
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728,p-ISSN: 2319-765X,  Volume 6, Issue 3 (May. - Jun. 2013), PP 30-41 
www.iosrjournals.org 

www.iosrjournals.org                                                             30 | Page 

 

Stochastics Calculus: Malliavin Calculus in a simplest way 
 

1
Udoye, Adaobi Mmachukwu, 

2.
 Akoh, David

, 3.
 Olaleye, Gabriel C. 

Department of Mathematics, University of Ibadan, Ibadan.                                                                                             

Department of Mathematics, Federal Polytechnic, Bida                                                                                                   

Department of Mathematics, Federal Polytechnic, Bida. 

 

Abstract: We present the theory of Malliavin Calculus by tracing the origin of this calculus as well as giving a 

simple introduction to the classical variational problem. In the work, we apply the method of integration-by-

parts technique which lies at the core of the theory of stochastic calculus of variation as provided in Malliavin 
Calculus. We consider the application of this calculus to the computation of Greeks, as well as discussing the 

calculation of Greeks (price sensitivities) by considering a one dimensional Black-Scholes Model. The result 

shows that Malliavin Calculus is an important tool which provides a simple way of calculating sensitivities of 

financial derivatives to change in its underlying parameters such as Delta, Vega, Gamma, Rho and Theta. 

 

I. Introduction 
The Malliavin Calculus also known as Stochastic Calculus of Variation was first introduced by Paul 

Malliavin as an infinite-dimensional integration by parts technique. This calculus was designed to prove results 

about the smoothness of densities of solutions of stochastic differential equations driven by Brownian motion. 

Malliavin developed the notion of derivatives of Wiener functional as part of a programme for producing a 

probabilistic proof of the celebrated Hörmander theorem, which states that solutions to certain stochastic 

differential equations have smooth transition densities.  
Classical variational problems are problems that deal with selection of path from a given family of 

admissible paths in order to minimize the value of some functionals. The calculus of variation originated with 

attempts to solve Dido’s problem known as the isoperimetric problem. An infinite dimensional differential 

calculus on the Wiener space, known as Malliavin Calculus, was initiated by Paul Malliavin (1976) with the 

initial goal of giving conditions insuring that the law of a random variable has a density with respect to 

Lebesgue measure, as well as estimates for this density and its derivative. Malliavin Calculus looks forward to 

finding the derivative of the functions of Brownian motion which will be referred to as Malliavin derivative. We 

will highlight the theory of Malliavin Calculus. In what follows, H is a real separable Hilbert space with inner 

product 
H

.,. . Ω denotes the sample space, P denotes the probability space P.  

 

II. The Wiener Chaos Decomposition 
Definition 2.1. A stochastic process W = {W(h), h ϵ H }defined in a complete probability space (Ω, F, P) is 

called an isonormal Gaussian process if W is a centered Gaussian family such that  

                    E (W(h)W(g)) = 
H

gh,  for all h, g ϵ H.          

Remark 2.2. The mapping h → W(h) is linear [8]. From the above, we have that 
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HhhWhW PL E  Let G be the σ-field generated by the random variables {W(h), h ϵ H }, 

the main objective of this part is to find a decomposition of L2(Ω, G , P). We state some results concerning the 
Hermite polynomials in order to find the decomposition . 

Let H  xn  denote the nth Hermite polynomial, then 
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 and H  x0  = 1. These hermite polynomials are coefficients of the power expansion in t of the function 

  )(exp,
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2ttxxtF   which can easily be seen by rewriting 

                        

    









2
2

2

1

2
exp, tx

x
xtF  

and expanding the function around t = 0. 
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The power expansion combines with some particular properties of F, that is 
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provides the corresponding properties of the Hermite polynomials for n ≥ 1 
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This is shown by using induction method: 
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Let n = 2, 
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Also for n = 3 we have 
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Lemma 2.3.  Let X, Y be two random variables with joint Gaussian distribution such that 

E (X) = E (Y) = 0 and E (X2) = E (Y2) = 1. Then for all m,n≥0, we have  
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Proof. See the proof of lemma 1.1.1 in [8] 
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The proof of proposition 3.3 is similar to the proof of proposition 1.20, pp. 13 

Of (Nualart, 2009). The chain rule can be extended to the case of a Lipschitz function. 

Theorem 3.4 (Closability). 
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Hence, by Fatou Lemma, 
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Proposition 3.5. [8] Suppose 
2,1DF is a square integrable random variable 

With a decomposition given above, we have 
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Proof.    We prove the statement for a simple function (see proposition 1.2.7 of [8]). 

Using a simple function, the general case results from the density of the simple function. 
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IV.    The Divergence Operator 
In this section, we consider the divergence operator, defined as the adjoint of the derivative operator. If 
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such that jF  are smooth random variables and the jh are elements of H . Applying integration-by-parts 

formula, we deduce that u ϵ Domδ and 
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Remark 4.4.  Let  h ϵ H  and F ϵ Dh,2.Then Fh belongs to domain of δ and the                      following equality 

is true 
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[12], we have 
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Thus, 
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n

nn FfIfI FE            □ 

Note. The Clark-Ocone formula and its proof can be found in [7], [8] and [10]. 

 

V. A model of a financial market 
The Black-Scholes Model. We consider a market consisting of a non-risky asset  (Bank account) B and a risky 

asset (stock) S. Let the process of the risky asset be given by 

                                    

 )()(exp)(
20

2

tWtStS                                          (11) 

where   TttWW ,0:)(   is a Brownian motion defined on a complete probabilityspace 

    TtP t ,0, and ,,  FF  is a filtration generated by Brownian motion σt denote the volatility process, µ 

is the mean rate of return, and are all assumed to be constant. 

The price of the bond B(t) and the price of the stock S(t) satisfies the differential equations: 

                                                  
   dttrBtdB   

                                                   B(0) = 1 

and 

                                                
))()(()( tdWdttStdS    

                                                 S(0) = 0,  S(t) = St 

We have that 

                                                
)12()( rt

t eBtB   

where r denotes the interest rate and it is a nonnegative adapted process satisfying 

                                                


T

tdtr
0

 a.s. 

Definition 5.1.   Let Q be a probability measure on  F,  which is equivalent to P.  Q is called equivalent 

(Local) martingale measure (or a non-risky probability 

measure) if the discounted price process  TtSeSBS t

rt

ttt ,0,1  
  is a local martingale under Q. 

We note that: A process X is sub-martingale (respectively, a super-martingale) 

if and only if Xt =Mt+At (respectively, Xt =M t- At) where, M is a local martingale 
and A is an increasing predictable process. 
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which is positive local martingale. If 
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then the process ZT is a martingale and measure Q such that TZ
dP

dQ
  is a 

probability measure, equivalent to P, such that under Q,, the process 
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is a Brownian motion. 

In terms of the process tW
~

, the price process can be expressed as 
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Thus, the discounted prices from a local martingale: 
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
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Definition 5.2. A derivative is contract on the risky asset that produces a payoff 

H at maturity T. The payoff is an TF -measurable nonnegative random variable H. 

Some fact about filtration: 

 Filtrations are used to model the flow of information over time. 

 At time t, one can decide if the event A ϵ t
F  has occurred or not. 

 Taking conditional expectation E[X│ TF ] of a random variable X means taking                                    

the expectation on the basis of all information available at time t. 

Proposition 5.3.  (Girsanov theorem) 

There exist a probability Q absolutely continuous with respect to P such that 






  


t

st dsuWPTQ
0

1  is,that   has the law of Brownian motion under Q) if and                                     

only if  E(ξ1) =1 and in this case .1
dP

dQ
 

Proof.  See Proposition 4.1.2, pp. 227 of [8] 

Remark 5.4.   The probability P o T-1 is absolutely continuous with respect to P. 

Proposition 5.5 [8]  Suppose that F,G are two random variables such that F ϵ D1,2. 

Let u be an H –valued random variable such that DuF = 0, 
H

uDF  almost surely                               and 

Gu(DuF)-1 ϵ Domδ. Then, for any differentiable function f with bounded 

derivative we have 

                                                
   ,),()()( GFHFfGFf EE   

where 

                                                
   .)(, 1 FDGuGFH u  

Proof. By chain rule, we have 

                                                
    .)( FDFfFfD uu   

By the duality relationship, equation (8), we obtain 
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 FDGuFfFDGuFf uu  EE
                

□ 

 

 

We recall that in Malliavin Calculus, Integrating by part is 

                                        

           .
00 
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s tdWtuFuFdssuFD EEE 
 

 

VI. Applications 
Greeks are used for risk management purposes referred to as hedging in financial mathematics. Finite 

difference methods have been used to find the sensitivities of  options by the use of Monte-Carlo methods, but 

the speed of convergence is not so fast very close to the discontinuities. The use of Malliavin Calculus provides 

a better way to calculate the greeks, both in terms of simplicity and speed of convergence. Thus, this method 

provides a good solution when the payoff function is strongly discontinuous. A greek can be defined as the 

derivative of a financial quantity with respect to a parameter of the model. 

List of Greeks include: 

 Delta: = The derivative with respect to the price of the underlying; ∆: =
S
V

 . 
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 Gamma: =Second derivative with respect to the price of the underlying; 

2

2

:
S

V



  

 Vega: = Derivative with respect to the volatility;

 Vv:  

 Rho: = Derivative with respect to interest rate;
r
V

:  

 Theta: = Derivative with respect to time;
t
V

 :  

Greeks are useful in studying the stability of the quantity  under variations of the 

chosen parameters. If the price of an option is calculated using the measure Q as 

                                                   
    xeV tTrQ  E  

where Ф(x) is the payoff function; the greek will be calculated under the same 

simulation together with the price. The equation gives 

                                                  Greek
    WE .xe tTrQ  

 

where W is a random variable called Malliavin weight. 

Malliavin Calculus is a special tool for calculating sensitivities of financial derivatives to change in its 

underlying parameter. We now discuss the model of a financial market and the computation of the greeks. 

6.1 Computation of the Greeks 

We consider the Hilbert space which are constant on compact interval. We Assume that W = {W(h),hϵ H} 

denotes an isonormal Gaussian process associated with the Hilbert space H. Let W be defined on a complete 

probability space (Ω, F, P) and let F be generated by W . 

 
Remark 6.1.1  The following observation will be important for the application of 

proposition 5.5. 

 If u is deterministic. Then, for Gu(DuF)-1 ϵ Domδ it suffices to say that 

Gu(DuF)-1 ϵ D1,2 as this implies that   ., 2,11
DomuDFGu 


D

H
 

 If u = DF, then the conclusion of Proposition 5.5 is written as 
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We consider an option with payoff H such that EQ(H2) < ∞. We have that 

  .
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dsr
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t HeEV
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F The price at t = 0  gives  .0 HeV rTQ  E  Suppose 

 represent one of the parameters of S0, σ, r. 

Let  .FfH   Then 
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From Proposition 5.5, we have 
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d
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If f is not smooth, then (14) provides better result in combination with Monte-Carlo 

Simulation than (13). 

We note that the following: 

 In the calculation of the greeks, differentiation can be done before finding the 

expectation, this will still give the same result. 

 The Malliavin derivative of   ., TdW

dS

Tt SwtSD T   

 From proposition 5.5 DuF must not be zero in order to make sure that 
FDu

1  

exist. 

 Let      ;,0,)()(exp
20

2

TttWtStS    then, 
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 
0
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)()(exp
2

0

S

ST TTWT
S

S





   

 In calculating the greeks, we assume that 

     TttWtStS ,0,)()(exp
20

2

    

except otherwise stated. 

 

6.2 Computation of Delta  

We discuss delta of European options. Suppose H depends only on the price of the stock at maturity time T, that 

is, H = Φ(ST). Let the price of the stock at time 0 be  given by   ,rTeE  
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From proposition 5.5, by letting u =1, F = ST , and G = ST, we obtain 
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From the condition in the above remark, we have 
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 As a result, 
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The weight is given by 

                                             weight = .
0 TS

WT


 

 

6.3 Computation of Gamma 

                                

   
 







































 









 



00

2

0

2

2

0

0

2

S

S

S

S
Se

S

Se

S

V TT
T

rTQT

rTQ

E
E

 

                                    

    .2

2

0

2

0

TT

Q
rT

T
T

rTQ SS
S

e

S

S
Se 



























 


 EE  

We now apply the Malliavin derivative property in order to eliminate “/”. Suppose 

 is Lipschitz, let G = ,2

TS F = ST and u = 1. 

 

From proposition 5.5 we have 
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Thus, 
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Using Malliavin property, we now eliminate the remaining “/”. 

From proposition 5.5, taking  .1
T
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TSG   F = ST and u = 1 gives 
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As a result, 
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This implies that 
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6.4 Computation of Vega 
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Applying proposition 5.5, let G = ST (WT – σT), F = ST and u = 1 we have 
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The above formulas still hold by means of an approximate procedure although the function   and its derivative 

are not Lipschitz. The important thing is that   should be piecewise continuous with jump discontinuities and 
with a linear growth. 

The formulas are applicable in the case of European call option ( (x) = (x - K)+) 

and European put option ( (x) = (K - x)+), or a digital ( (x) = 1x>K). 
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