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Abstract: In graph theory, a connected component of an undirected graph is a sub graph in which any two 

vertices are connected to each other by paths. For a graph G, if the subgraph of G itself is a connected 

component then the graph is called connected, else the graph G is called disconnected and each connected 

component sub graph is called it’s components. A dominating set Dst  of graph G=(V,E) is a non-split strong 

dominating set if the induced sub graph < V-Dst > is connected. The non-split strong domination number of G is 

the minimum cardinality of a non-split strong dominating set . In this paper constructed a verification method  

algorithm for finding a non-split strong dominating set of an interval graph.  

Keywords: Domination number, Interval graph, Strong dominating set, Strong domination number , split 

dominating set. 

 

I. Introduction 
 Let I = {I1,I2 ,….,I n} be the given interval family. Each interval  i  in I is represented by [ , ]i ia b , for 

1,2,.....,i n . Here ia  is called the left endpoint and 
ib the right endpoint of the interval  I i .Without loss of 

generality we may assume that all end points of the intervals in  I  which are distinct between 1and 2n. The intervals 
are labelled in the increasing order of their right endpoints. Two intervals i and  j are said to intersect each other, if 

they have non-empty intersection.  Interval graphs play important role in numerous applications, many of which are 

scheduling problems. A graph  ( , )G V E  is called an interval graph if there is a  one-to-one correspondence 

between V  and I  such that two vertices of G  are joined by an edge in E  if and only if their corresponding intervals 

in I intersect. That is, if  

[ , ]i ii a b  
and [ , ]j jj a b , then i and j intersect means either  

j ia b   or
i ja b . 

Let G  be a graph, with vertex set V  and edge set E .  

The open neighbourhood set of a vertex  v V  is ( ) { / }nbd v u V uv E    .   

The closed neighbourhood set of a vertex v V is [ ] ( ) { }nbd v nbd v v   .    

 A vertex in a graph G  dominates itself and its neighbors. A set  D V  is called dominating set if every 

vertex in V D    is adjacent to some vertex in D. The domination studied in [1-2]. The domination number   

of G  is the minimum cardinality of a dominating set. The domination number is well-studied parameter. We can 
see this from the bibliography [3] on domination. In [4] , Sampathkumar and Pushpa Latha have introduced the 

concept of strong domination in graphs. Strong domination has been studied [5-7]. Kulli. V. R. et all [8] 

introduced the concept of split and non-split domination[9] in graphs.  Also Dr.A. Sudhakaraiah et all [10] 

discussed an algorithm for finding a strong dominating set of an interval graph using an algorithm . A 

dominating set D  is called split dominating set if the induced subgraph  V D    is disconnected. The split 

domination number of s of G is the minimum cardinality of a split dominating set. Let ( , )G V E  be a graph 

and ,u v V .  

Then  u strongly dominates v  if 

 (i)  uv E  
 (ii)  deg v deg u .  

 A set Dst  V is a strong dominating set of G  if every vertex in  stV D  is strongly dominated by at 

least one vertex in 
stD . The strong domination number  ( )st G  of G  is the minimum cardinality of a strong 

dominating set. A dominating set 
stD V  of a graph G  is a Non-split strong dominating set if the induced subgraph 

V D    is connected.Define ( ) , if bi jNI i j a   and there do not exist an interval k  such that 
i k jb a a    . If 

there is no such j , then define ( )NI i null . Nsd (i) is the set of all neighbors whose degree is greater than degree 
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of i and also greater than i.If there is no such neighbor then defines ( ) .sdN i null  
M (S) is the largest highest 

degree vertex in the set S.  

 

II. Algorithms. 

2.1.To find a Strong dominating set (SDS) of an interval graph using an algorithm[9]. 
Input : Interval family

1 2{ , ,....., }nI I I I . 

Output : Strong dominating set of an interval graph of a given interval family. 

1 1 :  [1]Step S nbd . 

1 1 2 : S = The set of vertices in S  which are adjacent to all other vertices in S .Step
 

 3 : D  The largest highest degree interval in S.stStep 
 

 4 : LI  The largest interval in D stStep 
 

 5 : If N ( ) existssdStep LI   

 5.1 : a = M(N ( ))sdStep LI . 

  5.2 : b  The largest highest degree interval in nbd a .Step    

 5.3 : D { }st stStep D b   goto step 4. 

end if 

  else 

 6 : Find NI(LI)Step
 

 6.1: If  NI(LI) null goto step 7Step . 

2 6.2 : S [ ( )]Step nbd NI LI .      

3 6.3 : S  The set of all neighbors of    ( ) which are greater than or equal to ( ).Step NI LI NI LI
 

4 3 3 6.4 : S  The set of all vertices in S  which are adjacent to all vertices in S .Step 
 

4 6.5 : c = The largest highest degree interval in S .Step
                                         

 6.6 : D { }st stStep D c   goto step 4.
 

 7 : End.Step
 

 

2.2.To find a Non-split Strong dominating set (NSSDS) of an interval graph using an algorithm. 
Input : Interval family I= {I1,I2,I3,-------------In} . 

Output : Whether a strong dominating set is a non split strong dominating set or not. 

Step1 : S1=nbd[1] 

Step2 : S=The set of vertices in S1 which are adjacent to all other vertices in S1. 

Step3 : Dst=The largest highest degree interval in S . 

Step4 : LI=The largest interval in Dst 

Step5 : If  Wsd (LI) exists  

           Step 5.1 : a = M(Nsd(LI)) 

           Step 5.2 :  b=The largest highest degree interval in nbd[a] 

           Step 5.3 : Dst = Dst{b} go to step 4  
     End if  

    Else 
Step 6 : Find NI(LI). 

              Step 6.1 : If  NI(LI)=null  go  to  step 7. 

              Step 6.2 : S2=nbd[NI(LI)]  

3 6.3 : S  The set of all neighbors of    ( ) which are greater than or

                          equal to ( ).

Step NI LI

NI LI



 

4 3

3

 6.4 : S  The set of all vertices in S  which are adjacent to all 

                          vertices in S .

Step 

4 6.5 : c = The largest highest degree interval in S .Step
 

              
 6.6 : D { }st stStep D c   goto step 4. 

Step 7 : V={1, 2,3,------------,n} 
Step 8 : |Dst|=k 

Step 9 : SN={V-Dst}={S1,S2,S3,-----------,Sk},  k1≤ n-k 
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Step 10 : for  (i = 1   to   k1-1) 

    { 

   For ( j = i+1  to   k1   ) 
    { 

   If  (Si,Sj)E  of G  then  plot  Si to Sj 

}   } 

The induced sub graph G1=V-Dst is obtained  

Step11 : If W(G1)=1 

Dst  is non split strong dominating set  

Else 

Dst   is  split strong dominating set 

End.  

 

III. Main Theorems 
Theroem 1 : Let  G be an interval graph corresponding to an interval family I={I1,I2,I3,------.In}. If i and j are 

any two intervals in I such that iDst is minimum strong dominating set of the given interval graph G, j≠1 and j 
is contained in i and if there is at least one interval to the left of j that intersects j and at least one interval k≠ i to 

the right of j that intersects j then Dst is a non split strong domination. 

Proof : Let G be an interval graph corresponding to an interval family I = {I1,I2,I3,------In}. Let i and j be any 

two intervals in I such that i Dst ,where Dst  is a minimum strong dominating set of the given interval graph G, 
j ≠1 and j is contained in i and suppose there is at least one interval to the left of j that intersects j and at least 

one interval      k ≠ i to the right of j that intersects j.Then it is obviously we know that j is adjacent to k in the 

induced subgraph      <V-Dst>.Then there will be a connection in  <V-Dst> to its left. 

                                                  

                                                                

                                             
 

 

 

Interval family I 

As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval 

graph G from interval family I={1,2,3,--------10} as follows  

nbd[1]={1,2,3},            nbd[2]={1,2,3,4},     nbd[3]={1,2,3,4,6},       

nbd [4]={2,3,4,5,6},     nbd [5]={4,5,6,7}, nbd[6]={3,4,5,6,7,9},      

nbd[7]={5,6,7,8,9},      nbd[8]={7,8,9,10},   nbd [9]={6,7,8,9,10},  

nbd[10]={8,9,10}. 

Nsd(1)={2,3},   Nsd(2)={3,4}, Nsd(3)={6},   Nsd(4)=6,   Nsd(5)={6},   Nsd(6)=null,    Nsd(7)=null,    Nsd(8)={9},           
Nsd(9)=null,      Nsd(10)=null. 

NI(1)=4,       NI(2)=5,       NI(3)=5,    NI(4)=7,   NI(5)=8,   NI(6)=8,    NI(7)=10,   NI(8)=null,   NI(9)=null,   

NI(10)=null. 

 

Procedure for finding a non-split strong dominating set of an interval graph using an algorithm. 
Step 1: S1={1,2,3}. 

Step 2: S={1,2,3}. 
Step 3 : Dst={3}. 

Step 4 : LI=3. 

Step 5 : Nsd(3)={6}. 

           Step 5.1 : a=M(Nsd(3))=M({6})=6. 

           Step 5.2 : b=6. 

           Step 5.3 : Dst={3}{6}={3,6} 
 Step 6 : LI=6. 

 Step 7 : NI(6)=8 

                    Step7.1: S2=nbd[8]={7,8,9,10}. 

                    Step7.2: S3={8,9,10}. 

                     Step7.3: S4={8,9,10} 

                     Step7.4:c=9. 

                      Step7.5 : Dst= Dst{9}={3,6}{9}={3,6,9}. 
 Step 8 : V={1,2,3,--------10} 

1 4 7 10
2 6 8

953
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 Step 9 : |Dst|=3 

Step10 : SN={1,2,3,4,5,6,8,10} 

Step11 : for i=1, j=2,  (1,2)E,  plot 1 to 2 

              for  i = 2 , j =3, (2,3)E, plot 2 to 3 

              for i = 3, j = 4,  (4,5)E, plot 4 to 5 

                              j = 5, (4,6)E, plot4 to 6 

              for i = 4, j = 5, (5,6)E, plot 5 to 6 

                              j = 6, (5,7)E, plot 5 to 7 

               for i = 5, j=6, (6,7)E, plot 6 to7 

               for i = 6, j = 7, (7,8)E, plot 7 to 8 

               for i =7, j = 8, (8,10)E, plot 8 to 10 
The induced sub graph G1=<V-Dst> is obtained. 

Step12 : W(G1)=1 

Therefore Dst  is the non split dominating set . 

Step13: End . 

 

Out put : {3,6,9} is a non split  strong dominating set . 

Theorem 2 : If  i and j are two intervals in I such that iDst where Dst  is a  minimum dominating set of  G, j=1 
and j is contained in  i  and if there is one more interval other  than i that intersects j then  non-split strong 

domination  occurs in G.  

Proof : Let I = {I1,I2,I3,I4,------,In} be an interval family. Let j=1 be the interval contained in i where iDst, 
where Dst is the minimum strong dominating set of G. Suppose k is an interval , k≠i and k intersect j. Since 

iDst , the induced subgraph <V-Dst>  does not contain i. Further in <V-Dst>, the vertex j is adjacent to the 
vertex k and hence there will not be any disconnection in <V-Dst> . Therefore we get non split strong 

domination in G .In this connection as follows an algorithm . 

 

 

 

 

                                                                        Interval family I 

As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval 

graph G from interval family I={1,2,3,--------10} as follows  

nbd[1]={1,2,3},            nbd[2]={1,2,3,4},        nbd[3]={1,2,3,4,6},       
nbd [4]={2,3,4,6,7},     nbd [5]={5,6,7},    nbd[6]={3,4,5,6,7,8},      

nbd[7]={4,5,6,7,8,9},    nbd[8]={6,7,8,9,10},   nbd [9]={ 7,8,9,10}, nbd[10]={8,9,10}. 

Nsd(1)={2,3},   Nsd(2) ={3,4}, Nsd(3) = {4},   Nsd(4) ={7},   Nsd(5) ={7},   Nsd(6)= {7},    Nsd(7)= null,    Nsd(8)= 

null          Nsd(9)=null,      Nsd(10)=null. 

NI(1)=4,       NI(2)=5,       NI(3)=5,    NI(4)=5,   NI(5)=8,   NI(6)=9,    NI(7)=10,   NI(8)=null,   NI(9)=null,   

NI(10)=null. 

 

Procedure for finding a non-split strong dominating set of an interval graph using an algorithm. 

Step 1 : S1={1,2,3} 

Step 2 : S={1,2,3} 

Step 3 : Dst=3 
Step 4 : LI=3 

Step 5 : Nsd(3)=6 

Step 6 : a=6 

Step 7 : b=7 

Step 8 : Dst={3}{7}={3,7} 
Step 9 : LI=7 

Step10 : NI(7)=10  

        Step10.1: S2={8,9,10} 

        Step10.2 : S3={10} 

        Step10.3 : S4={10} 

        Step10.4 : b=10 

         Step10.5 : Dst ={3,7,9} 

Step11 : V={1,2,3,--------10} 
Step12 :  |Dst|=3 

Step13 : SN={1,2,4,5,6,8,9} 

92
1

3

4 5
6

8

7 10
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Step14 : for i=1, j=2 ,(1,2)E ,  plot 1 to 2 

               for i = 2, j = 3, (2,4)E, plot 2 to 4 

              for i = 3, j = 4, (4,5)E,  plot 4 to 5 

              for i = 4, j = 5, (5,6)E,  plot 5 to 6 

             for i = 5, j =6,   (6,8)E, plot  6 to 8 

            for i = 6,j =7, (8,9)E, plot 8 to 9 
            The induced subgraph G1 = <V-Dst > is obtained . 

Step15 : W(G1)=1. 

Therefore  Dst  is the non split strong dominating set. 

Step16: End  

 

Output : {3,7,10} is  a non split strong dominating set . 
Theorem 3 : Let Dst be a strong dominating set which is obtained by algorithm SDS. If i, j, k are three 

consecutive intervals  such that i < j< k and jDst, i intersects j, j intersect k and i interest k then non split  strong 
domination occurs   in G . 

Proof : Suppose I = {I1,I2,I3,------In} be an interval family . Let i, j, k be three consecutive intervals satisfying 

the hypothesis. Now i and k intersect implies that i and k are adjacent induced sub graph  < V\Dst >  an algorithm 

as follows . 

 

 

 

 

 

 

Interval family I 
As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval 

graph G from interval family I={1,2,3,--------10} as follows  

nbd[1]={1,2,3},            nbd[2]={1,2,3,4},     nbd[3]={1,2,3,4,5},       

nbd [4]={2,3,4,5,6},     nbd [5]={3,4,5,6,7}, nbd[6]={4,5,6,7,8},      

nbd[7]={5,6,7,8,9},      nbd[8]={6,7,8,9},   nbd [9]={7,8,9,10}, nbd[10]={9,10}. 

Nsd(1)={2,3},   Nsd(2)={3,4}, Nsd(3)=null,   Nsd(4)=null,   Nsd(5)=null,   Nsd(6)=null,    Nsd(7)=null,    

Nsd(8)=null,           Nsd(9)=null,      Nsd(10)=null. 

NI(1) = 4,       NI(2) = 5,       NI(3) = 6,    NI(4) = 7,   NI(5) = 8,   NI(6) = 9,    NI(7)=10,   NI(8)=10,   NI(9) = 

null,   NI(10) = null. 

 

Procedure for finding a non-split strong dominating set of an interval graph using an algorithm. 
Step 1 : S1={1,2,3} 

Step 2 : S={1,2,3} 

Step 3 : Dst=3 

Step 4 : LI=3 

Step 5 : NI(3)=6 

Step 6 : Nbd[6]={4,5,6,7,8} 

         Step 6.1: S3 = {6,7,8} 

         Step 6.2 : S3 = {6,7,8} 

         Step 6.3 : S4 = {6,7,8} 

         Step 6.4 : c=8 

         Step 6.5 :  Dst ={3,8} 

Step 7 : LI=8 
Step 8 : NI(8)=null 

Step 9 : V={1,2,3,--------10} 

Step10 :  |Dst|=2 

Step11: SN={1,2,4,5,6, 9,10} 

Step12 : for i=1, j=2 ,(1,2)E, plot 1 to 2 

             for i=2, j=3, (2,4)E , plot 2 to 4 

             for  i=3, j=4,  (4,5)E, plot 4 to 5 

                            j=5, (4,6)E, plot 4 to 6 

             for i=4, j=5, (5,6)E, plot 5 to 6 

                           j=6, (5,7)E, plot  5 to 7 

1

2

3

4

5

6

7

8

9

10
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             for i=5, j=6, (6,7)E, plot  6 to 7 

             for i=6,j=7, (7,9)E, plot 7 to 9 
            The induced sub graph G1 is obtained . 

Step13:W(G1)=1   

    Therefore  Dst  is the non split strong dominating set. 

Step14: End  
Output: {3,8} is  a non split strong dominating set . 

 

IV. Conclusions 

We studied the non-split strong domination in interval graphs. In this paper we discussed  a 

verification method algorithm for finding a non-split strong dominating set of an interval graph. 
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