e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 21, Issue 4, Ser. 1 (July. – August. 2025), PP 24-34 www.iosrjournals.org

On Fuzzy Neutrosophic Pre σ-Baire Spaces

E. Poongothai ¹ E. Kalaivani ²

¹Department of Mathematics, Shanmuga Industries Arts & Science College (Co-Ed.,), Tiruvannamalai-606603, Tamil Nadu, India; epoongothai5@gmail.com ²Department of Mathematics, Shanmuga Industries Arts & Science College (Co-Ed.,), Tiruvannamalai-606603, Tamil Nadu, India; kalai12feb@gmail.com

Abstract: In this paper, the concepts of fuzzy neutrosophic pre σ -nowhere dense set, fuzzy neutrosophic pre σ -first category set and fuzzy neutrosophic pre σ -second category set in fuzzy neutrosophic topological spaces are introduced and studied. By means of fuzzy neutrosophic pre σ -nowhere dense sets, the concept of fuzzy neutrosophic pre σ -Baire space is defined and several characterizations of fuzzy neutrosophic pre σ -Baire spaces are studied. Several examples are given to illustrate the concepts introduced in this paper.

Key Words: Fuzzy neutrosophic pre-open(closed) set, fuzzy neutrosophic pre $F\sigma$ -set, fuzzy neutrosophic pre dense, fuzzy neutrosophic pre residual, fuzzy neutrosophic nowhere dense set, fuzzy neutrosophic pre σ -first and second category sets, fuzzy neutrosophic pre σ -Baire space.

Date of Submission: 13-07-2025

Date of Acceptance: 23-07-2025

Date of Submission. 13-07-2025

I. Introduction

The fuzzy idea was invaded all branches of science as far back as the presentation of fuzzy sets by L. A. Zadeh [21]. The important concept of fuzzy topological space was offered by C.L. Chang [3]. The idea of fuzzy σ -Baire Spaces was introduced by G. Thangaraj and E. Poongothai [13]. The concept of neutrosophic sets was defined with membership, non-membership and indeterminacy degrees. In 2017, Veereswari [20] introduced fuzzy neutrosophic topological spaces. The idea of fuzzy neutrosophic Baire spaces was introduced by E. Poongothai and E. Padmavathi [10]. In this paper, the concepts of fuzzy neutrosophic pre σ -nowhere dense set, fuzzy neutrosophic pre σ -first category set and fuzzy neutrosophic pre σ -second category set in fuzzy neutrosophic topological spaces are introduced and studied. By means of fuzzy neutrosophic pre σ -nowhere dense sets, the concept of fuzzy neutrosophic pre σ -Baire space is defined and several characterizations of fuzzy neutrosophic pre σ -Baire spaces are studied. Several examples are given to illustrate the concepts introduced in this paper.

II. Preliminaries

Definition 2.1 [2] A fuzzy neutrosophic set A on the universe of discourse X is defined as $A = (x, T_A(x), I_A(x), F_A(x)), x \in X$ where $T, I, F : X \to [0, 1]$ and $0 \le T_A(x) + I_A(x) + F_A(x) \le 3$.

Definition 2.2 [2] A fuzzy neutrosophic set A is a subset of a fuzzy neutrosophic set B(i.e.,) $A \subseteq B$ for all x if $T_A(x) \le T_B(x)$, $I_A(x) \le I_B(x)$, $F_A(x) \ge F_B(x)$.

Definition 2.3 [2] Let X be a non-empty set, and

 $A = (x, T_A(x), I_A(x), F_A(x)), B = (x, T_B(x), I_B(x), F_B(x))$ be two fuzzy neutrosophic sets. Then

$$A \cup B = (x, max(T_A(x), T_B(x)), max(I_A(x), I_B(x)), min(F_A(x), F_B(x)))$$

 $A \cap B = (x, min(T_A(x), T_B(x)), min(I_A(x), I_B(x)), max(F_A(x), F_B(x)))$

Definition 2.4 [2] The difference between two fuzzy neutrosophic sets A and B is defined as $A \setminus B(x) = (x, \min(T_A(x), F_B(x)), \min(I_A(x), 1 - I_B(x)), \max(F_A(x), T_B(x)))$.

Definition 2.5 [2] A fuzzy neutrosophic set A over the universe X is said to be null or empty fuzzy neutrosophic set if $T_A(x) = 0$, $I_A(x) = 0$, $F_A(x) = 1$ for all $x \in X$. It is denoted by 0_N .

Definition 2.6 [2] A fuzzy neutrosophic set A over the universe X is said to be absolute (universe) fuzzy neutrosophic set if $T_A(x) = 1$, $I_A(x) = 1$, $F_A(x) = 0$ for all $x \in X$. It is denoted by 1_N .

Definition 2.7 [2] The complement of a fuzzy neutrosophic set A is denoted by A^{C} and is defined as $A^{C} = (x, T_{A}c(x), I_{A}c(x), F_{A}c(x))$ where $T_{A}c(x) = F_{A}(x)$, $I_{A}c(x) = 1 - I_{A}(x)$, $F_{A}c(x) = T_{A}(x)$. The complement of fuzzy neutrosophic set A can also be defined as $A^{C} = 1_{N} - A$.

Definition 2.8 [1] A fuzzy neutrosophic topology on a non-empty set X is a τ of fuzzy neutrosophic sets in X satisfying the following axioms.

- (i) $0_N, 1_N \in \tau$
- (ii) $A_1 \cap A_2 \in \tau$ for any $A_1, A_2 \in \tau$
- (iii) $\bigcup A_i \in \tau$ for any arbitrary family $\{A_i : i \in J\} \in \tau$

In this case the pair (X, τ) is called fuzzy neutrosophic topological space and any fuzzy neutrosophic set in τ is known as fuzzy neutrosophic open set in X.

Definition 2.9 [1] The complement A^{C} of a fuzzy neutrosophic set A in a fuzzy neutrosophic topological space (X, τ) is called fuzzy neutrosophic closed set in X.

Definition 2.10 [1] Let (X, τ) be a fuzzy neutrosophic topological space and $A=(x, T_A(x), I_A(x), F_A(x))$ be a fuzzy neutrosophic set in X. Then the closure and interior of A are defined by

```
int(A) = \bigcup \{G : G \text{ is a fuzzy neutrosophic open set in } X \text{ and } G \subseteq A\}
```

 $cl(A) = \bigcap \{G : G \text{ is a fuzzy neutrosophic closed set in } X \text{ and } A \subseteq G\}$

Definition 2.11 [1] Let (X, τ) be a fuzzy neutrosophic topological space over X. Then the following properties hold, (i) $cl(A^C) = (int \ A)^C$, (ii) $int(A^C) = (cl \ A)^C$.

Definition 2.12 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic F_{σ} -set if $A_N = \bigvee_{i=1}^{\infty} (A_{N_i})$, where $\overline{A_{N_i}} \in \tau_N$ for $i \in I$.

Definition 2.13 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic G_δ -set in (P, τ_N) if $A_N = \bigwedge_{i=1}^\infty A_{N_i}$, where $A_{N_i} \in \tau_N$ for $i \in I$.

Definition 2.14 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic dense if there exist no fnCS B_N in (P, τ_N) s.t $A_N \subset B_N \subset 1_X$. That is $fn(A_N)^-=1_N$.

Definition 2.15 [10] A fy. neutrosophic set A_N in a fy. neutrosophic top. space (P, τ_N) is called a fy. neutrosophic nowh. dense set if there exist no non zero fnOS B_N in (P, τ_N) s.t $B_N \subset \text{fn}(A_N)^-$. That is, $\text{fn}\left(((A_N)^-)^+\right) = 0_N$.

Definition 2.16 [10] Let (P, τ_N) be a fy. neutrosophic top. space. A fy. neutrosophic set A_N in (P, τ_N) is called fy. neutrosophic one category set if $A_N = V_{i=1}^{\infty} A_{N_i}$, where A_{N_i} 's are fy. neutrosophic nowh. dense sets in (P, τ_N) . Any other fy. neutrosophic set in (P, τ_N) is said to be of fy. neutrosophic two category.

Definition 2.17 [10] A fy.neutrosophic top.space (P, τ_N) is called fy. neutrosophic one category space if the fy. neutrosophic set 1_X is a fy. Neutrosophic one category set in (P, τ_N) . That is $1_X = V_{i=1}^{\infty} A_{N_i}$, where A_{N_i} 's are fy. Neutrosophic nowh. dense sets in (P, τ_N) . Otherwise (P, τ_N) will be called a fy. neutrosophic two category space.

Definition 2.18 [10] Let A_N be a fy. neutrosophic one category set in (P, τ_N) . Then $\overline{A_N}$ is called fy. neutrosophic re. set in (P, τ_N) .

Definition 2.19 [10] A fy. neutrosophic top. space (P, τ_N) is called fy. neutrosophic Baire space if $\operatorname{fn}\left(V_{i=1}^{\infty}(A_{N_i})\right)^+ = 0_N$, where (A_{N_i}) 's are fy. neutrosophic nowh. dense sets in (P, τ_N) .

Theorem 2.1 [10] Let (P, τ_N) be a fy. neutrosophic top. space. Then the following are equivalent

- (1) (P, τ_N) is a fy. neutrosophic Baire space.
- (2) $\operatorname{fn}(A_N)^+ = 0_N$, for every fy. neutrosophic one category set A_N in (P, τ_N) .
- (3) $\operatorname{Fn}(B_N)^+ = 1_N$, for every fy. neutrosophic re. set B_N in (P, τ_N) .

Definition 2.20 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. A fuzzy neutrosophic Set λ_N in (X_N, T_N) is called a fuzzy neutrosophic σ -nowhere dense set if λ_N is a fuzzy neutrosophic F_{σ} -set in (X_N, T_N) such that $\text{int}(\lambda_N) = 0_N$.

Definition 2.21 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. A fuzzy neutrosophic set λ_N in (X_N, T_N) is called fuzzy neutrosophic σ- first category set if $\lambda_N = V_{i=1}^{\infty}(\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic σ-nowhere dense sets in (X_N, T_N) . Any other fuzzy neutrosophic set in (X_N, T_N) is said to be fuzzy neutrosophic σ- second category sets in (X_N, T_N) .

Definition 2.22 [5] Let λ_N be a fuzzy neutrosophic σ -first category set in (X_N, T_N) . Then $1_N - \lambda_N$ is called a fuzzy neutrosophic σ -residual set in (X_N, T_N) .

Definition 2.23 [5] A fuzzy neutrosophic topological space (X_N, T_N) is called fuzzy neutrosophic σ-first category space if the fuzzy neutrosophic set 1_{X_N} is a fuzzy neutrosophic σ-first category set in (X_N, T_N) . That is $1_{X_N} = \bigvee_{i=1}^{\infty} (\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic σ-nowhere dense sets in (X_N, T_N) . Otherwise (X_N, T_N) will be called a fuzzy neutrosophic σ-second category space.

Definition 2.24 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then (X_N, T_N) is called a fuzzy neutrosophic σ-Baire space if $int(V_{i=1}^{\infty}(\lambda_{N_i})) = 0_N$, where (λ_{N_i}) 's are fuzzy neutrosophic σ- nowhere dense sets in (X_N, T_N) .

Theorem 2.2 [5] Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then the following are equivalent

- (1) (X_N, T_N) is a fuzzy neutrosophic σ -Baire space.
- (2) $int(\lambda_N) = 0_N$, for every fuzzy neutrosophic σ first category set λ_N in (X_N, T_N) .
- (3) $cl(\mu_N) = 1_N$, for every fuzzy neutrosophic σ -residual set μ_N in (X_N, T_N) .

Definition 2.25 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic submaximal space if for each fuzzy neutrosophic set A_N in (X, τ_N) such that $(A_N)^- = 1$ then $A_N \in \tau_N$ in (X, τ_N) . That is (X, τ_N) is a fuzzy neutrosophic submaximal space if each fuzzy neutrosophic dense set in (X, τ_N) is a fuzzy neutrosophic open set in (X, τ_N) .

Definition 2.26 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic resolvable space if there exist a fuzzy neutrosophic dense set A_N in (X, τ_N) such that $(1-A_N)^- = 1$. Otherwise, (X, τ_N) is called a fuzzy neutrosophic irresolvable space.

Definition 2.27 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic hyperconnected space if every non-null fuzzy neutrosophic open subset of (X, τ_N) is fuzzy neutrosophic dense in (X, τ_N) .

Definition 2.28 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic P-space if each fuzzy neutrosophic G_{δ} -set in (X, τ_N) is fuzzy neutrosophic open set in (X, τ_N) .

Definition 2.29 [12] A fuzzy neutrosophic topological space (X, τ_N) is called a fuzzy neutrosophic almost resolvable space if $V_{i=1}^{\infty}(A_{N_i}) = 1$, where (A_{N_i}) 's in (X, τ_N) are such that $(A_{N_i})^+ = 0$, otherwise, (X, τ_N) is called a fuzzy neutrosophic almost irresolvable space.

Definition 2.30 [4] FNS λ_N in FNTS (X, τ) is called Fuzzy neutrosophic regular-open set (Briefly, FNR-open) if $\lambda_N = FNInt(FNcl(\lambda_N))$

Definition 2.31 [4] FNS λ_N in FNTS (X, τ) is called Fuzzy neutrosophic regular-closed set (Briefly, FNR-closed) if $\lambda_N = \text{FNcl}(\text{FNInt}(\lambda_N))$.

Definition 2.32 [4] Fuzzy neutrosophic pre-open set (Briefly, FNP-open) if $\lambda_N \subseteq FNInt(FNCl(\lambda_N))$.

Definition 2.33 [4] Fuzzy neutrosophic pre-closed set(Briefly, FNP-closed) if $FNCl(FNInt(\lambda_N)) \wedge (\lambda_N)$.

III Fuzzy Neutrosophic Pre σ—Nowhere Dense sets

Definition 3.1 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) if $\lambda_N = V_{i=1}^{\infty} (\lambda_{N_i})$ where (λ_{N_i}) 's are fuzzy neutrosophic pre-closed sets in (X_N, T_N) .

Definition 3.2 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre G_δ -set in (X_N, T_N) if $\lambda_N = \Lambda_{i=1}^\infty (\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic pre-open sets in (X_N, T_N) .

Definition 3.3 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre-dense if there exist no fuzzy neutrosophic pre-closed set, where μ_N in (X_N, T_N) such that $\lambda_N < \mu_N < 1_N$. That is, $pcl(\lambda_N) = 1_N$ in (X_N, T_N) .

Definition 3.4 A fuzzy neutrosophic set λ_N in a fuzzy neutrosophic topological space (X_N, T_N) is called a fuzzy neutrosophic pre σ -nowhere dense set if λ_N is a non-zero fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) such that $pint(\lambda_N) = 0_N$.

Example 3.1 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets λ_N , μ_N and γ_N are defined on X_N as follows:

```
\begin{split} &\lambda_N: X_N \to [0_N, 1_N] \text{ is defined as,} \\ &\lambda_N = \{(a, (0.7, 0.6, 0.7)), (b, (0.5, 0.6, 0.5)), (c, (0.7, 0.7, 0.6))\} \\ &\mu_N: X_N \to [0_N, 1_N] \text{ is defined as,} \\ &\mu_N = \{(a, (0.5, 0.4, 0.8)), (b, (0.7, 0.6, 0.5)), (c, (0.8, 0.6, 0.6))\} \\ &\gamma_N: X_N \to [0_N, 1_N] \text{ is defined as,} \\ &\gamma_N = \{(a, (0.6, 0.7, 0.5)), (b, (0.5, 0.6, 0.6)), (c, (0.7, 0.6, 0.6))\} \end{split}
```

Then, $T_N = \{0_N, \lambda_N, \mu_N, \gamma_N, \lambda_N \ v \ \mu_N, \mu_N \ v \ \gamma_N, \lambda_N \ v \ \gamma_N, \lambda_N \ \wedge \mu_N, \mu_N \ \wedge \gamma_N, \lambda_N \ \wedge \gamma_N \ \wedge \gamma_N$

Example 3.2 Let $X_N = \{a, b\}$. The fuzzy neutrosophic sets α_N and β_N are defined on X_N as follows:

```
\alpha_N: X_N \to [0_N, 1_N] is defined as \alpha_N = \{(a, (0.4, 0.3, 0.4)), (b, (0.5, 0.4, 0.3))\}
\beta_N: X_N \to [0_N, 1_N] is defined as \beta_N = \{(a, (0.5, 0.3, 0.3)), (b, (0.4, 0.3, 0.5))\}
```

Then, $T_N = \{0_N, \alpha_N, \beta_N, \alpha_N \, v \, \beta_N, \alpha_N \, \Lambda \, \beta_N, \, 1_N \}$ is a fuzzy neutrosophic topology on X_N . Now, consider

$$\eta_{N} = [(1_{N} - (\alpha_{N} \vee \beta_{N})) \vee (1_{N} - (\alpha_{N} \wedge \beta_{N}))]$$

$$\eta_{N} = 1_{N} - (\alpha_{N} \wedge \beta_{N})$$

Therefore η_N is a fuzzy neutrosopic pre F_{σ} -set in (X_N, T_N) . pint $(\eta_N) \neq 0_N$. Therefore η_N is not a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Remark 3.1 If λ_N and μ_N are fuzzy neutrosophic pre σ -nowhere dense sets in a fuzzy neutrosophic topological space (X_N, T_N) , then $\lambda_N v \mu_N$ be a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) . For, consider the following example:

Example 3.3 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets A_N , B_N and C_N are defined X_N as follows:

$$A_N : X_N \rightarrow [0_N, 1_N]$$
 is defined as,
 $A_N = \{(a, (0.7, 0.6, 0.6)), (b, (0.7, 0.5, 0.6)), (c, (0.5, 0.7, 0.6))\}$

$$\begin{split} B_N: X_N \to & [0_N, 1_N] \text{ is defined as,} \\ B_N = & \{ (a, (0.5, 0.4, 0.5)), (b, (0.4, 0.7, 0.6)), (c, (0.8, 0.5, 0.6)) \} \end{split}$$

 $C_N: X_N \rightarrow [0_N, 1_N]$ is defined as,

 $C_N = \{(a, (0.7, 0.6, 0.6)), (b, (0.6, 0.5, 0.5)), (c, (0.5, 0.4, 0.5))\}$

Then, $T_N = \{0_N, A_N, B_N, C_N, A_N v B_N, B_N v C_N, A_N v C_N, A_N \Lambda B_N, B_N \Lambda C_N, A_N \Lambda C_N, A_N v B_N v C_N, A_N \Lambda B_N \Lambda C_N, I_N\}$ is clearly a fuzzy neutrosophic topology on X_N .

Now, consider,
$$\alpha_N = [(1_N - A_N)v(1_N - B_N)v(1_N - C_N)] = [1_N - (A_N \wedge B_N)]$$

Therefore α_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

$$\beta_N = [(1_N - (\beta_N vC_N))v(1_N - (A_N vC_N))v(1_N - (A_N \wedge B_N))] = [1_N - (A_N \wedge B_N)]$$

pint(α_N) = 0_N , which implies that α_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) . Then $(1_N - C_N) v (1_N - (A_N v B_N v C_N)) = \gamma_N$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) . pint(γ_N) = γ_N is a fuzzy neutrosophic pre σ -nowhere dense set in γ_N , pint(γ_N) = γ_N is a fuzzy neutrosophic pre σ -nowhere dense set in γ_N , pint(γ_N) = γ_N is a fuzzy neutrosophic pre σ -nowhere dense set in γ_N .

Proposition 3.1. A fuzzy neutrosophic set λ_N is a fuzzy neutrosophic pre σ - nowehre dense set in a fuzzy neutrosophic toplogical space (X_N, T_N) if and only if $(1_N - \lambda_N)$ is a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_δ -set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre-sonowhre dense set (X_N, T_N) . Then $\lambda_N = V_{i=1}^{\infty} (\lambda_{N_i})$ where (λ_{N_i}) 's are fuzzy neutrosophic pre-closed sets in (X_N, T_N) and pint $(\lambda_N) = 0_N$. Then $1_N - \text{pint}(\lambda_N) = 1_N - 0_N = 1_N$ and hence $\text{pcl}(1_N - \lambda_N) = 1_N$. Also $(1_N - \lambda_N) = 1_N - V_{i=1}^{\infty} (\lambda_{N_i}) = \Lambda_{i=1}^{\infty} (1_N - \lambda_{N_i})$, where $(1_N - \lambda_{N_i})$'s are fuzzy neutrosophic pre-open sets in (X_N, T_N) , implies that $1_N - \lambda_N$ is a fuzzy neutrosophic pre G_δ -set in (X_N, T_N) . Hence $(1_N - \lambda_N)$ is a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_δ -set in (X_N, T_N) .

Conversely,Let λ_N be a fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_{δ} -set in (X_N, T_N) . Then $\lambda_N = \Lambda_{i=1}^{\infty} (\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy pre-open sets in (X_N, T_N) . Now, $1_N \longrightarrow \lambda_N = 1_N \longrightarrow \Lambda_{i=1}^{\infty} (\lambda_{N_i}) = V_{i=1}^{\infty} (1_N \longrightarrow \lambda_{N_i})$, where $(1_N \longrightarrow \lambda_{N_i})$'s are fuzzy neutrosophic pre-closed sets in (X_N, T_N) . Hence $(1_N \longrightarrow \lambda_N)$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) and pint $(1_N \longrightarrow \lambda_N) = 1_N \longrightarrow pcl(\lambda_N) = 1_N \longrightarrow 1_N = 0_N$. [Since λ_N is a fuzzy neutrosophic pre dense in (X_N, T_N)]. Therefore $(1_N \longrightarrow \lambda_N)$ is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proposition 3.2 If λ_N is a fuzzy neutrosophic pre dense set in a fuzzy neutrosophic topological space (X_N, T_N) such that $\mu_N \leq (1_N - \lambda_N)$, where μ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) , then μ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre dense set in (X_N, T_N) such that $\mu_N \leq (1_N - \lambda_N)$. Now, $\mu_N \leq (1_N - \lambda_N)$, implies that $pint(\mu_N) \leq pint(1_N - \lambda_N)$. Then $pint(\mu_N) \leq 1_N - pcl(\lambda_N) = 1_N - 1_N = 0_N$ and hence $pint(\mu_N) = 0_N$. Therefore, μ_N is a fuzzy neutrosophic pre F_σ -set in (X_N, T_N) such that $pint(\mu_N) = 0_N$ and hence μ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Definition 3.5 Let (X_N, T_N) be a fuzzy neutrosophic topological space. A fuzzy neutrosophic set λ_N in (X_N, T_N) is called fuzzy neutrosophic pre σ -first category set if $\lambda_N = V_{i=1}^{\infty}(\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Any other fuzzy neutrosophic set in (X_N, T_N) is said to be of fuzzy neutrosophic pre σ -second category set in (X_N, T_N) .

Definition 3.6 Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $(1_N - \lambda_N)$ is called a fuzzy neutrosophic pre σ -residual set in (X_N, T_N) .

Definition 3.7 A fuzzy neutrosophic topological space (X_N, T_N) is called fuzzy neutrosophic pre σ-first category space is the fuzzy neutrosphic set 1_{X_N} if a fuzzy neutrosophic pre σ-first category set in (X_N, T_N) . That is, $1_{X_N} = \bigvee_{i=1}^{\infty} (\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ-nowhere dense sets in (X_N, T_N) . Otherwise, (X_N, T_N) will be called a fuzzy neutrosophic pre σ-second category space.

Proposition 3.3 If λ_N is a fuzzy neutrosophic pre σ -first category set in a fuzzy neutrosophic topological space (X_N, T_N) , then there is a fuzzy neutrosophic pre F_{σ} - set δ_N in (X_N, T_N) such that $\lambda_N \leq \delta_N$.

Proof. Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $\lambda_N = V_{i=1}^{\infty}(\lambda_{N_i})$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, $[1_N - pcl(\lambda_{N_i})]'$ s are fuzzy neutrosophic pre-open sets in (X_N, T_N) . Then $\mu_N = \Lambda_{i=1}^{\infty} [1_N - pcl(\lambda_{N_i})]$ is a fuzzy neutrosophic pre G_{δ} – set in (X_N, T_N) and $1_N - \mu_N = 1_N - \left[\Lambda_{i=1}^{\infty} (1_N - pcl(\lambda_{N_i}))\right] = \left[V_{i=1}^{\infty} pcl(\lambda_{N_i})\right]$. Now, $\lambda_{N_i} \leq pcl(\lambda_{N_i})$, implies that $V_{i=1}^{\infty} (\lambda_{N_i}) \leq \left[V_{i=1}^{\infty} pcl(\lambda_{N_i})\right]$. Hence $\lambda_N = V_{i=1}^{\infty} (\lambda_{N_i}) \leq \left[V_{i=1}^{\infty} pcl(\lambda_{N_i})\right] = [1_N - \mu_N]$. That is, $\lambda_N \leq [1_N - \mu_N]$ and $[1_N - \mu_N]$ is a fuzzy neutrosophic pre F_{σ} – set in (X_N, T_N) . Let $\delta_N = [1_N - \mu_N]$. Hence, if λ_N is a fuzzy neutrosophic pre σ – first category set in (X_N, T_N) , then there is a fuzzy neutrosophic pre F_{σ} – set in δ_N such that (X_N, T_N) .

Proposition 3.4 If λ_N is a fuzzy neutrosophic pre σ -first category set in a fuzzy neutrosophic topological space (X_N, T_N) , then there is a fuzzy neutrosophic pre F_{σ} - set δ_N in (X_N, T_N) such that $\lambda_N \leq \delta_N \leq cl(\lambda_N)$, where δ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) . Then $\lambda_N = V_{i=1}^{\infty}$ (λ_{N_i}) , where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, $[1_N - \operatorname{pcl}(\lambda_{N_i})]$'s $(i = 1 \quad \infty)$ are fuzzy neutrosophic pre- open sets in (X_N, T_N) . Then, $\mu_N = \Lambda_{i=1}^{\infty}$ $(1_N - \operatorname{pcl}(\lambda_{N_i}))$ is a fuzzy neutrosophic pre G_{δ} -set in (X_N, T_N) and $1_N - \mu_N = 1_N - [\Lambda_{i=1}^{\infty}$ $(1_N - \operatorname{pcl}(\lambda_{N_i}))] = [V_{i=1}^{\infty}\operatorname{pcl}(\lambda_{N_i})]$. Now, $\lambda_N = V_{i=1}^{\infty}$ $(\lambda_{N_i}) \leq V_{i=1}^{\infty}$ $\operatorname{pcl}(\lambda_{N_i}) \leq V_{i=1}^{\infty}$ $\operatorname{pcl}(\lambda_{N_i})$. That is, $\lambda_N \leq [1_N - \mu_N] \leq \operatorname{cl}(\lambda_N)$ and $[1_N - \mu_N]$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) . Let $\delta_N = [1_N - \mu_N]$. Hence, if λ_N is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) such that then there is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) .

Proposition 3.5 If λ_N is a fuzzy neutrosophic pre-closed set in a fuzzy neutrosophic topological space (X_N, T_N) and if $pint(\lambda_N) = 0_N$, then λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic pre-closed set in (X_N, T_N) . Then we have $pcl(\lambda_N) = \lambda_N$. Now, $pint[pcl(\lambda_N)] = pint(\lambda_N)$ and $pint(\lambda_N) = 0_N$, implies that λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proposition 3.6 If λ_N is a fuzzy neutrosophic closed and fuzzy neutrosophic σ -nowehre dense set in a fuzzy neutrosophic topological space (X_N, T_N) , then pint $(\lambda_N) = 0_N$ in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic σ -nowhere dense set in (X_N, T_N) . Then λ_N is a fuzzy neutrosophic F_{σ} -set such that $int(\lambda_N) = 0_N$. We have, $pint(\lambda_N) \le \lambda_N \wedge intcl(\lambda_N)$. Then, $pint(\lambda_N) \le \lambda_N \wedge int(\lambda_N)$. [Since λ_N is a fuzzy neutrosophic closed set, $\lambda_N = cl(\lambda_N)$] and hence $pint(\lambda_N) \le \lambda_N \wedge 0_N$. That is, $pint(\lambda_N) = 0_N$ in (X_N, T_N) .

Proposition 3.7 If each fuzzy neutrosophic σ -nowhere dense set λ_N is a fuzzy neutrosophic closed set in a fuzzy neutrosophic topological space (X_N, T_N) , then λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in (X_N, T_N) .

Proof. Let λ_N be a fuzzy neutrosophic σ -nowhere dense set in $(X_N\,,\,T_N\,)$. Then λ_N is a fuzzy neutrosopohic F_σ -set in $(X_N\,,\,T_N\,)$ such that $\operatorname{int}(\lambda_N\,)=0_N$. We have, $\operatorname{pint}(\lambda_N\,)\le \lambda_N\, \Lambda$ $\operatorname{intcl}(\lambda_N\,)$. Since λ_N is a fuzzy neutrosophic closed set in $(X_N\,,\,T_N\,)$, $\operatorname{cl}(\lambda_N\,)=\lambda_N$. Then $\operatorname{pint}(\lambda_N\,)\le \lambda_N\, \Lambda$ $\operatorname{int}(\lambda_N\,)$. That is, $\operatorname{pint}(\lambda_N\,)\le \lambda_N\, \Lambda\, 0_N=0_N$. Hence, $\operatorname{pint}(\lambda_N\,)=0_N$ and therefore λ_N is a fuzzy neutrosophic pre σ -nowhere dense set in $(X_N\,,\,T_N\,)$.

1V Fuzzy Neutrosophic Pre σ-Baire Spaces

Definition 4.1 Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then (X_N, T_N) is called a fuzzy neutrosophic pre σ -Baire Space if $pint(V_{i=1}^{\infty}(\lambda_{N_i})) = 0_N$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) .

Example 4.1 Let $X_N = \{a, b, c\}$. The fuzzy neutrosophic sets A_N , B_N and C_N are defined on X_N as follows:

```
A_{N}: X_{N} \rightarrow [0_{N}, 1_{N}] \text{ is defined as,}
A_{N} = \{(a, (0.7, 0.6, 0.5)), (b, (0.5, 0.6, 0.8)), (c, (0.7, 0.5, 0.6))\}
B_{N}: X_{N} \rightarrow [0_{N}, 1_{N}] \text{ is defined as,}
B_{N} = \{(a, (0.6, 0.5, 0.7)), (b, (0.6, 0.6, 0.7)), )c, (0.5, 0.7, 0.5))\}
C_{N}: X_{N} \rightarrow [0_{N}, 1_{N}] \text{ is defined as,}
C_{N} = \{(a, (0.5, 0.5, 0.7)), (b, (0.7, 0.5, 0.5)), (c, (0.6, 0.5, 0.7))\}
```

Then, $T_N = \{0_N, A_N, B_N, C_N, A_N \ v \ B_N, A_N \ v \ C_N, B_N \ v \ C_N, A_N \ \land B_N, A_N \land B_N \land B_N, A_N \land B_N \land$

 $C_N, B_N \wedge C_N, A_N \wedge B_N \wedge C_N, 1_N$ is a fuzzy neutrosophic topology on X_N . Now,

 $\alpha_N = [(1_N - B_N)v(1_N - C_N)v(1_N - (A_N v B_N))] = [1_N - (B_N \wedge C_N)]$ is a fuzzy neutrosophic pre F_σ -set in (X_N, T_N) .

pint(α_N) = 0_N , α_N is a fuzzy neutrosophic pre σ -nowhere dense set in $(X_N$, T_N). $\beta_N = [(1_N - (A_N \wedge B_N))v(1_N - A_N \wedge C_N)v(1_N - (B_N \wedge C_N))]$ is a fuzzy neutrosophic pre F_{σ} -set in (X_N, T_N) . pint(β_N) = 0_N , β_N is a fuzzy neutrosopic pre σ -nowhere dense set. pint($\alpha_N v \beta_N$) = 0_N , then (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space.

Proposition 4.1 Let (X_N, T_N) be a fuzzy neutrosophic topological space. Then the following are equivalent:

- (1) (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire Space.
- (2) pint(λ_N) = 0_N , for each fuzzy neutrosophic pre σ -first category set in (X_N, T_N) .
- (3) $pcl(\mu_N) = 1_N$, for each fuzzy neutrosophic pre σ -residual set μ_N in (X_N, T_N) .

Proof. $(1) \Rightarrow (2)$

Let λ_N be a fuzzy neutrosophic σ -first catergory set in (X_N, T_N) . Then $\lambda_N = V_{I=1}^{\infty}$ (λ_{N_i}), Where $(\lambda_{N_i})'s$ are fuzzy neutrosophic pre σ –nowhere dense sets in (X_N, T_N) . Then, pint $(\lambda_N) = pint(V_{i=1}^{\infty}(\lambda_{N_i}))$. Since (X_N, T_N) is a fuzzy neutrosophic σ -Baire space, pint $(V_{i=1}^{\infty}(\lambda_{N_i})) = 0_N$. Hence, pint $(\lambda_N) = 0_N$ for a fuzzy neutrosophic pre σ –first category set λ_N in (X_N, T_N) .

 $(2) \implies (3)$

Let μ_N be a fuzzy neutrosophic pre σ -residual set μ_N in $(X_N$, T_N). Then $(1_N - \mu_N)$ is a fuzzy neutrosophic pre σ -first category set in $(X_N$, T_N). By hypothesis, pint($1_N - \lambda_N$) = 0_N . Then, $1_N - pcl(\mu_N$) = 0_N . Hence, $pcl(\mu_N$) = 1_N , for a fuzzy neutrosophic pre σ -residual set μ_N in (X_N,T_N) .

$$(3) \Longrightarrow (1)$$

Let λ_N be a fuzzy neutrosophic σ -first category set in (X_N, T_N) . Then $\lambda_N = (V_{i=1}^\infty (\lambda_{N_i}))$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Now, λ_N is a fuzzy neutrosophic pre σ -first category set in (X_N, T_N) , implies that $(1_N - \lambda_N)$ is a fuzzy neutrosophic pre σ -residual set in (X_N, T_N) . By hypothesis, $\operatorname{pcl}(1_N - \lambda_N) = 1_N$. Then, $1_N - \operatorname{pint}(\lambda_N) = 1_N$. Hence $\operatorname{pint}(\lambda_N) = 0_N$. That is, $\operatorname{pint}(V_{i=1}^\infty(\lambda_{N_i})) = 0_N$, where (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Hence (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space.

Proposition 4.2 If the fuzzy neutrosophic topological space (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, then (X_N, T_N) is a fuzzy neutrosophic pre σ -second category space.

Proof. Let (X_N, T_N) be a fuzzy neutrosophic pre σ -Baire space. Then, $\operatorname{int}(V_{i=1}^\infty (\lambda_{N_i})) = 0_N$, where (λ_N) 's are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Then $V_{i=1}^\infty(\lambda_{N_i}) \neq 1_{X_N}$ [Otherwise, $V_{i=1}^\infty (\lambda_{N_i}) = 1_{X_N}$, implies that $\operatorname{pint}(V_{i=1}^\infty (\lambda_{N_i})) = \operatorname{pint}(1_{X_N}) = 1_{X_N}$, which in turn implies that $0_N = 1_N$, a contradiction]. Hence (X_N, T_N) is a fuzzy neutrosophic pre σ -second category space.

Proposition 4.3 Let (X_N, T_N) be a fuzzy neutrosophic topological space. If $\Lambda_{i=1}^{\infty}$ $(\lambda_{N_i}) \neq 0_N$, where (λ_{N_i}) 's are fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_{δ} -sets in (X_N, T_N) , then (X_N, T_N) is a fuzzy neutrosophic preo-second category space.

Proof. Given that $\Lambda_{i=1}^{\infty}$ $(\lambda_{N_i}) \neq 0_N$, implies that $1_N - \Lambda_{i=1}^{\infty}$ $(\lambda_{N_i}) \neq 1_N - 0_N = 1_N$. Then $V_{i=1}^{\infty}(1_N - \lambda_N) \neq 1_N$. Since (λ_N) 's are fuzzy neutrosophic pre dense and fuzzy neutrosophic pre G_{δ} -set in (X_N, T_N) , by proposition 3.1., $(1_N - \lambda_N)$ is are fuzzy neutrosophic pre G_{δ} -nowhere dense sets in

 (X_N, T_N) . Hence, $(1_N - \lambda_N) \neq 1_N$, where $(1_N - \lambda_{N_1})$'s are fuzzy neutrosophic pre σ -nowhere dense sets in (X_N, T_N) . Hence (X_N, T_N) is not a fuzzy neutrosophic pre σ -first category space. Therefore (X_N, T_N) is a fuzzy neutrosophic pre σ -second category space.

Proposition 4.4 If a fuzzy neutrosophic topological space (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, then no non-zero fuzzy neutrosophic pre-open set is a fuzzy neutrosophic σ -first category set in (X_N, T_N) .

Proof. Let λ_N be a non-zero fuzzy neutrosophic pre-open set in a fuzzy pre σ - Baire space (X_N, T_N) . Suppose that $\lambda_N = \bigvee_{i=1}^{\infty} (\lambda_{N_i})$, where the fuzzy neutrosophic sets (λ_{N_i}) 's are fuzzy neutrosophic pre σ -nowhere de sets in (X_N, T_N) . Then $pint(\lambda_N) = pint(\bigvee_{i=1}^{\infty} (\lambda_{N_i}))$. Since (X_N, T_N) is a fuzzy neutrosophic pre σ -Baire space, $pint(\bigvee_{i=1}^{\infty} (\lambda_{N_i})) = 0_N$. This implies that, $pint(\lambda_N) = 0_N$. Then we will have $\lambda_N = pint(\lambda_N) = 0_N$, a contradiction. Since λ_N is a non-zero fuzzy neutrosophic set in (X_N, T_N) . Hence no non-zero fuzzy neutrosophic pre-open set is a fuzzy neutrosophic pre-of-first category set in (X_N, T_N) .

V. Conclusion

In this study, we have introduced and analyzed the concept of fuzzy neutrosophic pre σ-Baire Spaces, extending classical and fuzzy Baire space theories into the neutrosophic framework. The work lays a foundation for further exploration of fuzzy neutrosophic spaces in advanced topology, particularly in applications.involving decision-making, artificial intelligence and Information systems, where vagueness and indeterminacy play a critical role.

References

- [1]. Arockiarani I.; J. Martina Jency. More on Fuzzy Neutrosophic Sets and Fuzzy Neutrosophic Topological Spaces., International Journal of Innovative Research & Studies, Volume 3(5), 2014, 643-652.
- [2]. Arockiarani I.; I. R. Sumathi.; J.Martina Jency. Fuzzy Neutrosophic Soft Topological Spaces. International Journal of Mathematical archive, Volume 4(10), 2013., 225-238.
- [3]. Chang C.L, Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications. Volume 24(1), 1968., 182-190.
- [4]. Fatimah M. Mohammed^{1 x} and Anas A. Hijab ¹ and Shaymaa F. Matar¹. Fuzzy Neutrosophic Weakly-Generalized Closed Sets in Fuzzy Neutrosophic Topological Spaces, J.University of Anbar For Pure Science: Vol.12(2), 2018, 63-73.
- [5]. Poongothai, E.; Kalaivani, E. Neutrosophic σ-Baire Spaces on Fuzzy setting. Journal of Xedian University, 2024, Volume 18(1,) pp. 253-264.
- [6]. Poongothai, E.; Kalaivani, E. A Characterzation of Neutrosophic σ-Baire Space on Fuzzy setting. Neutrosophic Sets and Systems, 2025, Volume 83, pp. 87-95.
- [7]. Poongothai, E.; Kalaivani, E. Some remarks on Fuzzy Neutrosophic σ-Baire Spaces and other Fuzzy Neutrosophic Spaces, Communicated to the Journal of Neutrosophic Sets and Systems.
- [8]. Poongothai, E.; Kalaivani, E. Fuzzy Neutrosophic Regular *σ*-Baire Space. Communicated to the Journal of Neutrosophic Sets and Systems.
- [9]. Ganesan Thangaraj.; Eswaran Poongothai. A Note on Fuzzy σ -Baire Spaces, Annals of Fuzzy Mathematics and Informatics, 2015, Volume 9(2), pp. 197-203.
- [10]. Poongothai, E.; Padmavathi, E. Baire Spaces on Fuzzy Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 2022, Volume 51(1), pp. 708-723.
- [11]. Poongothai, E.; Padmavathi, E. On Fuzzy Neutrosophic Directed Baire Spaces and Characterizations of Other Fuzzy Neutrosophic Spaces, Mukt Shabd Journal, 2023, Volume 12(12), pp. 570-586.
- [12]. Poongothai, E.; Padmavathi, E. C-Almost P-Spaces and other Spaces on Fuzzy Neutrosophic Topological spaces. International Journal of Advanced Research in Science, Engineering and Technology, Nov.2023, Volume 10(11).
- [13]. Thangaraj, G.; Poongothai, E. On Fuzzy σ-Baire Spaces, International Journal of Fuzzy Math. and Sys., 2013, Volume 3(4), pp. 275-283.
- [14]. Thangaraj, G.; Poongothai, E., On Fuzzy Regular σ-Baire Spaces, Advances in Fuzzy Mathematics, 2014, Volume 9(1), pp. 95-104.
- [15]. Thangaraj, G.; Poongothai, E., On Fuzzy pre-σ-Baire Spaces, Advances in Fuzzy Mathematics, 2016, Volume 11(1), pp. 39-
- [16]. Turksen I., Interval-valued fuzzy sets based on normal form, Fuzzy Sets and Systems, Vol 20, 1986., 191-210.
- [17]. Salama A.A., and S.A.Alblowi, Neutrosophic Sets and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, Volume 3(4), 2012.
- [18]. Salama A.A., Generalized, Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Computer Science and Engineering, Volume 2(7),ll 2012., 129-132.

[21]. Zadeh L.A., fuzzy sets, Information and control, Volume 8, 1965, 338-353.

Smarandache fuzzy, Neutrosophic Set, A Generalization of the Intuitionistic Fuzzy Sets, Inter.J.Pure Appl.Math., Volume 24, [19]. 2005., 287-297. Veereswari V., An Introduction to fuzzy Neutrosophic Topological spaces, IJMA, Volume 8(3), 2017., 144-149.

^{[20].}