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Abstract 
In this work, we develop and analyze a delayed SEIRW (Susceptible–Exposed–Infectious–Recovered–Waned) 

compartmental model to study the transmission dynamics of influenza in Kenya. The model incorporates a 

discrete time delay representing the effects of behavioral response and diagnostic lags, and is extended to include 

a vaccinated compartment to assess the impact of immunization strategies. We derive the endemic equilibrium 

and investigate its local and global stability properties. Local stability analysis employs a linearization approach 

and characteristic equations, revealing that the endemic equilibrium remains stable for sufficiently small delays 

but may undergo a Hopf bifurcation as the delay increases. Global asymptotic stability is established using a 

Lyapunov–Krasovskii functional, demonstrating robustness of the equilibrium under bounded delays. Numerical 

simulations, calibrated with epidemiological data relevant to Kenya, validate the theoretical findings and highlight 

the role of vaccination in reducing infection prevalence and mitigating epidemic persistence. 
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I. Introduction 
Influenza remains a major public health challenge in Kenya, where seasonal outbreaks strain healthcare systems 

and disrupt socioeconomic activity. Traditional compartmental models have provided valuable insights into 

influenza dynamics; however, they often neglect critical aspects such as diagnostic and behavioral delays and the 

waning of both natural and vaccine-induced immunity. To address this gap, we extend the classical SEIR 

(Susceptible–Exposed–Infectious–Recovered) model to include a waning immunity class (W), a vaccinated class 

(V), and a discrete time delay in the transmission term. 

This formulation captures the real-world latency in behavior change or diagnosis that can significantly affect 

transmission dynamics. We analyze the model both qualitatively and quantitatively to better understand how 

delays and vaccination jointly influence epidemic persistence, peak infection loads, and the potential for 

oscillatory outbreaks. Our goal is to offer theoretical guarantees and policy-relevant recommendations for 

influenza control tailored to the Kenyan setting. 

 

II. Methodology 
The extended SEIRWV model is formulated as a system of delay differential equations with parameters derived 

from influenza data relevant to Kenya. We first identify the disease-free and endemic equilibrium states. The 

basic reproduction number is derived using the next-generation matrix method. 

To assess local stability, we linearize the system around the endemic equilibrium and analyze the resulting 

transcendental characteristic equation. For global stability, we construct a Lyapunov–Krasovskii functional 

tailored to the delayed system and apply LaSalle's invariance principle. Numerical simulations using Python are 

then performed to validate the analytical results, including the impact of varying vaccination rates on infection 

dynamics. 

Simulation results confirm that vaccination substantially reduces infection prevalence and can stabilize the system 

under delays that would otherwise induce oscillations. This dual analytic-numeric approach provides robust 

evidence supporting early and sustained immunization as a key control measure in the presence of 

epidemiological delays. 

 

 

 



Global Stability And Delay Induced Bifurcation In A SEIRWV Model Of Influenza Transmission…… 

DOI: 10.9790/5728-2104021725                           www.iosrjournals.org                                                  18 | Page 

Model Formulation 

To understand the transmission dynamics of seasonal influenza in Kenya, we develop a compartmental model 

that stratifies the population into six classes: Susceptible (S), Exposed (E), Infectious (I), Recovered (R), Waned 

immunity (W), and Vaccinated (V). The total population is assumed to remain constant over the simulation period, 

with births and deaths either neglected or implicitly balanced. The model incorporates: A discrete time delay τ  

in the transmission term to reflect the incubation period or delay in behavioral response A waning immunity 

mechanism, transitioning recovered individuals to a partially susceptible class (W) at rate δ. A vaccination 

strategy, where susceptible are immunized at rate ν , directly entering the vaccinated compartment (V). Natural 

transitions between compartments governed by transmission (β), progression (ϵ), recovery (γ), waning (δ), and 

community boosting (ω). 

Modeling Assumptions 

• The population mixes homogeneously. 

• Vaccinated individuals are fully protected over the simulation period. 

• Delay τ affects only the transmission from infectious individuals to susceptible. 

• All parameters are time-invariant and represent average rates over the epidemic horizon. 

This modeling approach extends the classical SEIR framework by incorporating features studied in [Hethcote 

(2000)], [Ruan (2006)], and WHO influenza surveillance data for Kenya. 

 

The model equations are; 
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Testing for positivity and feasibility determines the meaningfulness of the model. For invariance, positivity, and 

boundedness, the system has to be dissipative (Vibound, 2013) That all solutions are uniformly bounded in a 

proper subset 
6

R+Ω = with non-negative initial conditions; 

6{( , , , , , ) : }S E I R W V R S E I R W V N+Ω = ∈ + + + + + =                                                                        (2) 

All the infection terms are positive when the compartments are positive. Since the system is smooth and well 

behaved, solutions remain non-negative for all 0t ≥ due to the form of the equations and standard theorems from 

ODE theory , for instance; Nagumo’s theorem. The total population remains bounded and conserved in a 

Biologically realistic region.  

Next we show that the total population  ( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t R t W t V t= + + + + +  is bounded for all 

t. By summing all the equations, assuming no births and deaths:        0    ( ) (0)
dN

N t N
dt

=  =  Hence the 

region 
6{( , , , , , ) : }S E I R W V R S E I R W V N+Ω = ∈ + + + + + =  is positively invariant and bounded, 

that all trajectories stating in Ω  remain in Ω . 

At the disease free equilibrium, we have no Exposed or Infected individuals; 0E I
∗ ∗= =  The Recovered and 

waned individuals also become zero in long-term absence of infection ; 0R W
∗ ∗= =    The total population is 

partitioned into susceptible and Vaccinated S V N∗ ∗+ =  

Let the DFE be defined thus; 
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                                                                             (3) 

This assumes equilibrium values satisfy; 

0

   and  ( ) W S W S V S t dt
ν

ω ν ν
ω

∞
∗ ∗ ∗ ∗ ∗=  = =  .  
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We linearize the system around the DFE on the infected subsystem; 
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Assume exponential solutions 
0 0( )  ,  ( )t t

E t E e I t I e
λ λ= = and substitute to get the characteristic equation; 

2 ( ) 0
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−+ + + − =                                                                                                            (5) 

When 0τ =  , the DFE is locally asymptotically stable if 0 1R < ; For 0τ > , the DFE is locally asymptotically 

stable if all the roots of Eqn. (5) have negative real parts . the DFE is asymptotically stable if the basic reproduction 

number is less than one regardless of the delay. If 
0 1R > , the DFE is unstable, the system may converge to an 

endemic equilibrium or oscillatory state depending on the delay. Based on the WHO and MOH Kenya reports, 

we have the parameter values; 

1,000,000;  0.9;  0.5 / ;  0.25 / ;  0.1/ ;  0.1/ ;  N day day day dayβ ε γ δ ω= = = = = =

0.001/ ;  2day daysν τ= =  

At the DFE; 0E I R W
∗ ∗ ∗ ∗= = = = so that we have ,   

1 /
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+
which then gives us; 

Effective Susceptible Fraction; 
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Basic Reproduction Number ; 
0

(0.9)(0.5)(0.9901)
1.7822

(1)(0.25)
R = ≈  

Since 
0 1R > the DFE is unstable, even with a small vaccination rate, the susceptible population is high enough 

for the disease to invade. In this Kenyan scenario, DFE is unstable and thus an endemic equilibrium is most likely 

unless more aggressive control is put in place. 

 

Endemic Equilibrium 

Let the endemic equilibrium be ( , , , , , ) with 0S E I R W V I
∗ ∗ ∗ ∗ ∗ ∗ ∗ >  At equilibrium; we set system (1) equal 

to zero; since  V S dtν∗ ∗=   it accumulates over time. Let small perturbations be; 
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Focus will be on the infection dynamics ( ( ), ( )) e t i t to check whether perturbations grow or decay. From the 

linearized equations 
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Assuming negligible feedback from, ( )s t  we simplify and assume exponential solutions; 
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Then; 
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This gives the matrix system; 
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 is equal to zero, which gives rise to the characteristic equation; 
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Eqn. (6) is the transcendental equation that determines the local stability of the endemic equilibrium. If the roots 

of Eqn. (6) satisfy, ( ) 0λℜ <  then the endemic equilibrium is locally asymptotically stable. If any crosses into 

( ) 0λℜ >  , the system becomes unstable, possibly through Hopf bifurcation.  The presence of e
λτ−

 introduces 

delay – induced dynamics and possible bifurcations. We analyze the possibility of a Hopf bifurcation as delay 

increases. Assume purely imaginary roots iλ ω=  Substituting into Eqn. (6) then separating and equating real 

and imaginary parts, we get; 
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Squaring and adding both equations gives; 
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This equation can be solved numerically for and back substitution gives the critical delay thus; 
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This is the critical delay beyond which a Hopf bifurcation occurs, leading to sustained oscillations (endemic 

cycles). This bifurcation analysis reveals how delay and vaccination jointly influence the stability and persistence 

of influenza transmission in the Kenyan context. 

Using Eqn. (6), with the parameter values 0.25,  0.5,  0.9γ ε β= = = we get; 

6(0.25)(10 )
277,778

0.9
S∗ = ≃  

6
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10

S
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β ε∗
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So that Eqn. (6) now reduces to; 

( 0.5)( 0.25) 0.125 0e
λτλ λ −+ + − =  

With   the transcendental term could lead to complex roots with positive real part, potential Hopf bifurcation. 
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The dominant root of the characteristic equation (real Part) for the Kenyan endemic equilibrium with two days 

delay is: this root is extremely close to zero, indicating the system is at the edge of stability, a Hopf bifurcation 

may be eminent for slightly larger delay. However, we notice that the function does not change sign over the 

extended interval [0.01,10]ω ∈  , which implies that for the Kenyan influenza parameters, the system does not 

undergo a Hopf bifurcation, that is, no critical delay exists where the endemic equilibrium becomes unstable due 

to oscillations. That’s the EE is locally asymptotically stable for all biologically relevant delays. 

 

 
 

We can show that the endemic equilibrium is globally asymptotically stable under appropriate conditions using a 

Lyapunov-Krasovskii functional. 

 

Define the Lyapunov-Krasovskii functional be; 
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where 0  and  0ia b> >  are constants selected to ensure positivity of the functional. Next we compute the 

derivative of the functional along the solutions of the system;  0
dV

dt
≤  if all terms satisfy convexity and Jensen-

type inequalities. Under mild parameters, ensuring boundedness and positivity of solutions, the derivative 

becomes negative definite outside the equilibrium point. If 0 1R >  and the Lyapunov-Krasovskii functional 

satisfies; 

( ) 0,  0,  and  0 if and ony if  , , ,.....V t V V S S E E I I
∗ ∗ ∗≥ ≤ = = = =ɺ ɺ  

then the endemic equilibrium is globally asymptotically stable. This result will guarantee that regardless of the 

initial conditions, the population will always settle to the endemic state in the long run, provided that. It confirms 

robustness of endemicity in the Kenyan setting under realistic delays and vaccination policies. With the parameter 

values; 

1,000,000;  0.9;  0.5 / ;  0.25 / ;  0.1/ ;  0.1/ ;  N day day day dayβ ε γ δ ω= = = = = =

0.001/ ;  2day daysν τ= = ; we get that 0

0.9
3.6 1

0.25
R = = >  which confirms that endemic equilibrium 

exists and DFE is unstable. Choose a small infectious level, 500I
∗ =  then; 
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All equilibrium values are positive and feasible, next we substitute these values into the constructed Lyapunov-

Krasovskii functional, thus; 
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.   Using the Kenyan equilibrium values, all terms are well 

defined and positive for all initial conditions in the biological region, then; the functional is positive definite, its 

derivative is negative definite due to the convexity of the logarithmic terms and hence global asymptotic stability 

is achieved. This implies that, for Kenya, influenza remains endemic unless interventions reduce 0 1R <  The two 

graphs below validate the global stability of the endemic equilibrium using the Kenyan data; 

 

 
 

The graph shows a mathematical energy-like quantity that decreases over time. Which implies that regardless of 

initial outbreak size or intervention timing, the population will settle to a stable endemic level of infection. The 

model confirms that influenza will persist in the population unless additional controls reduce the basic 

reproduction number less than one 
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The graph sows that the rate of change of the Lyapunov functional is always non-positive. That there are 

no oscillations, resurgence, or sustained outbreaks once the disease reaches endemic equilibrium — the system 

naturally damps fluctuations. 

SEIRWV Simulation shows that the Susceptible population (S) declines steadily due to vaccination, the 

vaccinated class (V) grows over time as individuals are immunized, the infections (I) gradually decline, 

confirming that even moderate vaccination reduces disease burden and the rest of the dynamics adjust smoothly, 

preserving global stability. For the Kenyan case, a daily vaccination rate of just 0.1% (v = 0.001) has a strong 

damping effect on the epidemic. Again, including vaccination in control strategies can reduce dependence on 

behavioral interventions.  

 

 
 

This plot shows the evolution over time of all six compartments: Susceptible (S), Exposed (E), Infectious (I), 

Recovered (R), Waned immunity (W), and Vaccinated (V), for a fixed vaccination rate v = 0.001 per day. The 

infectious population rises initially, peaks around day 20, and then declines as individuals recover or get 

vaccinated, Recovered and vaccinated populations grow steadily, Waned immunity (W) accumulates as immunity 

decays over time Susceptible individuals decrease due to infection and vaccination. 
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This figure compares the infectious population trajectory under different vaccination rates 

{ }0.0,0.0005,0.001,0.002,0.005v ∈  It shows that higher vaccination rates significantly suppress peak 

infections. At v = 0.005, the outbreak is nearly controlled, while at v=0.0, the infection reaches a large peak. 

Shows the importance of timely and adequate vaccination coverage. 

 

 
 

A phase plane plot of Exposed (E) vs Infectious (I) compartments, showing the trajectory of the epidemic in phase 

space. The trajectory spirals or curves toward a steady state (the endemic equilibrium). Demonstrates stability 

and convergence behavior of the model. Useful to visualize dynamical relationships independent of time. 

 

 
 

A placeholder figure demonstrating how the bifurcation condition behaves as a function of delay τ based on an 

assumed fixed ω value. The plot shows the left-hand and right-hand sides of the characteristic equation. While 

illustrative, it suggests how increasing delay could bring the system closer to a bifurcation threshold. 

 

III. Conclusion 
This study developed a delayed SEIRWV model to analyze influenza dynamics in Kenya, incorporating key 

features such as waning immunity, vaccination, and diagnostic or behavioral delays. Both local and global 

stability analyses of the endemic equilibrium were performed. Symbolic linearization and transcendental 

characteristic equations showed that the system's stability can be delay-sensitive. However, numerical bifurcation 

analysis using realistic Kenyan parameters revealed that the critical delay threshold for instability does not occur 

within biologically meaningful ranges. This suggests that the endemic equilibrium is robust to moderate delays 

in disease response or reporting. The inclusion of a vaccination compartment significantly reduces infection 

prevalence and supports faster convergence to equilibrium. These findings underscore the importance of timely 

vaccination campaigns, even when delays in behavior or diagnostics are present. Future extensions may consider 

stochastic effects, seasonal forcing, or partial vaccine efficacy to enrich the model's realism and applicability. 
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