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Abstract: The object of this paper is to discuss certain integral properties of a I -function and H -function, 

proposed by Inayat-Hussain which contain a certain class of Feynman integrals, the exact partition of a Gaussian 

model in Statistical Mechanics and several other functions as its particular cases. During the course of finding, 

we establish certain new double integral relation pertaining to a product involving I function and H  function. 
These double integral relations are unified in nature and act as a key formulae from which we can obtain as their 

special case, double integral relations concerning a large number of simple special functions. For the sake of 

illustration, we record here some special cases of our main results which  are also new and of interest by 
themselves. All the result which are established in this paper are basic in nature and are likely to find useful 

applications in several fields notably electrical network, probability theory and statistical mechanics. 
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I. Introduction 

 The H -function [6] is a new generalization of the well known Fox’s H-function [4]. The H -function 

pertains the exact partition function of the Gaussian model in statistical mechanics, functions useful in testing 
hypothesis and several others as its particular cases. The conventional formulation may fail pertaining to the 

domain of quantum cosmology but Feynman path integrals apply [10,11]. Feynman integral are useful in the 

study and development of simple and multiple variable hypergeometric series which in turn are useful in 

statistical mechanics. 
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The H -function will be defined and represent as given in [1] 
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which contains fractional powers of some of the gamma functions. Here                  a j (j = 1,…,P) and bj (j = 

1,…,Q) are complex parameters, aj  0 (j = 1,…,P), j  0 (j = 1,…,Q) (not all zero simultaneously and the 
exponents Aj (j = 1,…,N) and        Bj (j = M+1,…,Q) can take on non-integer values. The contour in (1.2) is 

imaginary axis R() = 0. It is suitably indented in order to avoid the singularities of the gamma functions and to 
keep those singularities on appropriate side. Again for                   Aj (j=1,…,N) not an integer, the poles of the 

gamma function of the numerator in (1.3) are converted to branch points. However, a long as there is no 

coincidence of pole from any N)1,...,  ja1 and M)1,..., jb
jjjj

 pair, the 

branch cuts can be chosen so that the path of integration can be distorted in the useful manner. For the sake of 

brevity 
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II. Main Result 
 We will obtain the following result: 
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Multiplying both sides of (2.2) by 





































y)x)(1(1

xy1

xy1

y1
y

xy1

x1
 

and integration with respect to x and y between 0 and 1 for both the variable and making a use of a known result 

[2, p.145],we get the required result (2.1) after a little simplification 



I- Function And H -Function Associated With   Double Integral 

www.iosrjournals.org                                                             18 | Page 

(B)  dvdu  v]H I(u)u vv)u
NM,

QP,

11

00

 


  

 dzz z) zI s 1

0

jijiajja

jijibjj(b














   

 

 . dzzH
P1,NjjaN1,jAjja11

1s1Q1,MjBjjbM1,jjb

1N M,

1Q1,P










 






    …(2.3) 

provided that  0bR(
jj

 

Proof. Using (1.1) and (1.2), we have 

dsu

s)as)b1

sa1s)b

2

1
 v]HI(u) s

jiji

ip

1nj
jij

iq

1mj1i

jj

n

1j
jj

m

1jNM,

QP,































 

. 




















 dv

ab1

Aa1b

i2

1

jj

P

1Nj
jjj

Q

1Mj

jjj

N

1j
jj

M

1j
i

i

  …(2.4) 

Multiplying both side by 
11 u  vv)u  and integrating with respect to u and v between 0 and 

 for both the variable and make a use of a known result [2, p.177], we get the required result. Letting 

pze  z)  in (2.3), we get the particular case after simplification 
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provided that R() > 0, R() > 0. 
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Multiplying both side of (2.6) by 
  vv)1u)(1 f(uv) 11

and integrating with respect to u and v 

between 0 and 1 for both the variable and use of result [2, p.243] and by further simplification, we get the result 

(2.5). 

 Letting f(z) = 
1z 

in (2.5), we get the particular result after simplification. 

Particular Case 
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The result in (2.1), (2.2) and (2.3) reduces to the known result after a slight simplification obtained by Chaurasia 

and Shekhawat [2]. 
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