Difference Cordial Labeling On Zero Divisor Graphs

Dr. D. Bharathi, S.Naresh Kumar

Department Of Mathematics, Sri Venkateswara University, Tirupati, Andhra Pradesh, India Research Scholar Sri Venkateswara University, Tirupati, Andhra Pradesh, India

Abstract:

Assume that G is a (p, q) graph. Let V(G) to $\{1, 2, ..., p\}$ be mapped by f. Assign the label |f(u) - f(v)| to each edge uv. It's referred to as differential cordial labeling. When f is I-I and $|e_f(0)-e_f(1)| \le I$, the number of edges labeled with 1 and those not labeled with 1 are indicated by $e_f(1)$ and $e_f(0)$, respectively. A difference cordial graph is one that has a difference cordial labeling. Thus, by using the above definitions here we investigate that zero divisor graphs $\Gamma(Z_{pp})$, $\Gamma(Z_{pp})$, for difference cordial labeling.

Keywords And Phrases: Cordial labeling, Difference cordial labeling, Zero divisors, Zero divisor graphs

Date of Submission: 07-08-2025 Date of Acceptance: 17-08-2025

I. Introduction

Let the graph G = (V,E) be (p,q). Only simple, undirected graphs have been examined in this article. The order of G is the number of its vertices, while the size of G is the number of its edges. Numerous scientific and technological fields, including astronomy, radar, circuit design, and database administration, use labeled graphs [9]. Graceful labeling, which was first presented by Rosa [5] in the year 1967, is considered to be the founding principle of graph labeling. Chait [3] first proposed the cordial labeling of graphs in 1980. Numerous publications have examined the cordiality behavior of various graphs [4,5,6,7]. The concept of differential cordial labeling was suggested by R. Ponraj [10]. R. Ponraj [11] A remark on difference cordial graphs and the study of Signed Product Cordial Labeling by Jayapal Baskar Babujee and Shobana Loganathan [8]. Zero divisor graphs were examined by D. Bharathi and D. Eswara Rao [12]. Sk. Sajana and D. Bharathi [13] investigated intersection graphs of zero divisors. The results of Difference Cordial labeling on Zero divisor graphs $\Gamma(Z_{np})$, $\Gamma(Z_{pn})$, and $\Gamma(Z_{ng})$ were expanded in this paper.

II. Preliminaries

Definition 2.1 Cordial Labeling

Each vertex in a graph is given a cordial label of either 0 or 1, so that the number of vertices with the labels 0 and 1 differs by no more than 1, and the same is true for the number of edges with the labels 0 and 1 based on their endpoint labels.

Definition 2.2 Difference Cordial Labeling

Assume that G is a (p, q) graph. Let V(G) to $\{1,2,\ldots,p\}$ be mapped by f. Assign the label |f(u)-f(v)| to each edge uv . It's referred to as differential cordial labeling. When f is 1-1 and $|e_f(0)-e_f(1)| \le 1$, the number of edges labeled with 1 and those not labeled with 1 are indicated by $e_f(1)$ and $e_f(0)$, respectively. A difference cordial graph is a graph that has a difference cordial labeling.

Definition 2.3 Divisor graph

A divisor graph is one in which two vertices are connected by an edge if one number divides the other, where vertices represent elements of a set of positive integers.

Definition 2.4 zero Divisors

Let R be a ring, If $b \in R, b \neq 0$ such that a. b = 0 or b. a = 0, then an element $a \in R, a \neq 0$ is referred to as a zero divisor.

Definition 2.5 Zero divisor graph $\Gamma(R)$

Assuming R is a commutative ring with unity, the zero divisor graph $\Gamma(R)$ corresponds to the zero divisors of R. Each vertex represents a non-zero divisor in R. An edge exists between two vertices a and b if and

only if $a \cdot b = 0$. In other words, two vertices are adjacent when the product of the respective elements is zero in the ring.

III. Main Section

Theorem 3.1 [10] Every path graph is a difference cordial graph

Theorem 3.2 [10] K_n represents a difference graph of cordial if $n \le 4$

Theorem 3.3 [10] $K_{1,n}$ represents a difference graph of cordial if $n \le 4$

Theorem 3.4 [10] $K_{2,n}$ represents a difference graph of cordial if $n \le 4$

Theorem 3.5 The Zero divisor graph $\Gamma(Z_p)$ is not a difference cordial graph for prime numbers P>2.

Proof: Since Z_p has no zero divisors other than zero for prime numbers p>2

Theorem 3.6 The graph of the zero divisors $\Gamma(Z_{2p})$ is a difference cordial graph for prime numbers $P \le 5$.

Proof: If p is a prime number, then the vertex set of $\Gamma(Z_{2n})$ is

$$V(G) = \{2,4,6 \dots 2(p-1), p\}$$

Let
$$V = \{v_1, v_2, \dots, v_p\}$$

From this, we have that $E(\Gamma(Z_{2p})) = \{v_i v_p, 1 \le i \le p-1\}$

Here , The graph of the zero divisors $\Gamma(Z_{2p}) \cong K_{1,p-1}$ then the graph is not difference cordial According to the theorem 3.3, for p-1 \leq 4.

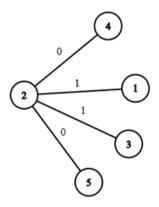
Therefore, the graph of the zero divisors $\Gamma(Z_{2p})$ is a difference cordial graph for prime numbers $P \le 5$

Example 3.7 The graph of the zero divisors $\Gamma(Z_{10})$, is a difference cordial graph.

The vertex set of $\Gamma(Z_{2p})$ is $V(\Gamma(Z_{10})) = \{2,4,6,10,5\} = \{v_1, v_2, v_3, v_4, v_5\}$

Here the zero divisor graph $\Gamma(Z_{10}) \cong K_{1,4}$

Let $v_1 = 1$, $v_2 = 3$, $v_3 = 4$, $v_4 = 5$, and $v_5 = 2$ then difference cordial Labelling of $\Gamma(Z_{10})$ is given Figure (i)



D.C.L of $(\Gamma(Z_{10}))$ **Figure** (i)

Theorem 3.8 The difference cordial graph $\Gamma(Z_{3p})$ is a zero divisor graph for primes $P \le 5$.

Proof: In the event that p is greater than or equal to 2, the vertex set of $\Gamma(Z_{3p})$ is

$$V(\Gamma(Z_{3p})) = \{3,6 \dots 3(p-1), p, 2p\}$$

i.e V =
$$\{x_1, x_2, \dots, x_{p-1}, y_1, y_2\}$$

From this, we have that $E(\Gamma(Z_{3p})) = \{y_1x_i, y_2x_i, 1 \le i \le p-1\}$

i) For p=2, $\Gamma(Z_{3p})=\Gamma(Z_6)$, Hence $\Gamma(Z_{3p})$ is a difference cordial graph by theorem 3.6

ii)For p=3 $\Gamma(Z_{3p})=\Gamma(Z_{9})$ and $V(\Gamma(Z_{9}))=\{3,6\}$ by theorem 3.1 it is a difference cordial graph

iii) For p = 5 $\Gamma(Z_{3p}) = \Gamma(Z_{15})$ and $V(\Gamma(Z_{15})) = \{5,10,3,6,9,12\}$

i.e.
$$V = \{y_1, y_2, x_1, x_2, x_3, x_4\}$$

Here y_1, y_2 have four edges each without loss of generality say $f(y_1) = r$, $f(y_2) = s$

To obtain the edge label 1, the sole condition is that $f(x_i) = r-1$ and $f(x_i) = r+1$ for certain indices i and j.

Similary $f(x_i) = s-1$ $f(x_j) = s+1$ for certain indices i and j.

Then $e_f(1) \le 4$, Hence $|e_f(0) - e_f(1)| \ge 4 - 4 = 0 \le 1$

Hence, for p = 5 $\Gamma(Z_{3p}) = \Gamma(Z_{15})$ is a difference cordial graph.

We now presume that p is greater than 7, and we assume that f is a difference cordial

For p = 7 the vertex set of $\Gamma(Z_{21})$ is

 $V = \{3,6,9,12,15,18,7,14\}$ i.e. $V = \{x_1, x_2, x_3, x_4, x_5, x_6, y_1, y_2\}$

Here y_1, y_2 have six edges each without loss of generolity say $f(y_1) = r$, $f(y_2) = s$.

For some i and j, the only possible outcome is that $f(x_i) = r-1$ and $f(x_j) = r+1$; this is the only way to obtain the edge label 1.

Similary $f(x_i) = s-1$, $f(x_j) = s+1$ for certain indices i and j.

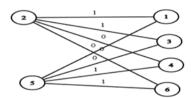
This suggests $e_f(1) \le 4$, Hence $|e_f(0) - e_f(1)| \ge 8 - 4 = 4 \ge 1$

Which is contradiction.

Therefore for prime number $P \le 5$, the graph of the zero divisor $\Gamma(Z_{3p})$ is difference cordial graph

Example 3.9 A difference cordial graph is represented by the zero divisor graph $\Gamma(Z_{15})$

 $V(\Gamma(Z_{15})) = \{5,10,3,6,9,12\}$, the graph of $\Gamma(Z_{15})$ is given in figure (ii)



D.C.L of
$$(\Gamma(Z_{15}))$$
 Figure (ii)

Theorem 3.10 For prime integer q<5, the graph of the zero divisors $\Gamma(Z_{4q})$ is difference cordial graph.

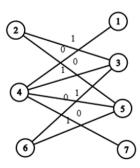
Proof: In the event that q is greater than or equal to 2, the vertex set of $\Gamma(Z_{4q})$ can be parition into Vertex set $V_1 = \{q, 2q, 3q\} = \{l_1, l_2, l_3\}$ and Vertex set $V_2 = \{2, 4, \ldots, 2(q-1), 2(q+1), \ldots, 2(2q-1)\} = \{m_1, m_2, \ldots, m_{q-1}, m_{q+1}, \ldots, m_{2q-1}\}$

i) For
$$p = 2$$
, $\Gamma(Z_{4q}) = \Gamma(Z_8)$,

Vertex set of $\Gamma(Z_8)$ is $V = \{2,4,6\}$ then $\Gamma(Z_8) \cong \Gamma(Z_6)$

Hence $\Gamma(Z_{4p})$ is a difference cordial graph by theorem 3.6

ii) For p = 3 $\Gamma(Z_{4p}) = \Gamma(Z_{12})$ The vertex set of $\Gamma(Z_{12})$ is V = {3,6,9,2,4,8,10} i.e V = { $l_1, l_2, l_3, m_1, m_2, m_3, m_4$ } Say $l_1 = 2$, $l_2 = 4$, $l_3 = 6$, $m_1 = 1$, $m_2 = 3$, $m_3 = 5$, $m_4 = 7$ the graph of $\Gamma(Z_{12})$ is given in figure(iii)



D.C.L of ($\Gamma(Z_{12})$) Figure (iii)

Here $e_f(1) = 4$ and $e_f(0) = 4$, Hence $|e_f(0) - e_f(1)| = 0 \le 1$

Hence $\Gamma(Z_{4p})$ is a difference cordial graph

iii) For p = 5 $\Gamma(Z_{4p}) = \Gamma(Z_{20})$

The vertex set $V(\Gamma(Z_{20})) = \{5,10,15,2,4,6,8,12,14,16,18\}$

i.e V = $\{w_1, w_2, w_3, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8\}$

Here w_1, w_2, w_3 have 4 edges, 8 edges, 4 egdes respectively, without loss of generality

Say $f(w_1) = r$, $f(w_2) = s$, $f(w_3) = t$

For some i and j, the only possible outcome is that $f(z_i) = r-1$ and $f(z_j) = r+1$; this is the only way to obtain the edge label 1.

Similary $f(z_i) = s-1$, $f(z_i) = s+1$ for some i,j; $f(z_i) = t-1$, $f(z_i) = t+1$ for certain i and j

This indicates $e_f(1) \le 6$, Hence $|e_f(0) - e_f(1)| \ge 10 - 6 = 4 \ge 1$

Which is contradiction.

Consequently, for the prime number q < 5, the graph of the zero divisors $\Gamma(Z_{4q})$ is classified as a difference cordial graph.

Example 3.11 the graph of the zero divisors $\Gamma(Z_{20})$ is not difference cordial graph.

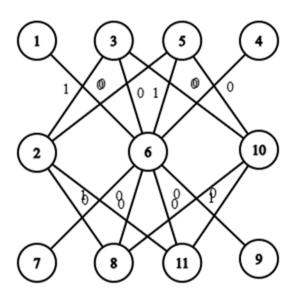
 $V = \{5,10,15,2,4,6,8,12,14,16,18\}$

i.e V =
$$\{w_1, w_2, w_3, z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8\}$$

Say
$$w_1 = 2$$
, $w_2 = 6$, $w_3 = 10$, $z_1 = 1$, $z_2 = 3$, $z_3 = 4$, $z_4 = 5$

 $z_5 = 7$, $z_6 = 8$, $z_7 = 9$, $z_8 = 11$

the graph of $\Gamma(Z_{20})$ is given in figure(iv)



D.C.L of $(\Gamma(Z_{20}))$ Figure (iv)

Here $e_f(1) = 6$ and $e_f(0) = 10$, Hence $|e_f(0) - e_f(1)| = 4 \ge 1$

Accordingly, the zero divisor graph $\Gamma(Z_{20})$ does not constitute a difference cordial graph.

Theorem 3.12 For prime integer $P \le 5$ the graph of the zero divisors $\Gamma(Z_{5p})$ is classified as a difference cordial graph.

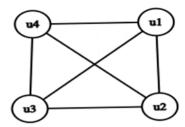
Proof: If p is a prime number, then the set of all possible vertices in $\Gamma(Z_{5n})$ equals

 $V = \{p, 2p, 3p, 4p, 5, 10, \dots \dots 5(P-1)\} \text{ i.e } V = \{u_1, u_2, u_3, u_4, v_1, v_2, \dots, v_{p-1}\}$

- i) For p = 2, $\Gamma(Z_{5p}) = \Gamma(Z_{10})$, Hence $\Gamma(Z_{10})$ is a difference cordial graph by theorem 3.6
- ii) For p = 3 $\Gamma(Z_{5p}) = \Gamma(Z_{15})$ Hence $\Gamma(Z_{15})$ is a difference cordial graph by theorem 3.8
- iii) For p = 5 $\Gamma(Z_{5p}) = \Gamma(Z_{25})$ the vertex set of $\Gamma(Z_{25})$ is $V = \{5,10,15,20\}$

Here $\Gamma(Z_{25}) \cong K_4$, Therefore, theorem 3.2 indicates that $\Gamma(Z_{25})$ is a difference cordial graph.

Figure (v) shows the graph of $\Gamma(Z_{25})$



Zero divisor graph of $\Gamma(Z_{25})$ **Figure** (v)

iv) For p = 7 the vertex set of
$$\Gamma(Z_{35})$$
 is V = {7,14,21,28,5,10,15,20,25,30} i.e V = { $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, b_5, b_6$ }

Here a_1 , a_2 , a_3 , a_4 have 6 edges each respectively, without loss of generality

Say $f(a_1) = r$, $f(a_2) = s$, $f(a_3) = t$, $f(a_4) = w$

For the edge label 1, the sole possibility is that $f(b_i) = r-1$ and $f(b_i) = r+1$ for certain i,j.

Similary $f(b_i) = s-1$, $f(b_i) = s+1$ for some i,j; $f(b_i) = t-1$, $f(b_i) = t+1$ for certain i,j;

$$f(b_i) = w-1$$
, $f(b_i) = w+1$ for certain i,j

This implies $e_f(1) \le 8$, Hence $|e_f(0) - e_f(1)| \ge 16 - 8 \ge 1$

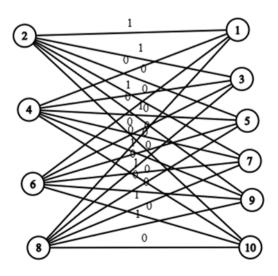
Which is contradiction.

As a result, the graph of the zero divisors $\Gamma(Z_{5p})$ is difference cordial graph for prime numbers P that are less than or equal to 5.

Example 3.13 There is no difference cordial graph with zero divisor of $\Gamma(Z_{35})$. the vertex set of $\Gamma(Z_{35})$ is $V = \{7,14,21,28,5,10,15,20,25,30\}$

$$V = \{a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, b_5, b_6\}$$

Say $a_1=2$, $a_2=4$, $a_3=6$, $a_4=8$, $b_1=1$, $b_2=3$, $b_3=5$, $b_4=7$, $b_5=9$, $b_6=10$ the graph of $\Gamma(Z_{35})$ is given in figure(vi)



D.C.L of $(\Gamma(Z_{35}))$ Figure (vi)

Here $e_f(1) = 8$ and $e_f(0) = 16$, Hence $|e_f(0) - e_f(1)| = 8 \ge 1$

There is no difference cordial graph with zero divisor of $\Gamma(Z_{35})$.

Theorem 3.14 For the prime number P=2, the graph of the zero divisors $\Gamma(Z_{6p})$ is classified as difference cordial graph.

Proof: If we assume that p is a prime number, then the vertex set of the set $\Gamma(Z_{6p})$

 $V = \{x \in Z_{6p} / gcd(x, 6p) \neq 1\}$

For p= 2, $\Gamma(Z_{6p}) = \Gamma(Z_{12})$ it difference cordial graph by theorem 3.10

For p = 3, $\Gamma(Z_{6p}) = \Gamma(Z_{18})$

The vertex set of $\Gamma(Z_{18})$ is $V = \{2,3,4,6,8,9,10,12,14,15,16\} = \{3,9,15,2,4,6,8,10,12,14,16\}$ i.e $V = \{r_1, r_2, r_3, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$

Here r_2 has 8 edges, without loss of generality

Say $f(r_2) = x$, The only way to get the edge label 1 is

that $f(s_i) = x-1$, $f(s_i) = x + 1$ for some indices i and j

This implies $e_f(1) \le 5$, (since r_1, r_3, s_3, s_6 , may have maximum edge label 1 is three)

Hence $|e_f(0) - e_f(1)| \ge 7 - 5 \ge 1$

Which is contradiction.

Consequently, the Zero divisor graph $\Gamma(Z_{6p})$ is not a difference cordial graph for prime integer p=3.

Hence, For the prime number P=2, the graph of the zero divisors $\Gamma(Z_{6p})$ is classified as a difference cordial graph.

Example 3.15 There is no difference cordial graph found in the zero divisor graph $\Gamma(Z_{18})$.

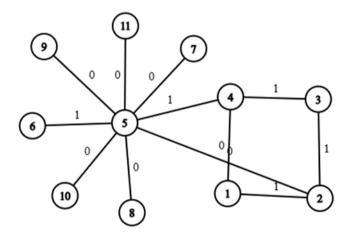
The vertex set of $\Gamma(Z_{18})$ is $V = \{3,9,15,2,4,6,8,10,12,14,16\}$

i.e V = $\{k_1, k_2, k_3, m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8\}$ to maximize edge label 1

consider $k_1 = 1$, $k_2 = 6$, $k_3 = 3$, $m_1 = 6$, $m_2 = 7$, $m_3 = 2$, $m_4 = 8$,

 $m_5 = 9$, $m_6 = 4$, $m_7 = 10$, $m_8 = 11$

the graph of $\Gamma(Z_{18})$ is given in figure(vii)



D.C.L of $(\Gamma(Z_{18}))$ Figure (vii)

Here $e_f(1) = 5$ and $e_f(0) = 7$, Hence $|e_f(0) - e_f(1)| = 2 \ge 1$

Hence, There is no difference cordial graph found in the zero divisor graph $\Gamma(Z_{18})$.

Corollary 3.16: For n > 6 and P > 5, the zero divisor graph $\Gamma(Z_{np})$ does not show a difference cordial. **Proof:** Since

- i) For n=1, $\Gamma(Z_{np}) = \Gamma(Z_p)$ according to theorem 3.5, the cordial graph can't be difference cordial
- ii) For n=2, $\Gamma(Z_{np}) = \Gamma(Z_{2p})$ is not difference cordial graph for p>5 by theorem 3.6
- iii) For n=3, $\Gamma(Z_{np}) = \Gamma(Z_{3p})$ is not difference cordial graph for p>5 by theorem 3.8
- iv) For n=4, $\Gamma(Z_{np}) = \Gamma(Z_{4p})$ is not difference cordial graph for p>3 by theorem 3.10
- v) For n=5, $\Gamma(Z_{np}) = \Gamma(Z_{5p})$ is not difference cordial graph for p>5 by theorem 3.12
- vi) For n=6, $\Gamma(Z_{np}) = \Gamma(Z_{6p})$ is not difference cordial graph for p>3 by theorem 3.14

Therefore, we can deduce that the graph of the zero divisors $\Gamma(Z_{np})$ does not exhibit the characteristics of a difference cordial graph for n > 6 and P > 5.

Theorem 3.17 the graph of the zero divisors $\Gamma(Z_{pq})$ is classified as difference cordial graph when $2 \le p, q \le 5$.

Proof: let p,q are prime numbers So, the vertex set of $\Gamma(Z_{pq})$ is

 $V_1 = \{p, 2p, 3p \dots (q-1)p\}$ and $V_2 = \{q, 2q, 3q \dots (p-1)q\}$

i.e
$$V_1 = \{v_1, v_2, \dots, v_p\}$$
 and $V_2 = \{u_1, u_2, \dots, u_{q_{1}}\}$

 $E(\Gamma(Z_{pq})) = \{u_i v_j : u_i \in V_2, v_j \in V_1 \text{ for } 1 \le i \le p-1, 1 \le j \le q-1\}$

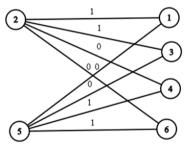
- i) For q = 2, $\Gamma(Z_{pq}) = \Gamma(Z_{2p})$, Hence $\Gamma(Z_{2p})$ is a difference cordial graph for $p \le 5$ by theorem 3.6
- ii) For q = 3 $\Gamma(Z_{pq}) = \Gamma(Z_{3p})$ Hence $\Gamma(Z_{3p})$ is a difference cordial graph for $p \le 5$ by theorem 3.8
- iii) For q = 5 $\Gamma(Z_{pq}) = \Gamma(Z_{5p})$ Hence $\Gamma(Z_{5p})$ is a difference cordial graph for $p \le 5$ by theorem 3.12
- iv) For q = 7 $\Gamma(Z_{pq}) = \Gamma(Z_{7p})$ is not difference cordial for any prime number p by theorem 3.6, 3.8,3.12

Consequently, the graph of the zero divisors $\Gamma(Z_{pq})$ is classified as a difference cordial network if $2 \le p, q \le 5$.

Example 3.18

The graph of the zero divisors $\Gamma(Z_{pq})$ is classified as a difference cordial graph when p=3 and q=5. For p=3 & q=5 $\Gamma(Z_{pq})=\Gamma(Z_{15})$ and $V(\Gamma(Z_{15}))=\{5,10,3,6,9,12\}$ i.e $V=\{w_1,w_2,z_1,z_2,z_3,z_4\}$

Say $w_1=2$, $w_2=5$, $z_1=1$, $z_2=3$, $z_3=4$, $z_4=6$ the graph of $\Gamma(Z_{15})$ is given in figure(viii)



D.C.L of $(\Gamma(Z_{15}))$ Figure (viii)

Here $e_f(1) = 4$ and $e_f(0) = 4$, Hence $|e_f(0) - e_f(1)| = 0 \le 1$

Hence it is difference cordial graph for p = 3, q=5

Theorem 3.19 The Zero divisor graph $\Gamma(Z_{p^2})$ represents a difference cordial graph for $p \le 5$.

Proof: Let p be a prime number; then the vertex set of $\Gamma(Z_{p^2})$ is

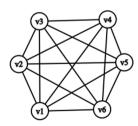
 $V = \{p, 2p, 3p \dots (p-1)p\} \text{ i.e. } V = \{v_1, v_2, \dots, v_{p-1}\}$

- i) For p = 2, $\Gamma(Z_{p^2}) = \Gamma(Z_4)$, Therefore, by theorem 3.6, it is a difference cordial graph.
- ii) For p = 3 $\Gamma(Z_{p^2}) = \Gamma(Z_9)$ Consequently, it is a difference cordial graph, as per theorem 3.8.
- iii) For p = 5 $\Gamma(Z_{p^2}) = \Gamma(Z_{25})$ Therefore, it is a difference cordial graph as stated in Theorem 3.12.
- iv) For p = 7 $\Gamma(Z_{n^2}) = \Gamma(Z_{49})$ the vetex set of $\Gamma(Z_{49})$ is

 $V = \{7,14,21,28,35,42\}$ i.e. $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$

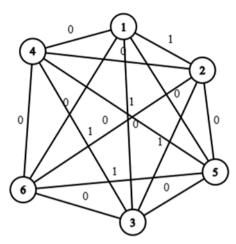
Here $\Gamma(Z_{49}) \cong K_6$, Based to theorem 3.2, $\Gamma(Z_{49})$ is not a difference cordial graph.

The graph of $\Gamma(Z_{49})$ is given figure (ix)



Zero divisor graph of $\Gamma(Z_{49})$ Figure (ix)

Example 3.20 There is no difference cordial graph in the zero divisor graph $\Gamma(Z_{49})$. the vetex set of $\Gamma(Z_{49})$ is $V=\{7,14,21,28,35,42\}$ i.e. $V=\{d_1,d_2,d_3,d_4,d_5,d_6\}$ Say $d_1=1$, $d_2=2$, $d_3=3$, $d_4=4$, $d_5=5$, $d_6=6$ the graph of $\Gamma(Z_{49})$ is given in figure(x)



D.C.L of $(\Gamma(Z_{49}))$ Figure (x)

Here $e_f(1) = 5$ and $e_f(0) = 10$, Hence $|e_f(0) - e_f(1)| = 5 \ge 1$ The zero divisor graph $\Gamma(Z_{49})$ cannot be considered a difference cordial graph.

Theorem 3.21 the graph of the zero divisors $\Gamma(Z_{p^3})$ is difference cordial graph only when p=2.

Proof: Let p is prime number then the vertex set of $\Gamma(Z_{p^3})$ is

 $V = \{p, 2p, 3p \dots (p^2-1)p\} \text{ i.e. } V = \left\{v_1, v_2, \dots , v_{p^2-1}\right\}$

i) For p = 2, $\Gamma(Z_{n^3}) = \Gamma(Z_8)$, Hence it is a difference cordial graph by theorem 3.10

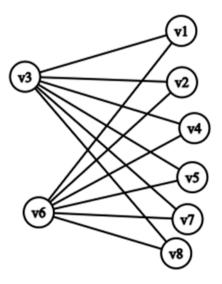
ii) For p = 3 $\Gamma(Z_{p^3}) = \Gamma(Z_{27})$

The vertex set is $V = \{3,6,9,12,15,18,21,24\}$

i.e.V = $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$

Here $\Gamma(Z_{27}) \cong K_{2,6}$, hence $\Gamma(Z_{p^3})$ is not difference cordial graph for p=3 by theorem 3.4.

The graph of the $\Gamma(Z_{27})$ is given in figure (xi)

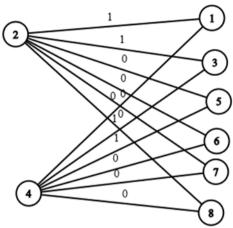


Zero divisor graph of $\Gamma(Z_{27})$ Figure (xi)

Therefore, for p>2, the Zero divisor graph $\Gamma(Z_{p^3})$ is not difference cordial graph.

Example 3.22 A difference cordial graph does not exist for the zero divisor graph $\Gamma(\mathbb{Z}_{27})$.

The vertex set is $V = \{3,6,9,12,15,18,21,24\}$ i.e. $V = \{c_1,c_2,c_3,c_4,c_5,c_6,c_7,c_8\}$ Say $c_1 = 1$, $c_2 = 3$, $c_3 = 2$, $c_4 = 5$, $c_5 = 6$, $c_6 = 4$, $c_7 = 7$, $c_8 = 8$ the graph of $\Gamma(Z_{27})$ is given in figure(xii)



D.C.L of $(\Gamma(Z_{27}))$ Figure (xii)

Here $e_f(1) = 4$ and $e_f(0) = 8$, Hence $|e_f(0) - e_f(1)| = 4 \ge 1$ Therefore, the zero divisor graph $\Gamma(\mathbb{Z}_{27})$ is not a difference cordial graph.

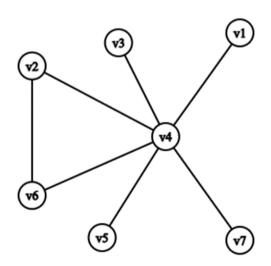
Theorem 3.23 The graph of the zero divisors $\Gamma(Z_{p^4})$ is a difference cordial graph for every prime number p = 2.

Proof: Let p is prime number then the vertex set of $\Gamma(Z_{p^4})$ is

Vertex set ={p, 2p, 3p ($p^4 - p$), p^2 , 2 p^2 , ($p^4 - p^2$), p^3 , 2 p^3 , ... ($p^4 - p^3$)} For p=2 $\Gamma(Z_{p^4}) = \Gamma(Z_{16})$, the vertex set V = {2,4,6,8,10,12,14}

i.e V = { l_1 , l_2 , l_3 , l_4 , l_5 , l_6 , l_7 }

The graph of $\Gamma(Z_{16})$ is shown in figure (xiii)



Zero divisor graph $\Gamma(Z_{16})$ **Figure** (xiii)

Here l_4 has 6 edges, without loss of generality Say $f(l_4) = x$, After that, the only way to get the edge mark 1 is that $f(l_i) = x-1$, $f(l_j) = x+1$ for some of the i, j

This implies $e_f(1) \le 3$, (since v_2, v_6 may have edge label 1)

Hence $|e_f(0) - e_f(1)| \ge 7 - 3 - 4 = 0 \le 1$

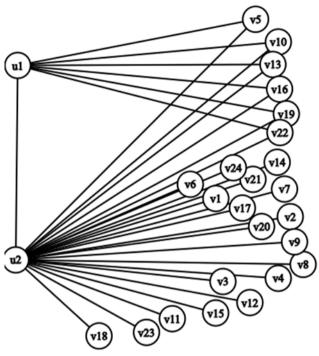
For prime number P=2, the Zero divisor graph $\Gamma(Z_{p^4})$ is difference cordial.

For p=3 $\Gamma(Z_{p^4}) = \Gamma(Z_{81})$, the vertex set V =

 $\{9,\!27,\!3,\!6,\!12,15,\!18,\!21,\!24,\!30,\!33,\!36,\!39,\!42,\!45,\!48,\!51,\!54,\!57,\!60,\!63,\!66,\!69,\!72,\!75,\!78\}$

i.e V = { $u_1, u_2, v_1, v_2, v_3, \dots, v_{23}, v_{24}$ } where $u_1 = 9 \& u_2 = 27$

The graph of $\Gamma(Z_{81})$ is given in figure (xiv)



Zero divisor graph $\Gamma(Z_{81})$ figure (xiv)

Here u_1, u_2 have 7, 25 edges each respectively, without loss of generality

Say $f(u_1) = r$, $f(u_2) = s$

To obtain the edge label 1, the only possibility is that $f(v_i) = r-1$ and $f(v_i) = r+1$ for some i, j.

Similary $f(v_i) = s-1$, $f(v_i) = s+1$ for some integers i and j

In this case $e_f(1) \le 4$, Hence $|e_f(0) - e_f(1)| \ge 31 - 4 - 4 \ge 1$

Which is contradiction.

Therefore, for prime integer P=3, the Zero divisor graph $\Gamma(Z_{p^4})$ is not difference cordial graph.

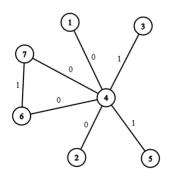
There fore, the graph of the zero divisors $\Gamma(Z_{p^4})$ is difference cordial graph for any prime number p>2

Example 3.24 Zero divisor graph $\Gamma(Z_{16})$ is difference cordial graph

the vertex set $V = \{2,4,6,8,10,12,14\}$ i.e $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

Say $v_1=1$, $v_2=7$, $v_3=3$, $v_4=4$, $v_5=5$, $v_6=4$, $v_7=2$

the graph of $\Gamma(Z_{16})$ is given in figure(xv)



D.C.L of $(\Gamma(Z_{16}))$ **Figure** (xv)

Here $e_f(1) = 3$ and $e_f(0) = 8$, Hence $|e_f(0) - e_f(1)| = 4 \ge 1$

Hence, Zero divisor graph $\Gamma(Z_{27})$ is difference cordial graph

Theorem 3.25 The Zero divisor graph $\Gamma(Z_{n^5})$ is difference cordial graph for any prime number $p \ge 2$

Proof: Let p is prime number then the vertex set of $\Gamma(Z_{n^5})$ is

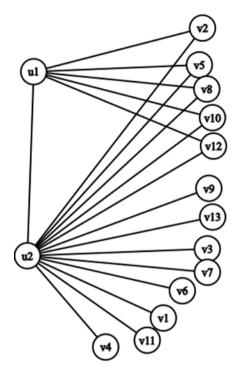
 $V = \{p, 2p, 3p \dots (p^4 - 1)p\}$

For P = 2, $\Gamma(Z_{n^5}) = \Gamma(Z_{32})$, the vertex set is

 $V = \{8,16,2,4,6,10,12,14,18,20,22,24,26,28,30\}$

i.e V = { u_1 , u_2 , v_1 , v_2 , v_3 ,, v_{12} , v_{13} } where u_1 = 4 & u_2 =16

The graph of $\Gamma(Z_{32})$ is given in figure (xvi)



Zero divisor graph of $\Gamma(Z_{32})$ in figure (xvi)

Here u_1 , u_2 have 6, 14 edges each respectively, without loss of generality Say $f(u_1) = r$, $f(u_2) = s$

The edge label 1 can only be obtained by setting $f(v_i) = r-1$ and $f(v_i) = r+1$ for some i,j.

Similary $f(v_i) = s-1$, $f(v_i) = s+1$ for some i and j

That means $e_f(1) \le 4$, Hence $|e_f(0) - e_f(1)| \ge 19 - 4 - 4 \ge 1$

Which is contradiction.

Hence, for prime number P=2, The zero divisor graph $\Gamma(Z_{p^5})$ does not exhibit the properties of a difference cordial graph.

There fore, $\Gamma(Z_{p^5})$ is a difference cordial graph for all prime numbers p that are greater than or equal to 2.

Corollary 3.26 For $n \ge 5$ and any prime number $p \ge 2$, the graph of the zero divisors $\Gamma(Z_{p^n})$ is not a difference cordial graph.

IV. Conclusion:

In closing, we investigate that zero divisor graphs

i) For
$$n \le 10$$
 $\Gamma(Z_{np})$ is for
$$\begin{cases} n = 2,3,5 \text{ and } p \le 5 \text{ difference cordial} \\ n = 4 \text{ and } p = 2,3 \text{ difference cordial} \\ n = 6,8,10 \text{ and } p = 2 \text{ difference cordial} \end{cases}$$

ii) For $n \leq 10~\Gamma \big(Z_{\rm np}\big)$ is for n=1,7,9 it does not difference cordial

iii) For
$$n \le 4$$
 $\Gamma(Z_{p^n})$ is for $\begin{cases} n = 2 \text{ and } p \le 5 \text{ difference coordial} \\ n = 3,4 \text{ and } p = 2 \text{ difference coordial} \end{cases}$

iv) $\Gamma(Z_{pq})$ is difference cordial for $2 \le p, q \le 5$

A similar investigation can be carried out for some other graphs.

References

- [1] F.Harary, Graph Theory, Addision Wesley, Newdelhi(1969)
- [2] Narsingh Deo, Graph Theory With Applications To Engineering & Computer Science Dover Publications, Inc. Mineola, New York (1974)
- [3] I.Cahit, Cordial Graphs: A Weaker Version Of Graceful And Harmonious Graphs, Ars Combin.,23(1987)201-207
- [4] Y.S.Ho.S.M.Lee, And S.C.Shee, Cordial Labeling Of Unicyclic Graphs And Generealized Petersen Graphs, Congr.Number., 68(1989) 109-122.
- [5] A.Rosa,On Certain Valuations Of The Vertices Of A Graph, Theory Of Graphs(Internat. Symposium,Rome,July 1996),Gordan And Breach,N.Y And Dunod Paris (1967) 349-355
- [6] M.A.Seoud And A.E.I.Abdel Maqsoud, On Cordial And Balanced Labelings Of Graphs. J.Egyptian Math Soc., 7(1999) 127-135.
- [7] S.K.Vaidya, G.Ghodasara, S.Srivastav, And V.Kaneria, Cordial Labeling For Two Cycle Related Graphs, Math.Student, 76(2007) 237-246
- [8] Jayapal Baskar Babujee, Shobana Loganathan, On Signed Product Cordial Labeling, Scientific Research, Applied Mathematics, 2011,2,1525-1530.
- [9] J.A. Gallian, A Dynamic Survey Of Graph Labeling, The Electronic Journal Of Combinatorcs, 18(2012)#Ds6
- [10] R.Ponraj, S.Sathish Narayanan And R. Kala, Difference Cordial Labeling Of Graphs ,Global Journal Of Mathematical Sciences: Theory And Practical, 3(2013),192-201
- [11] R.Ponraj, S.Sathish Narayanan And R. Kala, A Note On Difference Cordial Graphs, Palestine Journal Of Mathematics, Vol.4(1)(2015), 189-19
- [12] D Bharathi, D Eswara Rao Total Zero Divisor Graphs Of Polynomial Rings, International Journal Of Advanced Research In Computer Science, 2017, Vol 8, Issue 6, P165
- [13] S Sajana, Kk Srimitra, D Bharathi Intersection Graph Of Zero-Divisors Of A Finite Commutative Ring International Journal Of Pure And Applied Mathematics, 2017