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Abstract: In the last two to three decades, significant research has focused on special functions related to 

statistical distributions. This includes the Generalized Hurwitz-Lerch Zeta Beta type-2 distributions and Gamma 

distribution, generalized hypergeometric distributions, Parabolic cylinder distribution, generalized Hurwitz 

Zeta Beta prime distributions, Mathieu distribution, Plank distribution, Mittag-Leffler distribution, Hurwitz 

Lerch Zeta distribution. Furthermore, the special cases explored include the Zipf-Mandelbrot distribution, Lotka 

distribution, Good distribution, Logarithmic Series distribution, right truncated form of the HLZ distribution 

and Estoup distribution. The study explores the properties and statistical measures like moment generating 

function, distribution function, survivor function, Hazard rate function, mean residue life function, characteristic 

function, probability generating function, likelihood equations result in method of moments.  
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I. Introduction 

Special functions are mathematical functions that arise in the solution of ordinary and partial 

differential equations, integral equations, in various physical and engineering applications. Over time, they have 

developed into a well-established area of mathematics. 

Special functions have been an important part of mathematics for a long time. These functions, which 

include well-known ones like the gamma, beta, and hypergeometric functions, were originally developed to 

solve complex problems in physics, engineering, and other scientific fields. Over the years, their role has 

expanded to statistics, where they are now used to analyze data, model uncertainties, understand random 

processes more effectively and help in modeling distributions. 

The history of special functions goes back to the 18th and 19th centuries, when mathematicians like 

Euler, Gauss, and Legendre introduced and studied them. As mathematical tools advanced, so did the 

development of these functions. They became essential in solving differential equations, calculating 

probabilities, and creating models in various areas of science. 

In modern statistics, the need for special functions arises because data sets and models can be complex. 

These functions help simplify complicated calculations and make it easier to find exact solutions. For example, 

special functions are useful in probability theory, where they are applied to describe different distributions.  

The importance of studying special functions in statistics lies in their ability to provide precise answers 

to problems that cannot be solved by regular mathematical methods. By understanding and applying these 

functions, statisticians can improve their analysis, make more accurate predictions, and contribute to advances in 

various scientific disciplines. Special functions like Gamma and Zeta play a key role in statistical analysis. 

This literature review aims to explore the history, development, and current applications of special 

functions in statistics and the growing need for these functions in solving practical problems. This review looks 

at research on how these functions are used in statistics, particularly focusing on applications and theoretical 

developments. 

The objective of this literature review is to identify, analyze, and summarize the key applications and 

theoretical developments of special functions which are associated with statistical analysis. 

The review was conducted by searching peer-reviewed journals, articles and focuses on Mathai’s work 

on special functions. Key terms such as 'special functions,' 'Gamma distribution,' 'Beta distribution,' and 

'Hurwitz-Lerch zeta function' were used to identify relevant literature. Articles were selected based on their 

contribution to the theoretical development and practical applications of these functions in statistics. 
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II. Literature Review 

The article by A.M. Mathai, (1965) consider one-parameter families of distribution which can be 

transformed into exponential type by a one-to-one transformation. It established theorems which illustrated 

almost all the classical one-parameter families of distributions.  

The paper by Mathai and Saxena (1968) explores statistical distributions that exhibit properties similar 

to the Gamma distribution such as Bessel function distribution, Parabolic Cylinder function distribution and the 

generalized Hypergeometric distribution.  

Mathai and Saxena (1969) works into the use of special functions in describing and characterizing 

various probability distributions. The authors focus the study on the ratio of the probability law of two variables. 

It is proved that there exist an infinite number of independent pairs of stochastic variables whose ratios have the 

various distribution such as F-distribution, student t-distribution and Cauchy law by investigating the probability 

laws of two independent Stochastic variables.  

Mathai and Moschopoulos (1991) discusses a new form of multivariate gamma distribution and explore 

into the concept and properties of the distribution.  

Mathai, A.M. (1993) provides a clear overview of various special functions, with a focus on their 

generalized forms. These include the gamma, Beta and Hypergeometric functions, which are widely used in 

mathematics, Physics and Engineering. 

The book focuses on how these functions are applied in areas like probability and statistics. Mathai 

explores both classical and modern special functions, with the importance on the development of generalized 

forms. The book is divided into chapters, each focusing on a different family of special functions. Mathai 

introduces integral transforms, such as the Mellin and Laplace transforms, which are vital tools in manipulating 

these generalized functions. 

Mathai demonstrates how generalized distributions can be formed using these functions, offering 

deeper insights into statistical modeling, especially in fields that deal with complex, real-world data 

distributions. It serves both an introduction to classical concepts and a guide to more advanced topics, making it 

an essential tool for deepening one’s understanding of this field. 

The paper by Ben Nakhi and Kall (2002) introduced a generalized beta function and its properties and 

associated probability density functions such as moment generating function, mean residue function and hazard 

rate function and also shown its figures of shape and scale parameters. 

P L. Gupta et.al (2008), study a class of Hurwitz-Lerch Zeta (HLZ) distributions by exploring the 

structural properties, statistical inference and their applications in reliability such as moments, recurrence 

relations between the moments, mode, p.g.f., distribution function, Reliability function, failure rate, reversed 

hazard rate and the likelihood equations result in method of moment equations and an example is obtained in 

which HLZ distribution fits the data perfectly. 

Mridula Garg et.al (2009), introduced two new statistical distributions and then derived the expressions 

for the moments, distribution function, the survivor function, the Hazard rate function and the mean residue life 

function 

Ram K. Saxena et al. (2011), introduced two new statistical distributions named as generalized 

Hurwitz-Lerch Zeta Beta prime distribution and Gamma distribution and investigate their statistical functions 

such as moments, probability generating function, characteristics function, distribution and survivor function, 

the hazard rate function and mean residue life functions. 

Srivastava et al.(2015) provides a comprehensive analysis of various generalized Mathieu-type series 

and their applications in probability theory. The authors investigate the characteristics of these series and their 

connections to Hurwitz-Lerch zeta functions.  

K. Jayakumar (2003) provides an in-depth examination of Mittag-Leffler distributions, emphasizing 

their properties and applications in various fields. The author explores the mathematical foundations of these 

distributions, particularly their relationships with other known statistical distributions. It significantly 

contributes to the understanding of Mittag-Leffler distributions, both theoretically and practically. 

H.J. Haubold et al. (2011) had a paper on a brief survey of the Mittag-Leffler functions and their applications 

and properties  

A random variable X has the Mittag-Leffler distribution if its distribution function has the form 

𝐹∝(𝑥) = ∑
(−1)𝑘−1𝑥𝑘∝

Γ(1+𝑘𝛼)
,∞

𝑘=1  x > 0,  0 < 𝛼 ≤ 1     

where, ∝ is the scale parameter. 

If ∝ = 1, we get the exponential distribution. 
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Rafik et al. (2018) introduces a new special function termed T(x), which behaves similarly to the error function. 

The authors provide a closed form for the cumulative distribution function (CDF) of T(x), which allows for 

better modeling in probability theory. 

Liew et al. (2022) introduce a new statistical distribution called the Poisson-stopped Hurwitz-Lerch zeta 

distribution. This distribution combines ideas from the Poisson distribution and the Hurwitz-Lerch zeta function 

to create a model that can handle more complicated data.  

The authors explain the key features of this new distribution, such as how to calculate probabilities and other 

important statistical measures like moments and generating functions. They also show how this distribution can 

be useful in real-life situations, such as risk management and queueing systems, where the level of uncertainty 

can change over time.  

The paper presents a new distribution that could be useful for complex data, but more research is needed to test 

its practical use and compare it with other models. 

 

Statistical properties 

1. Ben Nakhi and Kall (2002) [12] introduced the pdf of the generalized beta function and statistical 

measure such as 

The pdf of a random variable X associated with generalized beta function is defined by –  

f(x) = 
𝜐−𝑎𝑥𝑢−1(1+𝑥)−𝜇−𝑢 2𝑅

𝜔
1(𝑎,𝑏;𝑐;

−𝑥

𝜈
 )

𝐵
𝜔
 (
𝑎,𝑏;𝑐;𝜐
𝑢,𝜇

)
 x 1, [x>0]  (1) 

here, a, b, c are complex parameters, 𝜔 > 0, Re p, Re u > 0, |arg 𝜈| < 𝜋 and c≠0, -1, -2,… 

where, 𝐵
𝜔

 (
𝑎, 𝑏; 𝑐; 𝜐
𝑢, 𝜇

) ≜ 𝜈−𝑎 ∫ 𝑡𝑢−1
∞

0
(1 + 𝑡)−𝜇−𝑢2𝑅

𝜔

1(𝑎, 𝑏; 𝑐;
−𝑡

𝜈
)dt, is a generalized form of beta function. 

2𝑅
𝜔

1 (𝑎, 𝑏; 𝑐;
−𝑥

𝜈
 ) =  

Γ(𝑐)

Γ(𝑏)
∑

(𝑎)𝑘Γ(𝑏+𝜔𝑘)

Γ(𝑐+𝜔𝑘)

∞
𝑘=0

𝑥𝑘

𝑘!
, |x|<1, is the 𝜔 −Gauss hypergeometric function. 

 

 

Moments 

𝐸[𝑋𝑘] =
𝜈−𝑎 ∫ 𝑡𝑘+𝑢−1(1 + 𝑡)−𝜇−𝑢2𝑅

𝜔

1(𝑎, 𝑏; 𝑐;
−𝑡
𝜈
 )𝑑𝑡

∞

0

𝐵
𝜔

(𝑎,𝑏;𝑐;𝜈
𝑢,𝜇

) 
 

 

       =
𝐵
𝜔
( 𝑎,𝑏;𝑐;𝜈
𝑢+𝑘,𝜇−𝑘)

𝐵
𝜔
(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 ) 

 

 

Moment generating function of the random variable X is obtained by using Taylor expansion, that 

𝑀(𝑡) = E[𝑒𝑡𝑥] =  ∑
𝑡𝑘

𝑘!

∞

𝑘=0

 𝐸[𝑋𝑘] 

= ∑
𝑡𝑘

𝑘!

∞

𝑘=0

 
𝐵
𝜔

( 𝑎,𝑏;𝑐;𝜈
𝑢+𝑘,𝜇−𝑘

)

𝐵
𝜔

(𝑎,𝑏;𝑐;𝜈
𝑢,𝜇

) 
 

Distribution function 

         𝐹(𝑥) ≜ P(X ≤ x) =  ∫ 𝑓(𝑡)𝑑𝑡 = 
𝑥

0
  
𝐵0
𝑥
𝜔
(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 )

𝐵
𝜔
(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 ) 

         

 

Survivor Function 

 

𝑆(𝑥) = P(X ≥ x) = 1 − 𝐹(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡 = 
∞

𝑥
  
𝐵𝑥
∞
𝜔

(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 )

𝐵
𝜔
(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 ) 
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The Hazard Rate function 

 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=  

𝜈−𝑎𝑥𝑢−1(1+𝑥)−𝜇−𝑢2𝑅
𝜔
1(𝑎,𝑏;𝑐;

−𝑥

𝜈
 )

𝐵𝑥
∞
𝜔

(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 ) 

 x 1[x > 0] 

 

The Mean Residue life function 

 

𝐾(𝑥) = E[X − x|X ≥ x] =  
∫ (𝑡 − 𝑥)𝑓(𝑡)𝑑𝑡
∞

𝑥

𝑆(𝑥)
 

 

      K(x) = 
∫ 𝑡𝑓(𝑡)𝑑𝑡
∞
𝑥

𝑆(𝑥)
− 𝑥 

Since,  

 

∫ 𝑡𝑓(𝑡)𝑑𝑡

∞

𝑥

=
𝐵𝑥
∞
𝜔

( 𝑎,𝑏;𝑐;𝜈
𝑢+1,𝜇−1

)

𝐵
𝜔

(𝑎,𝑏;𝑐;𝜈
𝑢,𝜇

) 
 

Therefore,  

         K(x)  = 
𝐵𝑥
∞
𝜔

( 𝑎,𝑏;𝑐;𝜈
𝑢+1,𝜇−1)

𝐵𝑥
∞
𝜔

(𝑎,𝑏;𝑐;𝜈𝑢,𝜇 ) 

− 𝑥  

For a=0, we get the mean residue life function K(x) of the beta distribution of second kind 
𝐵𝑥
∞(𝑢+1,𝜇−1)

𝐵𝑥
∞(𝑢,𝜇) 

− 𝑥  

 

2. Hurwitz-Lerch Zeta distribution (refer P.L. Gupta et al. (2008)) 

The probability mass function is given as 

P(X=k) = 
𝜃𝑘

𝑇(𝜃,𝑠,𝑎)(𝑎+𝑘)𝑠+1
 (k ∈ ℕ; s≥0; 0≤a≤1; 0< 𝜃 ≤1)  (2) 

here, the notations T(𝜃, 𝑠, 𝑎) = ∑
𝜃𝑘

(𝑘+𝑎)𝑠+1
∞
𝑘=1  = 𝜃 Φ(θ, s + 1, a + 1) 

and  

  Φ(𝑧, 𝑠, 𝑎) = ∑
𝑧𝑘

(𝑘+𝑎)𝑠
∞
𝑘=0 , 

Is the Lerch transcendent defined for a ∉ {-1,-2,…} and s ∈ ℂ when |z|<1 or Re s>1 when |z|=1 [20]. 

where, 𝜃 is the scale parameter. 

 s is the shape parameter and a is the location parameter. 

The special cases of the HLZ distribution are as follows:- 

a) Riemann Zeta distribution : if 𝜃=1and a=0 in (2), we have  

P(X=k) = 
1

Φ(1,𝑠+1,1)𝑘𝑠+1
 = 

1

ζ(𝑠+1)𝑘𝑠+1
 (k ∈ 𝑁; s>0)  

Here, s is the shape parameter. 

 ζ(𝑠 + 1) is the Riemann Zeta (RZ) function.  

 

b) Zipf-Mandelbrot distribution: if 𝜃=1 in equation (2), we have 

P(X=k) = 
1

Φ(1,𝑠+1,𝑎+1)(𝑎+𝑘)𝑠+1
 = 

1

ζ(𝑠+1,𝑎+1)(𝑎+𝑘)𝑠+1
 (k ∈ 𝑁; s>0; a>0) 

Here, s is the shape parameter and a is the location parameter. 

 

c) Lotka distribution: if a=0, 𝜃=1 and s=1 in equation (2), we have 

P(X=k) = 
1

[Φ(1,2,1)]𝑘2
 (k ∈ 𝑁;  Φ(1,2,1) =  

𝜋2

6
) 

Here, all the parameters are constant. 

 

d) Good distribution: if a=0 in equation (2), we have 
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P(X=k) = 
𝜃𝑘

[θΦ(𝜃,𝑠+1,1)]𝑘𝑠+1
  (k ∈ ℕ; s>0; 0< 𝜃 <1) 

Where, 𝜃 is the scale parameter and s is the shape parameter. 

 

e) Logarithmic series distribution: if s=0 and a=0 in equation (2), we have 

P(X=k) = 
𝜃𝑘

[θΦ(𝜃,1,1)]𝑘 
  (k ∈ ℕ;  0< 𝜃 <1) 

Here, 𝜃 is the scale parameter. 

 

f) Right truncated form of the HLZ distribution:  

P(X=k) = 
𝜃𝑘

𝑇∗(𝜃,𝑠,𝑎)(𝑎+𝑘)𝑠+1
   (k= 1,… , 𝑛; s>0; 0< 𝜃 ≤1); 0≤a≤1 

Here, s is the shape parameter and a is the location parameter. 

 and 𝑇∗(𝜃, 𝑠, 𝑎) =  θΦ(𝜃, 1,1) − 𝜃𝑛+1Φ(𝜃, 𝑠 + 1, 𝑎 + 𝑛 + 1) 

g) Estoup distribution: If a=0, 𝜃=1 and s=0 in eq. (2), we get 

P(X=k) = 
1

[Φ𝑛(1,1,1)]𝑘
    (k= 1,… . , 𝑛) 

  Where, Φ𝑛(1,1,1) =  ∑
1

𝑘

𝑛
𝑘=1  = 𝐻𝑛(harmonic number) 

 

Moments 

By R.C. Gupta et al. (1975), HLZ distribution is a special case of the modified power series distribution, 

𝑃(𝑋 = 𝑥) =
𝐴(𝑥)(𝑔(𝜃))

𝑥

𝑓(𝜃)
 (x∈ 𝔹)     

 

Where 𝔹 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑡 ℕ0 of non-negative integer, A(x) > 0, f(𝜃) and g(𝜃) are positive, finite and 

differentiable function of 𝜃, then we have 

g(𝜃) =  𝜃,  𝑓(𝜃) = 𝑇(𝜃, 𝑠, 𝑎),  A(x) = 
1

(𝑥+𝑎)𝑠+1
  

 

thus,  

𝐸(𝑋) =
𝑔(𝜃)𝑓′(𝜃)

𝑓(𝜃)𝑔′(𝜃)
 = 

𝜃 ∑
𝑘 𝜃𝑘−1

(𝑎+𝑘)𝑠+1
∞
𝑘=1

∑
 𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1

 = 
∑

𝑘 𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1

∑
 𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1

  = 
1

𝑇(𝜃,𝑠,𝑎)
∑

𝑘 𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1  = 𝜇  (2.1) 

Mode 

For finding the mode, 

𝑃(𝑋=𝑘)

𝑃(𝑋=𝑘−1)
 = 𝜃 (1 −

1

𝑎+𝑘
)
𝑠+1

 < 𝜃 ≤ 1 (k ∈ ℕ\{1})    (2.2) 

This means that, as k → ∞, the above ratio → 𝜃. It has only one mode at the point x = 1. 

 

Probability generating function 

𝜓(𝑡)= E(𝑒𝑋) = ∑ 𝑡𝑘𝑃(𝑋 = 𝑘) =∞
𝑘=0

𝑇(𝜃𝑡,𝑠,𝑎)

𝑇(𝜃,𝑠,𝑎)
, (0 < 𝜃𝑡 < 1)   (2.3) 

 

Distribution function 

P(X ≤ k) = 1 - 𝜃𝑘
𝑇(𝜃,𝑠,𝑎+𝑘)

𝑇(𝜃,𝑠,𝑎)
, (k ∈ ℕ)      (2.4) 

 

Survival function 

𝑠(𝑘) = 1 − 𝐹(𝑥) =  𝜃𝑘−1
 𝑇(𝜃,𝑠,𝑎+𝑘−1)

𝑇(𝜃,𝑠,𝑎)
 , (k ∈ ℕ)   (2.5) 

 

Failure rate (Hazard rate) function 

 

𝑟(𝑘) =
𝑃(𝑋=𝑘)

𝑃(𝑋≥𝑘)
 = 

1

(𝑎+𝑘)𝑠+1 𝑇(𝜃,𝑠,𝑎+𝑘)
,  (k ∈ ℕ)    (2.6) 
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Reversed hazard Rate 

𝑟∗(𝑘) =  
𝑃(𝑋=𝑘)

𝑃(𝑋≤𝑘)
 = 

𝜃𝑘

[𝑇(𝜃,𝑠,𝑎)−𝜃𝑘𝑇(𝜃,𝑠,𝑎+𝑘)](𝑎+𝑘)𝑠+1 
, (k ∈ ℕ)       (2.7) 

 

Mean Time Between Failure 

MTBF = ∑ 𝜃𝑘−1
 𝑇(𝜃,𝑠,𝑎+𝑘−1)

𝑇(𝜃,𝑠,𝑎)
∞
𝑘=0  = 

1

𝑇(𝜃,𝑠,𝑎)
∑ 𝜃𝑘−1 𝑇(𝜃, 𝑠, 𝑎 + 𝑘 − 1)∞
𝑘=0  

Mean Time To Failure 

MTTF = ∑ 𝑘 𝜃𝑘−1
 𝑇(𝜃,𝑠,𝑎+𝑘−1)

𝑇(𝜃,𝑠,𝑎)
∞
𝑘=0  = 

1

𝑇(𝜃,𝑠,𝑎)
∑ 𝑘 𝜃𝑘−1 𝑇(𝜃, 𝑠, 𝑎 + 𝑘 − 1)∞
𝑘=0   

A discrete life distribution has 

i.log-concave (log-convex) probability mass function (pmf ) if 
𝑝(𝑡+2)𝑝(𝑡)

[𝑝(𝑡+1)]2
≤ (≥)1 (t ≥ 0) 

⇒ [
(𝑎+𝑡+1)2

(𝑎+𝑡+2)(𝑎+𝑡)
]
𝑠+1

≤ (≥)1                         (2.8) 

 

ii.IFR/DFR (increasing failure rate/Decreasing failure rate) if the failure rate non-decreasing/non-increasing of ‘k’ 

in eq. (2.5) 

iii.IFRA/DFRA (increasing failure rate average/decreasing failure rate average) if  

{𝑆(𝑘)}1/𝑘 = {
𝜃𝑘−1𝑇(𝜃,𝑠,𝑎+𝑘−1)

𝑇(𝜃,𝑠,𝑎)
}
1/𝑘

 ,                    (2.9) 

is a decreasing (increasing) sequence for k 𝜖 ℕ. 

iv.NBU/NWU (new better than used/new worse than used) if 
𝑆(𝑡+𝑥)

𝑆(𝑡)
≤ (≥) 𝑆(𝑥) = 

𝜃𝑥𝑇(𝜃,𝑠,𝑎+𝑡+𝑥)

𝑇(𝜃,𝑠,𝑎+𝑡−1)
≤ (≥) 𝑆(𝑥)                (2.10) 

v.NBUE/NWUE (new better than used in expectation/new worse than used in expectation)  

∑ 𝑆(𝑡 + 𝑗) ∞
𝑗=0 ≤ (≥) ∑ 𝑆(𝑗) ∞

𝑗=0 = 

= ∑  
𝜃𝑡+𝑗−1𝑇(𝜃,𝑠,𝑎+𝑡+𝑗−1)

𝑇(𝜃,𝑠,𝑎)
∞
𝑗=0 ≤ (≥) ∑

𝜃𝑗−1𝑇(𝜃,𝑠,𝑎+𝑗−1)

𝑇(𝜃,𝑠,𝑎)
 ∞

𝑗=0        ∑ 𝜃𝑡+𝑗−1𝑇(𝜃, 𝑠, 𝑎 + 𝑡 + 𝑗 − 1)∞
𝑗=0 ≤

(≥) ∑  ∞
𝑗=0 𝜃

𝑗−1𝑇(𝜃, 𝑠, 𝑎 + 𝑗 − 1)  (2.11) 

 

vi.DMRL/IMRL (decreasing mean residual life/ increasing mean residual life) if 

𝜇(𝑡 + 1) ≤ (≥) 𝜇(𝑡)    (t ≥ 0) 

Since, 𝜇(𝑡) = 𝜃 ∑
(𝑘−𝑡)

𝑇(𝜃,𝑠,𝑎+𝑘)(𝑎+𝑘)𝑠+1
∞
𝑘=0  , we get 

∑  
(𝑘−𝑡−1)

𝑇(𝜃,𝑠,𝑎)
∞
𝑘=0 ≤ (≥) ∑

(𝑘−𝑡)

𝑇(𝜃,𝑠,𝑎)
 ∞

𝑘=0                    (2.12) 

vii.HNBUE/HNWUE (harmonic new better than used in expectation/harmonic new worse than used in expectation) 

if 

∑ 𝑆(𝑗) ∞
𝑗=0 ≤ (≥) 𝜇 (1 −

1

𝜇
)
𝑘

  (μ =E(x) < ∞)                 (2.13) 

 

viii.DRHR/IRHR (decreasing reversed hazard rate/increasing reversed hazard rate) if 

𝑃(𝑋=𝑘)

𝑃(𝑋≤𝑘)
 = 

𝜃𝑘

(𝑎+𝑘)𝑠+1[𝑇(𝜃,𝑠,𝑎)−𝜃𝑘𝑇(𝜃,𝑠,𝑎+𝑘)
                  (2.14) 

is decreasing/increasing in k. 

 

Statistical inference 

 The likelihood distribution given by (2) , 

 L(𝜃, s, a) = 
𝜃
∑ 𝑥𝑖
𝑛
𝑖=1

∏ [(𝑎+𝑥𝑖)
𝑠+1𝑇(𝜃,𝑠,𝑎)]𝑛

𝑖=1

, 

The log-likelihood function is given by 

ln L = ∑ 𝑥𝑖
𝑛
𝑖−1 𝑙𝑜𝑔𝜃 − ∑ (𝑠 + 1)log (𝑎 + 𝑥𝑖

𝑛
𝑖=1 ) − 𝑛𝑙𝑜𝑔𝑇(𝜃, 𝑠, 𝑎) 

Likelihood equations – 
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𝜕𝑙𝑛𝐿

𝜕𝜃
=

∑ 𝑥𝑖
𝑛
𝑖−1

𝜃
− 𝑛

𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝜃

𝑇(𝜃,𝑠,𝑎)
                                                       (2.15) 

𝜕𝑙𝑛𝐿

𝜕𝑠
= −∑ log (𝑎 + 𝑥𝑖

𝑛
𝑖−1 ) − 𝑛

𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝑠

𝑇(𝜃,𝑠,𝑎)
                                                     (2.16) 

𝜕𝑙𝑛𝐿

𝜕𝑎
= −∑

(𝑠+1)

(𝑎+𝑥𝑖)

𝑛
𝑖=1 − 𝑛

𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝑎

𝑇(𝜃,𝑠,𝑎)
                                                      (2.17) 

Since, 
𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝜃

𝑇(𝜃,𝑠,𝑎)
=

1

𝑇(𝜃,𝑠,𝑎)

𝜕

𝜕𝜃
∑

𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1   

=  
1

𝑇(𝜃,𝑠,𝑎)
∑

𝑘𝜃𝑘−1

(𝑎+𝑘)𝑠+1
∞
𝑘=1  

= 
1

𝜃𝑇(𝜃,𝑠,𝑎)
∑

𝑘𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1  

= 
1

𝜃
𝜇  , from eq. (2.1)                                                                (2.18) 

 Also, 

 

𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝑠

𝑇(𝜃,𝑠,𝑎)
=

1

𝑇(𝜃,𝑠,𝑎)

𝜕

𝜕𝑠
∑

𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1  

  = 
1

𝑇(𝜃,𝑠,𝑎)
∑

𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1 ln (𝑎 + 𝑘)(−1) 

  = - E [ln (a +X)]                                           (2.19) 

 and, 

 

𝜕𝑇(𝜃,𝑠,𝑎)

𝜕𝑎

𝑇(𝜃,𝑠,𝑎)
=

1

𝑇(𝜃,𝑠,𝑎)

𝜕

𝜕𝑎
∑

𝜃𝑘

(𝑎+𝑘)𝑠+1
∞
𝑘=1  

  = 
1

𝑇(𝜃,𝑠,𝑎)
∑ (𝑠 + 1)

𝜃𝑘

(𝑎+𝑘)(𝑎+𝑘)𝑠+1
∞
𝑘=1 (−1) 

  = - (s+1) E(
1

𝑎+𝑋
)                                                     (2.20) 

 By solving eq. (2.15) and using (2.18) we get, 

 𝑥̅ = E(x) = μ 

 which implies the method of moments equation is a solution of the likelihood equation. 

 By solving eq. (2.16) and using (2.19) we get, 

 ∑
ln (𝑎+𝑥𝑖)

𝑛

∞
𝑘=1 = 𝐸[ln(𝑎 + 𝑋)]   

 By solving eq. (2.17) and using (2.20) we get, 

 
1

𝑛
∑

1

(𝑎+𝑥𝑖)

∞
𝑘=1 = 𝐸 (

1

𝑎+𝑋
) 

 The following result establishes a relation between log-concavity(log-convexity) of the    pmf and 

IFR(DFR) distributions. 

 Theorem 1. Let 𝜂(𝑡) = 1 −
𝑃(𝑋=𝑡+1)

𝑃(𝑋=𝑡)
 

 and ∆ 𝜂(𝑡) =  𝜂(𝑡 + 1) − 𝜂(𝑡) = (
𝑝(𝑡+1)

𝑝(𝑡)
−

𝑝(𝑡+2)

𝑝(𝑡+1)
) 

 Then the following statement hold true: 

(i) If ∆ 𝜂(𝑡) > 0 (log-concavity), then r(t) is non-decreasing (IFR). 

(ii) If ∆ 𝜂(𝑡) < 0 (log-convexity), then r(t) is non-increasing (IFR). 
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(iii) If ∆ 𝜂(𝑡) = 0 for all t, then the hazard rate is a constant. 

From this theorem, the following implications hold true 

IFR(DFR) ⇒ IFRA(DFRA) ⇒ 𝑁𝐵𝑈(𝑁𝑊𝑈) ⇒ 𝑁𝐵𝑈𝐸(𝑁𝑊𝑈𝐸) ⇒ HNBUE(HNWUE) 

and  

IFR(DFR) ⇒DMRL(IMRL) ⇒ 𝑁𝐵𝑈𝐸(𝑁𝑊𝑈𝐸) ⇒ HNBUE(HNWUE) 

Theorem 2. In this case, we find that 

 ∆ 𝜂(𝑘) = 𝜃 [(
𝑎+𝑘

𝑎+𝑘+1
)
𝑠+1

− (
𝑎+𝑘+1

𝑎+𝑘+2
)
𝑠+1

] 

If b = a+k+1, we get 

∆ 𝜂(𝑘) = 𝜃 [(
𝑏 − 1

𝑏
)
𝑠+1

− (
𝑏

𝑏 + 1
)
𝑠+1

] 

       =  𝜃 (
(𝑏2−1)𝑠+1−(𝑏2)𝑠+1

[𝑏(𝑏+1)]𝑠+1
) 

This implies that ∆ 𝜂(𝑘) < 0. Thus, the HLZ distribution has a log-convex pmf and is infinitely divisible. 

So, we can say that the HLZ distribution is DFR, DFRA, NWU, NWUE, HNWUE and IMRL. 

Monotonicity of the reversed hazard rate 

Lemma. Suppose that X is a non-negative discrete random variable. If the pmf, that is, f(k) of X is decreasing in 

k, then X has DRHR. 

Theorem 3. The HLZ distribution has DRHR. 

  Proof. Since P(X=k) is decreasing in k (from eq. 2.16), using the above lemma, the result of this theorem 

follows easily. 

Theorem 4. Let F be a discrete life distribution and let the corresponding probability mass function be denoted 

by the sequence {𝑓𝑘}𝑘𝜖ℕ0. If F has decreasing failure rate, then it has DRHR. 

Theorem 5. Each of the following closure properties holds true. 

(a) If a sequence of the HLZ distribution converges to a limiting distribution, then the limiting distribution 

has DRHR. 

(b) If the components of a parallel system have independent life times with the HLZ distributions, then the 

system life time has DRHR. 

(c) If the components of a k-out-of-n system have independent life times with identical HLZ distributions, 

then the system life time has DRHR. 

(d) The convolution of two HLZ distributions produces a DRHR distribution. 

 

3. Generalized Hurwitz-Lerch Zeta Beta type-2 Distribution (Mridula Garg et al. (2009))  

The p.d.f. of a random variable is defined as 

𝑓(𝑥) = {

𝛤𝛾 𝑥𝛽−1(1+𝑥)−𝛾Φ𝛼
∗ (

𝑥𝑧

1+𝑥
,𝑠,𝑎)

𝛤𝛾 𝛤(𝛾−𝛽)Φ𝛼,𝛽,𝛾(𝑧,𝑠,𝑎)
, 𝑥 > 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (3) 

    Where,   Φ𝛼
∗ (𝑧, 𝑠, 𝑎) =  ∑

(𝛼)𝑛

𝑛!

∞
𝑛=0  

𝑧𝑛

(𝑛+𝑎)𝑠
 , (a ≠ 0, -1, -2,… s ∈ C when |z|<1 and Re(s-α) > 0, when |z| = 

1) is generalized Hurwitz-Lerch Zeta function. 

    and  Φ𝛼,𝛽,𝛾(𝑧, 𝑠, 𝑎) =  ∑
(𝛼)𝑛 (𝛽)𝑛

(𝛾)𝑛𝑛!

∞
𝑛=0  

𝑧𝑛

(𝑛+𝑎)𝑠
, is the extension of general HLZ function [13]. 
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   (𝛾, 𝑎 ≠ 0,−1,−2,… 𝑠 ∈ 𝐶,𝑤ℎ𝑒𝑛 |𝑧| < 1 𝑎𝑛𝑑 𝑅𝑒(𝛾 + 𝑠 − 𝛼 − 𝛽) > 0,𝑤ℎ𝑒𝑛 |𝑧| = 1) 

   Here, β and γ are shape parameters 

        z is the scale parameter. 

On taking 𝛼 = 0 in f(x), we get beta distribution. 

Moments 

E(𝑥𝑘) = ∫ 𝑥𝑘
∞

0
 f(x) dx = 

(−1)𝑘(𝛽)𝑘 

(1−𝛾+𝛽)𝑘

Φ𝛼,𝛽+𝑘;𝛾(𝑧,𝑠,𝑎)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,𝑎)
 

Further, they obtain the Mellin Transform, Laplace Transform and Fourier Transform (characteristic function) of 

f(x) respectively as follows 

E(𝑥(𝑡−1) = 𝑀[𝑓(𝑥); 𝑡] = ∫ 𝑥(𝑡−1)
∞

0
 f(x) dx = 

(−1)(𝑡−1)(𝛽)𝑡−1 

(1−𝛾+𝛽)𝑡−1

Φ𝛼,𝛽+𝑡−1;𝛾(𝑧,𝑠,𝑎)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,𝑎)
, 

E(𝑥−𝑡𝑥) = 𝐿[𝑓(𝑥); 𝑡] = ∫ 𝑥−𝑡𝑥
∞

0
f(x)dx=

1

Φ𝛼,𝛽,𝛾(𝑧,𝑠,𝑎)
∑

𝑡𝑘(𝛽)𝑘 

(1−𝛾+𝛽)𝑘 𝑘!

∞
𝑘=0  Φ𝛼,𝛽+𝑘;𝛾(𝑧, 𝑠, 𝑎) 

 

E(𝑥𝑤𝑡𝑥) = 𝐹[𝑓(𝑥); 𝑡] = ∫ 𝑥𝑤𝑡𝑥
∞

0
f(x)dx =

1

(1−𝛾+𝛽)𝑘
∑

(−𝜔𝑡)𝑘(𝛽)𝑘 

(1−𝛾+𝛽)𝑘

∞
𝑘=0 Φ𝛼,𝛽+𝑘;𝛾(𝑧, 𝑠, 𝑎), 

where,   𝜔 = √(−1) 

 

Distribution function, 

It is given by, 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 =  ∫ 𝑓(𝑡)𝑑𝑡 =  
𝐵𝛼,𝛽;𝛾
0,𝑥

(𝑧,𝑠,𝑎)

Φ𝛼,𝛽;𝛾(𝑧,𝑠,𝑎)

𝑥

0

𝑥

−∞
 , 

Where 𝐵𝛼,𝛽;𝛾
0,𝑥 (𝑧, 𝑠, 𝑎) =  

Γ(𝛾)

Γ(𝛽)Γ(𝛾−𝛽)
 ∫ 𝑡𝛽−1(1 + 𝑡)−𝛾Φ𝛼

∗ (
𝑡𝑧

1+𝑡

𝑥

0
, 𝑠, 𝑎)𝑑𝑡, which is known as the incomplete 

generalized beta type-2 function. 

 

Survivor function, 

It is expressed as the following, 

S(x) = 1 – F(x) = ∫ 𝑓(𝑡)𝑑𝑡 =  
𝐵𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠,𝑎)

Φ𝛼,𝛽;𝛾(𝑧,𝑠,𝑎)

∞

𝑥
 , 

Where, 𝐵𝛼,𝛽;𝛾
𝑥,∞ (𝑧, 𝑠, 𝑎) =  

Γ(𝛾)

Γ(𝛽)Γ(𝛾−𝛽)
 ∫ 𝑡𝛽−1(1 + 𝑡)−𝛾Φ𝛼

∗ (
𝑡𝑧

1+𝑡

∞

𝑥
, 𝑠, 𝑎)𝑑𝑡, which is known as the complementary 

incomplete generalized beta type-2 function. 

 

Hazard rate function, 

h(x) = 
𝑓(𝑥)

𝑆(𝑥)
= 

Γ(𝛾)

Γ(𝛽)Γ(𝛾−𝛽)
 
𝑥𝛽−1(1+𝑥)−𝛾Φ𝛼

∗ (
𝑥𝑧

1+𝑥
,𝑠,𝑎)

𝐵𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠,𝑎)
 . 
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Mean residue life function 

For a random variable x, we have 

𝐾(𝑥) = E[X − x|X ≥ x] =  
1

𝑆(𝑥)
∫ (𝑡 − 𝑥)𝑓(𝑡)𝑑𝑡
∞

𝑥
 , 

    = 
𝛽 𝐵𝛼,𝛽+1;𝛾

𝑥,∞
(𝑧,𝑠,𝑎)

(𝛾−𝛽−1)𝐵𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠,𝑎)
− 𝑥 . 

 

4. The Generalized Hurwitz-Lerch Zeta Gamma Distribution (refer Mridula Garg et al. (2009)): 

 

𝑓(𝑥) = {

 𝑏𝑠𝑥𝑠−1𝑒−𝑎𝑥 2𝐹1(𝛼,𝛽;𝛾;𝑧𝑒−𝑎𝑥)

𝛤𝑠  Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

, 𝑥 < 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                      (4) 

where, Φ𝛼,𝛽,𝛾(𝑧, 𝑠, 𝑎) =  ∑
(𝛼)𝑛 (𝛽)𝑛

(𝛾)𝑛𝑛!

∞
𝑛=0  

𝑧𝑛

(𝑛+𝑎)𝑠
 is the HLZ function and 2𝐹1(𝛼, 𝛽; 𝛾; 𝑧) = ∑

(𝛼)𝑛 (𝛽)𝑛

(𝛾)𝑛

∞
𝑛=0  

𝑧𝑛

𝑛!
, is 

Gauss’ Hypergeometric function[5]. 

(𝛾, 𝑎 ≠ 0,−1,−2,… 𝑠 ∈ 𝐶,𝑤ℎ𝑒𝑛 |𝑧| < 1 𝑎𝑛𝑑 𝑅𝑒(𝛾 + 𝑠 − 𝛼 − 𝛽) > 0,𝑤ℎ𝑒𝑛 |𝑧| = 1) 

 Here, a and b are the scale parameters 

  s is the shape parameters. 

 If b = a and 𝛼 = 0 in f(x), it reduces to gamma distribution. 

If 𝛽 = 𝛾, we get unified Plank distribution, defined by Goyal and Prajapat. 

If 𝛼 = 1, we get generalized Plank distribution, defined by Naharajah and Kotz (2006). 

Moments 

E(𝑥𝑘) = ∫ 𝑥𝑘
∞

0
 f(x) dx =

(𝑠)𝑘

𝑏𝑘
 
Φ𝛼,𝛽;𝛾(𝑧,𝑠+𝑘,

𝑎

𝑏
)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

 

The Mellin Transform, Laplace Transform and Fourier Transform (characteristic function) are as follows 

 E(𝑥(𝑡−1) = 𝑀[𝑓(𝑥); 𝑡] = ∫ 𝑥(𝑡−1)
∞

0
 f(x) dx = 

(𝑠)𝑡−1

𝑏𝑡−1

Φ𝛼,𝛽;𝛾(𝑧,𝑠+𝑡−1,
𝑎

𝑏
)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

, 

E(𝑥−𝑡𝑥) = 𝐿[𝑓(𝑥); 𝑡] = ∫ 𝑥−𝑡𝑥
∞

0
f(x)dx=

Φ𝛼,𝛽;𝛾(𝑧,𝑠,
𝑎+𝑡

𝑏
)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)
  

 

E(𝑥𝑤𝑡𝑥) = 𝐹[𝑓(𝑥); 𝑡] = ∫ 𝑥𝑤𝑡𝑥
∞

0
f(x)dx =

Φ𝛼,𝛽;𝛾(𝑧,𝑠,
𝑎−𝜔𝑡

𝑏

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

, 

where,   𝜔 = √(−1) 

 

Distribution function 

𝐹(𝑥) =
Γ𝛼,𝛽;𝛾
0,𝑥

(𝑧,𝑠,𝑎,𝑏)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

 , 

Where, Γ𝛼,𝛽;𝛾
0,𝑥 (𝑧, 𝑠, 𝑎, 𝑏) =  

𝑏𝑠

Γ(𝑠)
∫ 𝑡𝑠−1𝑒−𝑎𝑡
𝑥

0
 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑧𝑒−𝑏𝑡)𝑑𝑡 is the incomplete generalized gamma 

function 
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Survivor function 

𝑆(𝑥) = 1 − F(x) = 
Γ𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠,𝑎,𝑏)

Φ𝛼,𝛽,𝛾(𝑧,𝑠,
𝑎

𝑏
)

 , 

Where, Γ𝛼,𝛽;𝛾
𝑥,∞ (𝑧, 𝑠, 𝑎, 𝑏) =  

𝑏𝑠

Γ(𝑠)
∫ 𝑡𝑠−1𝑒−𝑎𝑡
∞

𝑥
 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑧𝑒−𝑏𝑡)𝑑𝑡, is called the complementary incomplete 

generalized gamma function. 

 

Hazard rate function 

h(x) = 
𝑓(𝑥)

𝑆(𝑥)
=  

𝑏𝑠𝑒−𝑎𝑥𝑥𝑠−12𝐹1 (𝛼,𝛽;𝛾;𝑧𝑒−𝑏𝑥)

Γ(𝑠) Γ𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠,𝑎,𝑏)
 

 

Mean Residue Life Function 

𝐾(𝑥) = E[X − x|X ≥ x] =  
1

𝑆(𝑥)
∫(𝑡 − 𝑥)𝑓(𝑡)𝑑𝑡

∞

𝑥

 

      K(x) =  
𝑠

𝑏

Γ𝛼,𝛽;𝛾
𝑥,∞

(𝑧,𝑠+1,𝑎,𝑏)

Γ𝛼,𝛽;𝛾
𝑥,∞ (𝑧,𝑠,

𝑎

𝑏
)
− 𝑥 . 

5. Generalized Hurwitz-Lerch Zeta prime distribution: (refer Saxena R.K. et al. (2011)): 

 

𝑓(𝑥) = {

𝛤𝛾 𝑥𝜆−1 Φ𝜇,𝜈−𝜆
(𝜎,𝜅−𝜌)

(
𝑧𝑥𝜌

(1+𝑥)𝜅
,𝑠,𝑎)

𝛤(𝜆) 𝛤(𝜈−𝜆)(1+𝑥)𝜈Φ
𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧,𝑠,𝑎)
, 𝑥 > 0

0,  𝑥 ≤ 0

                                  (5) 

Here, 𝜇, 𝜆 are shape parameters and z is the scale parameter which satisfy 

ℜ{𝜈}>ℜ{𝜆}>0,s ∈ ℂ, 𝜅 > 𝜌>0, 𝜎>0 

For 𝜎 = 𝜌 = 𝜅 = 1 we get HLZ Beta prime distribution discussed by Garg et al. [13]. 

If 𝜎 = 𝜌 = 𝜅 = 1 𝑎𝑛𝑑 𝜇 = 0, we get Beta Prime distribution (or Beta distribution of second kind)  

 Distribution function,  

𝐹(𝑥) =
𝜑𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎|𝑥)

Φ
𝜆,𝜇,𝜈

(𝜌,𝜎,𝜅)
(𝑧, 𝑠, 𝑎)

 

Survivor function 

𝑆(𝑥) =
𝜑̅𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎|𝑥)

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎)
 

Probability generating function 

𝐺𝑥(𝑡) = E(𝑒
−𝑡𝑋) =

1

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎)
∑

(𝜆)𝑟
(1 + 𝜆 − 𝜈)𝑟 

∞

𝑟=0

𝑡𝑟

𝑟!
Φ𝜆+𝑟,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎) 

Characteristic function 

𝜙𝑥(𝑡) = E(𝑒
𝑖𝑡𝑋) =

1

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎)
∑

(𝜆)𝑟
(1 + 𝜆 − 𝜈)𝑟 

∞

𝑟=0

(−𝑖𝑡)𝑟

𝑟!
Φ𝜆+𝑟,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, 𝑎) 
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Hazard Rate function 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
= 

Γ(𝜈)

Γ(𝜆)Γ(𝜈−𝜆)

𝑥𝜆−1

(1+𝑥)𝜈

Φ𝜆,𝜇,𝜈
(𝜎,𝜅−𝜌)

(𝑧,𝑠,𝑎)

𝜑̅
𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧,𝑠,𝑎|𝑥)
,  

where, 𝜑̅𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)(𝑧, 𝑠, 𝑎|𝑥) is the upper and lower incomplete (complementary) 𝜑 – functions. 

6. Generalized Hurwitz-Lerch Zeta Gamma distribution: (refer Saxena R.K. et al. (2011)): 

 

𝑓(𝑥) =

{
 
 

 
  𝑏𝑠𝑥𝑠−1𝑒−𝑎𝑥  2Ψ1∗[(

(𝜆, 𝜌), (𝜇, 𝜎)

(𝜈, 𝜅)
|𝑧𝑒−𝑏𝑥)]

𝛤𝑠  Φ
𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧,𝑠,
𝑎

𝑏
)

, 𝑥 > 0

0,  𝑥 ≤ 0

                                 (6) 

Here, 𝑎, 𝑏 are scale parameters and s is the shape parameter. 

R{𝑎}>R{𝑠}>0, when |z| ≤ 1 (z≠10) and R(s) > 1 when z = 1. 

For 𝜎 = 𝜌 = 𝜅 = 1, we get HLZ Gamma distribution discussed by Garg et al. [13]. 

If 𝜎 = 𝜌 = 𝜅 = 1, b = a, 𝜆=0, equation (6) reduces to the gamma distribution. 

If 𝜎 = 𝜌 = 𝜅 = 1, 𝜇=𝜈, 𝜆=1, equation (6) reduces to generalized Plank distribution defined bu Nadarajah and 

Kotz [19]. 

 

Generating function 

𝐺𝑥(𝑡) = E(𝑒
−𝑡𝑌) =  

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, (𝑎 + 𝑡)/𝑏)

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠,
𝑎
𝑏
)

 

Characteristic function 

𝜙𝑥(𝑡) = E(𝑒
𝑖𝑡𝑌) =  

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠, (𝑎 − 𝑖𝑡)/𝑏)

Φ𝜆,𝜇,𝜈
(𝜌,𝜎,𝜅)

(𝑧, 𝑠,
𝑎
𝑏
)

 

 

III. Conclusion: 

Many authors have defined and studied different forms of special functions, but only a few researchers 

have introduced the special functions into a statistical probability distribution. The common and well-known 

special function distributions are beta, gamma, Hypergeometric and so on.  

This literature review highlights the significance of special functions in the field of statistics. These 

functions, including the Gamma, Hurwitz-Lerch Zeta, Beta, and others, play a key role in understanding various 

statistical distributions. By examining works from Mathai, Saxena, and other researchers, we see how special 

functions help in modeling complex real-world data and solving statistical problems. Special functions have 

been widely applied in probability theory and reliability studies, offering tools for calculating important 

statistical properties like moments, survivor functions, and hazard rates. The development of new distributions 

demonstrates how these functions continue to evolve to meet modern statistical challenges. 

Studying special functions provides deep insights and practical tools that improve our ability to analyze 

and interpret data. This review emphasizes the importance of continuing research in this area to develop new 

methods for solving emerging problems in statistical analysis. 

There is a significant scope for further research in this area such as estimating parameters, testing 

hypotheses, and creating confidence intervals. Further studies can also focus on using Bayesian methods and 

exploring reliability and survival analysis. 
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