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝑦𝜑

𝑦

𝑠𝑦
)]                  (123) 

 
𝑇𝐿𝑧(𝑧,𝑠𝑧)−𝑇𝑃𝑧

𝑇𝐹−𝑇𝑃𝑧
= 𝜃𝐿𝑧 =

1

1−erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝑧𝜑

𝑧

𝑠𝑧
)]                   (124) 

 

The three-dimensional solution for the temperature profile in the liquid phase can be expressed as follows: 

 

𝜃𝐿(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) = 𝜃𝐿𝑥(𝑥, 𝑠𝑥) 𝜃𝐿𝑦(𝑦, 𝑠𝑦) 𝜃𝐿𝑧(𝑧, 𝑠𝑧)                  (125) 

that is, 

𝜃𝐿(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) = 𝜃𝐿𝑥(𝑥, 𝑠𝑥) 𝜃𝐿𝑦(𝑦, 𝑠𝑦) 𝜃𝐿𝑧(𝑧, 𝑠𝑧) = [
𝑇𝐿(𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) − 𝑇𝑃𝑖

𝑇𝐹 − 𝑇𝑃𝑖
]

= [
𝑇𝑆𝑥(𝑥, 𝑠𝑥) − 𝑇𝐹
𝑇𝐹 − 𝑇𝑃𝑥

] [
𝑇𝑆𝑦(𝑦, 𝑠𝑦) − 𝑇𝐹

𝑇𝐹 − 𝑇𝑃𝑦
] [
𝑇𝑆𝑧(𝑧, 𝑠𝑧) − 𝑇𝐹
𝑇𝐹 − 𝑇𝑃𝑧

] 

= {
1

1 − erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝜑

𝑥

𝑠𝑥
)]} {

1

1 − erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝜑

𝑦

𝑠𝑦
)]} {

1

1 − erf(𝑛𝜑)
⋅ [1 − erf (𝑛𝜑

𝑧

𝑠𝑧
)]} 

                       (126) 

 

By applying the temperature gradients in the solid and liquid phases in ∇T𝑆|𝑋= 𝑠−  and ∇T𝐿|𝑋= 𝑠+ , 

𝜌𝑆𝐿
𝑑𝑠

𝑑𝑡
= (𝑘𝑆∇T𝑆)|𝑋= 𝑠− − (𝑘𝐿∇T𝐿)|𝑋= 𝑠+                    (127) 

 
𝑑𝑠

𝑑𝑡
=

2𝜑2𝛼𝑆

𝑠
                      (128) 

 

in which   𝑠 = √𝑠𝑥
2 + 𝑠𝑦

2 + 𝑠𝑧
2 
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𝜌𝑆𝐿
2𝜑2𝛼𝑆
𝑠

= 𝑘𝑆𝑥
(𝑇𝐹 − 𝑇∞𝑥

)

𝜓(𝑠𝑥 , 𝜑)

{
 
 

 
 
ℎ𝑥
𝑘𝑆𝑥

exp (
ℎ𝑥 𝑠𝑥
𝑘𝑆𝑥

+
ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 ) erfc (𝜑 +

ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

) +
2𝜑

√𝜋 𝑠𝑥 exp(𝜑
2)

−
2𝜑

√𝜋 𝑠𝑥 exp [(𝜑 +
ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

)
2

]

exp (
ℎ𝑥 𝑠𝑥
𝑘𝑆𝑥

+
ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 )

}
 
 

 
 

+ 𝑘𝑆𝑦

(𝑇𝐹 − 𝑇∞𝑦
)

𝜓(𝑠𝑦 , 𝜑)

{
 
 

 
 
ℎ𝑦

𝑘𝑆𝑦
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 )erfc (𝜑 +

ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑌
) +

2𝜑

√𝜋 𝑠𝑦 exp(𝜑
2)

−
2𝜑

√𝜋 𝑠𝑦 exp [(𝜑 +
ℎ𝑦 𝑠𝑦
2𝜑 𝑘𝑆𝑦

)

2

]

exp (
ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 )

}
 
 

 
 

+ 𝑘𝑆𝑧
(𝑇𝐹 − 𝑇∞𝑧

)

𝜓(𝑠𝑧 , 𝜑)

{
 
 

 
 
ℎ𝑧
𝑘𝑆𝑧

exp (
ℎ𝑧 𝑠𝑧
𝑘𝑆𝑧

+
ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 ) erfc (𝜑 +

ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

) +
2𝜑

√𝜋 𝑠𝑧 exp(𝜑
2)

−
2𝜑

√𝜋 𝑠𝑧 exp [(𝜑 +
ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

)
2

]

exp (
ℎ𝑧 𝑠𝑧
𝑘𝑆𝑧

+
ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 )

}
 
 

 
 

+ 𝑘𝐿𝑥
2𝜑 𝑛𝑥

√𝜋 𝑠𝑥
⋅
(𝑇𝑃𝑥 − 𝑇𝐹)

erfc(𝑛𝑥𝜑)

⋅ exp(−𝑛𝑥
2𝜑2) + 𝑘𝐿𝑦

2𝜑 𝑛𝑦

√𝜋 𝑠𝑦
⋅
(𝑇𝑃𝑦 − 𝑇𝐹)

erfc(𝑛𝑦𝜑)
⋅ exp(−𝑛𝑦

2𝜑2) + 𝑘𝐿𝑧
2𝜑 𝑛𝑧

√𝜋 𝑠𝑧
⋅
(𝑇𝑃𝑧 − 𝑇𝐹)

erfc(𝑛𝑧𝜑)

⋅ exp(−𝑛𝑧
2𝜑2) 

                       (129) 

 

By arranging Eq. (130) so that it can represent a set of meaningful heat transfer parameters, 
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𝜑 =
𝐶𝑃𝑆𝑥  (𝑇𝐹 − 𝑇∞𝑥

)

𝐿𝑥  𝜓(𝑠𝑥 , 𝜑)

{
 
 

 
 
ℎ𝑥𝑠𝑥
2𝜑𝑘𝑆𝑥

exp (
ℎ𝑥 𝑠𝑥
𝑘𝑆𝑥

+
ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 ) erfc (𝜑 +

ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

) +
1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
ℎ𝑥 𝑠𝑥
2𝜑 𝑘𝑆𝑥

)
2

]

exp (
ℎ𝑥 𝑠𝑥
𝑘𝑆𝑥

+
ℎ𝑥
2 𝑠𝑥

2

4 𝜑2 𝑘𝑆𝑥
2 )

}
 
 

 
 

+
𝐶𝑃𝑆𝑦  (𝑇𝐹 − 𝑇∞𝑦

)

𝐿𝑦 𝜓(𝑠𝑦 , 𝜑)

{
 
 

 
 
ℎ𝑦𝑠𝑦

2𝜑𝑘𝑆𝑦
exp (

ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 ) erfc (𝜑 +

ℎ𝑦 𝑠𝑦

2𝜑 𝑘𝑆𝑦
) +

1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
ℎ𝑦 𝑠𝑦
2𝜑 𝑘𝑆𝑦

)

2

]

exp (
ℎ𝑦 𝑠𝑦

𝑘𝑆𝑦
+

ℎ𝑦
2  𝑠𝑦

2

4 𝜑2 𝑘𝑆𝑦
2 )

}
 
 

 
 

+
𝐶𝑃𝑆𝑧  (𝑇𝐹 − 𝑇∞𝑧

)

𝐿𝑧 𝜓(𝑠𝑧 , 𝜑)

{
 
 

 
 
ℎ𝑧𝑠𝑧
2𝜑𝑘𝑆𝑧

exp (
ℎ𝑧 𝑠𝑧
𝑘𝑆𝑧

+
ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 ) erfc (𝜑 +

ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

) +
1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
ℎ𝑧 𝑠𝑧
2𝜑 𝑘𝑆𝑧

)
2

]

exp (
ℎ𝑧 𝑠𝑧
𝑘𝑆𝑧

+
ℎ𝑧
2 𝑠𝑧

2

4 𝜑2 𝑘𝑆𝑧
2 )

}
 
 

 
 

+
𝐶𝑃𝐿𝑥(𝑇𝑃𝑥 − 𝑇𝐹)

𝐿𝑥
 
𝛼𝐿𝑥𝜌𝐿𝑥
𝛼𝑆𝑥𝜌𝑆𝑥

 𝑛𝑥

√𝜋 erfc(𝑛𝑥𝜑)  exp(𝑛𝑥
2 𝜑2)

+
𝐶𝑃𝐿𝑦 (𝑇𝑃𝑦 − 𝑇𝐹)

𝐿𝑦

𝛼𝐿𝑦𝜌𝐿𝑦
𝛼𝑆𝑦𝜌𝑆𝑦

 𝑛𝑦

√𝜋 erfc(𝑛𝑦𝜑)  exp(𝑛𝑦
2  𝜑2)

+
𝐶𝑃𝐿𝑧(𝑇𝑃𝑧 − 𝑇𝐹)

𝐿𝑧
 
𝛼𝐿𝑧𝜌𝐿𝑧
𝛼𝑆𝑧𝜌𝑆𝑧

 𝑛𝑧

√𝜋 erfc(𝑛𝑧𝜑)  exp(𝑛𝑧
2 𝜑2)

 

 

                       (130) 

 

 

Eq. (130) can be expressed according to dimensionless numbers 
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𝜑 =
𝑆𝑡𝑒𝑥

 𝜓(𝐵𝑖𝑜𝑡𝑥 , 𝜑)
{
𝐵𝑖𝑜𝑡𝑥
2𝜑

exp (𝐵𝑖𝑜𝑡𝑥 +
𝐵𝑖𝑜𝑡𝑥

2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑥
2𝜑

) +
1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
𝐵𝑖𝑜𝑡𝑥
2𝜑

)
2

]

exp (𝐵𝑖𝑜𝑡𝑥 +
𝐵𝑖𝑜𝑡𝑥

2

4 𝜑2
)}

+
𝑆𝑡𝑒𝑦

 𝜓(𝐵𝑖𝑜𝑡𝑦 , 𝜑)

{
 
 

 
 
𝐵𝑖𝑜𝑡𝑦

2𝜑
exp (𝐵𝑖𝑜𝑡𝑦 +

𝐵𝑖𝑜𝑡𝑦
2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑦

2𝜑
) +

1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
𝐵𝑖𝑜𝑡𝑦
2𝜑

)
2

]

exp (𝐵𝑖𝑜𝑡𝑦 +
𝐵𝑖𝑜𝑡𝑦

2

4 𝜑2
)

}
 
 

 
 

+
𝑆𝑡𝑒𝑧

 𝜓(𝐵𝑖𝑜𝑡𝑧 , 𝜑)
{
𝐵𝑖𝑜𝑡𝑧
2𝜑

exp (𝐵𝑖𝑜𝑡𝑧 +
𝐵𝑖𝑜𝑡𝑧

2

4 𝜑2
) erfc (𝜑 +

𝐵𝑖𝑜𝑡𝑧
2𝜑

) +
1

√𝜋 exp(𝜑2)

−
1

√𝜋 exp [(𝜑 +
𝐵𝑖𝑜𝑡𝑧
2𝜑

)
2

]

exp (𝐵𝑖𝑜𝑡𝑧 +
𝐵𝑖𝑜𝑡𝑧

2

4 𝜑2
)} + 𝑆𝑡𝑒𝐿𝑥  𝑁𝑥

 𝑛𝑥

√𝜋 erfc(𝑛𝑥𝜑)  exp(𝑛𝑥
2 𝜑2)

+ 𝑆𝑡𝑒𝐿𝑦 𝑁𝑦
 𝑛𝑦

√𝜋 erfc(𝑛𝑦𝜑)  exp(𝑛𝑦
2  𝜑2)

+ 𝑆𝑡𝑒𝐿𝑧 𝑁𝑧
 𝑛𝑧

√𝜋 erfc(𝑛𝑧𝜑)  exp(𝑛𝑧
2 𝜑2)

 

                       (131) 

 

where 𝑆𝑡𝑒𝐿𝑖 =
𝐶𝑃𝐿𝑖

(𝑇𝑃𝑖−𝑇𝐹
)

𝐿𝑖
 is the Stefan number considering the liquid phase and 𝑁𝑖 =

𝛼𝐿𝑖𝜌𝐿𝑖

𝛼𝑆𝑖𝜌𝑆𝑖
 represent 

the ratio between the product of thermal diffusivity and the density of the liquid and solid phases, respectively. 

 

 

Considerations for Calculating Interface Velocity and Position 

 

 The current solution is considerably complex when formulating simple equations for the solid-liquid 

interface velocity. By writing 𝑡 = γ𝑠2 + 𝛿𝑠, deriving and rearranging it as 
𝑑𝑠

𝑑𝑡
= 𝑣 =

1

2𝛾𝑠 + 𝛿
 [63]. The value of 

𝛾 =
1

4𝛼𝑆𝜑
2 is straightforward. However, determining 𝛿 requires a different approach: 

𝑑𝑡

𝑑𝑆
= 2𝛾𝑠 + 𝛿 =

1

𝑣
, so 𝛿 =

1

𝑣
− 2𝛾𝑠. Finally, expressing the velocity 𝑣 in terms of the thermal gradients of the solid and liquid phases provides 

 
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑣 =

1

𝜌𝑆𝐿
(𝑘𝑆 ∙ ∇𝑇𝑆|𝜒=−𝑠 − 𝑘𝐿 ∙ ∇𝑇𝐿|𝜒=+𝑠)                  (132) 

 

The value of 𝛿 can now be determined as, 

 

𝛿 =
𝜌𝑆𝐿

𝑘𝑆∙∇𝑇𝑆|𝜒=−𝑠−𝑘𝐿∙∇𝑇𝐿|𝜒=+𝑠
− 2𝛾𝑠                    (133) 

 

for solidification time, 

 

𝑡 = γ𝑠2 + 𝛿𝑠                      (134) 

 

and velocity, 

 

𝑣 =
1

2𝛾𝑠 + 𝛿
                      (135) 
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The thermal gradients of the liquid(∇𝑇𝐿) and solid (∇𝑇𝑆)  phases are analytical expressions derived in 

this work. Here, k represents the thermal conductivity, expressed as 𝑘 = 𝑖̂𝑘𝑥 + 𝑗̂𝑘𝑦 + �̂�𝑘𝑧, and χ is the positional 

vector defined by 𝜒 = 𝑖̂𝑥 + 𝑗̂𝑦 + �̂�𝑧. Equation (132) is complex and too lengthy to present fully here, but it 

remains an analytical equation. 

 

 

III. Results And Discussion 
 

The analytical solutions formulated in this investigation will undergo analysis based on the following 

criteria: one-dimensional one-phase and two-phase, as well as three-dimensional one-phase and two-phase. 

Furthermore, Table 1 provides data on the thermodynamic properties of pure Al in its solid and liquid phases. 

 

 
 

The analytical calculations are plotted against the numerical results for one-phase transient solidification 

considering the solid/liquid interface position versus time and temperature profile, according to Figure 3A and 

Figure 3B, respectively. The global heat transfer coefficients ℎ𝐺 are constant and equal to 500, 1000, 3000, 7000 

and 18000 𝑊 𝑚−1 𝐾−1. The numerical method [28,60,61] cannot be carried out in this study as published. Based 

on the present proposition: Firstly, the second order Biot number, 𝐵𝑖𝑜𝑡 =
ℎ2𝛼𝑡

𝑘2
, concerning the thermal diffusion 

layer resistance is absent. Secondly, the numerical model has a function called dgdT, which relates the dependence 

of the liquid volume fraction on temperature associated with an equation governing the latent heat release rule in 

the energy equation in terms of solute concentration density field. For pure materials, this is not the case. 

Consequently, this numerical solution scheme fails to accurately predict the solidification of pure materials, by 

adding an artificial amount of latent heat which dislocates the global heat transfer coefficient. The corresponding 

numerical solution of the energy equation for pure and eutectic materials under convective boundary condition, 

associated with the other transport equations is being studied to develop a suitable solver to this problem and will 

be discussed in a forthcoming publication. 

In Figure 4, a two-phase analytical solution is applied for the interface position as a function of melt 

superheat for 0.1, 5, 35, 55, and 105K. When the same Biot number and melt superheat are considered for all the 

superheating events, the interface position as a function of time is not sensitive. However, the same cannot be 

said for the velocity of the solid/liquid interface, as shown in Fig. 5, for which the speed is ~14 mm s−1 for the 

given combination of both the highest Biot and superheat. It is well known that under transient experimental 

solidification conditions, the Biot number usually depends on overheating and cannot be kept constant. 

Figures 6 and 7 represent the thermal gradients for the liquid and solid phases, respectively, in the vicinity 

of the solid/liquid interface against position. The melt superheat is more sensitive to the thermal gradient of the 

liquid and less sensitive to the gradient of the solid for a given Biot and melt superheat. 

The temperature profile was calculated as a function of both the Biot number and melt superheat, as 

shown in Fig. 8. The temperature at 𝑥 = 0 depends only on the Biot number for a given Biot and melt superheat. 

However, the temperature profile of the solid phase is affected. 
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(A) 

 
(B) 

Figure 3 Analytical solution of unidimensional one-phase solidification against numerical simulation: (A) Position of 

solid/liquid interface as a function of time, and (B) Temperature profiles. 
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(A) 

 
(B) 

 
(C) 
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(D) 

 
(E) 

Figure 4 Analytical solution for one-dimensional two-phase solidification for interface position as a function of melt superheat: 

(A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K. 

 

 

 
(A) 
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(B) 

 
(C) 

 
(D) 
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(E) 

Figure 5 Analytical solution for one-dimensional two-phase solidification for interface velocity as a function of melt superheat: 

(A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K. 

 

 

 

 
(A) 

 
(B) 
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(C) 

 
(D) 

 
(E) 

 

Figure 6 Analytical solution for one-dimensional two-phase solidification for thermal gradient of the liquid as a function of melt 

superheat: (A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K 
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(A) 

 
(B) 

 
(C) 
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(D) 

 
(E) 

 

Figure 7 Analytical solution for one-dimensional two-phase solidification for thermal gradient of the solid as a function of melt 

superheat: (A) 5K, (B) 35K, (C) 55K, and (D) 105K. 
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(A) 

 
(B) 

 
(C) 

 
(D) 
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(E) 

Figure 8 Analytical solution for one-dimensional two-phase solidification for temperature profile as a function of melt 

superheat: (A) 0.1K, (B) 5K, (C) 35K, (D) 55K, and (E) 105K. 

 

The temperature profile was calculated as a function of the Biot number and melt superheat, as shown 

in Fig. 8. The temperature at 𝑥 = 0 depends only on the Biot number for a given Biot and melt superheat. 

However, the temperature profile of the solid phase is affected. 

Figure 9 compares the position of the solid/liquid interface as a function of time, temperature profiles, 

and thermal gradients of the liquid phase for eutectic Al33.2wt%Cu in terms of Biot and melt superheat of 0.1K 

and 105K. The thermal gradient of the liquid phase increases rapidly with melt superheat. 
 

 
(A) 
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(E) 

 
(F) 

Figure 9 Analytical solution of unidimensional solidification Al32.2wt%Cu against numerical simulation for 0.1K and 105K of melt 
superheat: (A) and (B) position of solid/liquid interface as a function of time, (C) and (D) temperature profiles, and, (E) and (F) thermal 

gradients of the liquid. 

 

In the case of a three-dimensional solution for one-phase solidification, the time is presented as a function 

of 𝑠 = √𝑠𝑥
2 + 𝑠𝑦

2 + 𝑠𝑧
2  and the temperature profile 

𝑇𝑆(𝑥,𝑦,𝑧,𝑡)−𝑇𝐹

𝑇∞𝑖−𝑇𝐹
, considering the following data: ℎ𝑥 =

12000 W m−2K−1 , ℎ𝑦 = 7000 W m−2K−1  and ℎ𝑧 = 300 W m−2K−1 ; 𝑇∞𝑥
= 𝑇∞𝑦

= 𝑇∞𝑧
= 303.15K , 𝑠𝑥 =

0.2m, 𝑠𝑦 = 0.4m and 𝑠𝑧 = 0.3m. From Fig. 10, it can be noted that the parabolic profile is preserved, and shorter 

times are expected for the 𝑥 and 𝑦 directions. The lowest predicted temperature is associated with the direction 

of the highest heat transfer coefficient. 
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(A) 

f  

(B) 

Figure 10 Analytical solution for three-dimensional one-phase solidification: (A) Position of solid/liquid interface as a function of time, 
and (B) Temperature profiles 

 

Figures 11-13 present the solid-liquid interface velocity, the thermal gradient, and the cooling rate 

predicted by [64] alongside the current solution under 4% melt superheat for Al-33wt%Cu and Sn-39Pb eutectic 

alloys. Water behaves similarly in both eutectic alloys. 
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( A ) 

 
( B ) 

Figure 11 Comparison of analytical solutions for one-dimensional solidification solid-liquid interface velocities, considering eutectic 
alloys (A) Al33.2wt%Cu, and (B) Sn39wt%Pb under 4% superheat. 
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( A ) 

 
( B ) 

Figure 12 Comparison of analytical solutions for one-dimensional solidification thermal gradients, considering eutectic alloys (A) 
Al33.2wt%Cu, and (B) Sn39wt%Pb under 4% superheat. 
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( A ) 

 
( B ) 

Figure 13 Comparison of analytical solutions for one-dimensional solidification cooling rates, considering eutectic alloys (A) 
Al33.2wt%Cu, and (B) Sn39wt%Pb under 4% superheat. 

 

The final application of this analytical model is a comparison with a classical solidification model for 

pure and eutectic materials [64]. This analysis involves freezing water at an altitude of 5000 m to capture the 

surface thermal gradient. The present model can accommodate a wide range of Biot numbers, whereas [64] is 

limited to high Biot numbers, as shown in Figures 14-16. 
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( A ) 

 
( B ) 

Figure 14 Comparison of analytical solutions for one-dimensional water freezing under solid-liquid interface velocities, considering (A) 
1.6 K and (B) 2.0 K superheat. 
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( A ) 

 
( B ) 

Figure 15 Comparison of analytical solutions for one-dimensional water freezing under thermal gradients, considering (A) 1.6 K and 
(B) 2.0 K superheat. 
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( A ) 

 
( B ) 

Figure 16 Comparison of analytical solutions for one-dimensional water freezing under cooling rate, considering (A) 1.6 K and (B) 2.0 
K superheat. 

 

IV. Conclusions 
 

The following major conclusions can be drawn from the results and discussion held in this paper: 

• Closed-form analytical solutions are derived for one- and two-phase, one- and three-dimensional transient 

solidification of pure and eutectic materials in a semi-infinite slab; 

• The obtained analytical results and numerical values exhibited very good agreement; 

• A closed-form solution for transient solidification considering convective boundary conditions that 

encompasses full analytical treatment of the Biot number has not yet been identified. Therefore, it was found 

that the proposed profile in the literature for the similarity variable based only on the assumption of the second-

order parabolic term, i.e., 
𝑠2

4𝛼𝑆𝜑
2 , cannot deal with low Biot numbers in which a linear behaviour 

𝑘𝑆 𝑠

2ℎ 𝛼𝑆
 

dominates; 
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• Considering the convective boundary conditions in the well-known analytical solution for heat conduction and 

using this approach to describe the one- and two-phase moving boundary interfaces, analytical solutions for 

transient solidification in a semi-infinite slab were obtained that can address anisotropic thermophysical 

properties; 

• Investigations must be performed to elucidate the second-order polynomial dependence of the similarity 

variable in the proposition of transformation kinetics in addition to that tentatively suggested by Wagner, which 

has been widely used today in fluid flow, heat and mass transfer analytical solutions. 
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