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Abstract: We present the theory of Malliavin Calculus by tracing the origin of this calculus as well as giving a
simple introduction to the classical variational problem. In the work, we apply the method of integration-by-
parts technique which lies at the core of the theory of stochastic calculus of variation as provided in Malliavin
Calculus. We consider the application of this calculus to the computation of Greeks, as well as discussing the
calculation of Greeks (price sensitivities) by considering a one dimensional Black-Scholes Model. The result
shows that Malliavin Calculus is an important tool which provides a simple way of calculating sensitivities of
financial derivatives to change in its underlying parameters such as Delta, Vega, Gamma, Rho and Theta.

I.  Introduction

The Malliavin Calculus also known as Stochastic Calculus of Variation was first introduced by Paul
Malliavin as an infinite-dimensional integration by parts technique. This calculus was designed to prove results
about the smoothness of densities of solutions of stochastic differential equations driven by Brownian motion.
Malliavin developed the notion of derivatives of Wiener functional as part of a programme for producing a
probabilistic proof of the celebrated Hormander theorem, which states that solutions to certain stochastic
differential equations have smooth transition densities.

Classical variational problems are problems that deal with selection of path from a given family of
admissible paths in order to minimize the value of some functionals. The calculus of variation originated with
attempts to solve Dido’s problem known as the isoperimetric problem. An infinite dimensional differential
calculus on the Wiener space, known as Malliavin Calculus, was initiated by Paul Malliavin (1976) with the
initial goal of giving conditions insuring that the law of a random variable has a density with respect to
Lebesgue measure, as well as estimates for this density and its derivative. Malliavin Calculus looks forward to
finding the derivative of the functions of Brownian motion which will be referred to as Malliavin derivative. We

will highlight the theory of Malliavin Calculus. In what follows, H is a real separable Hilbert space with inner

product < , .>¢ . Q denotes the sample space, P denotes the probability space P.

Il.  The Wiener Chaos Decomposition
Definition 2.1. A stochastic process W = {W(h), h € H }defined in a complete probability space (Q2, F, P) is
called an isonormal Gaussian process if W is a centered Gaussian family such that

E W(hW(g)) = (h,g)_ forallh,geH.
Remark 2.2. The mapping h — W(h) is linear [8]. From the above, we have that
"\N (h)||2|_2(p) =EW (h)*)= ||h||2¢ . Let G be the o-field generated by the random variables {W(h), h e H },

the main objective of this part is to find a decomposition of LA, G , P). We state some results concerning the
Hermite polynomials in order to find the decomposition .

LetH (X) denote the nth Hermite polynomial, then

x2 n x2

SV
= — 2 —_— 2 >

H,(X) et gale t |z )

and HO(X) = 1. These hermite polynomials are coefficients of the power expansion in t of the function
F(t, X) =exp (X — % which can easily be seen by rewriting

F(Lx):exp[x—;—i(x—tf]

2

and expanding the function around t = 0.
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The power expansion combines with some particular properties of F, that is

oF t?
— =texp|tx—— |=tF
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and

2

F(-xt)= exp(—tx —%j = F(x,~t)
provides the corresponding properties of the Hermite polynomials for n > 1
« H(X)=H.(x)
® (n +1)Hn+l(x)= XHn(X)_ Hn—l(x)
o H(x)=(-1)H,(x)
This is shown by using induction method:
To show that H (X) =H n71(X);
Let n=1, from

we have

Letn=2,

Also for n = 3 we have

H,(x)= —%exz(;j—xz(e_x?j :—%[x+2x—x3]:%(xz—l):Hz(x).

Lemma 2.3. Let X, Y be two random variables with joint Gaussian distribution such that
EX=E(Y)=0and E (X? = E (Y? = 1. Then for all m,n>0, we have

ﬂ(Hn<x>Hm<v»={°;

H(E(Xy)n)' if n=m,

Proof. See the proof of lemma 1.1.1 in [8]
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Lemma 2.4 Therandom variables {eW(“):h € ﬂf}form a totalsubset of L*(¢)=
L*(Q,4,P)
Proof. Let X e® (q’)such thatE(XeW(h))z Oforallh e # [9] By thelinearity of mapping
h — W (h)we have

E[X exp[itlw(h)n =0,t eR h e®,i=12..mm>1 (2)

i=1

Equation (2) shows that theLaplace of vis given by

V(B)=E (X, (W(h,)....w(h,)))
for a Borelset 2 e R™. Asthe transformis zero, the measure v must be zero for
every set G e 4. Thatis, E(X,, )=0forGeg = X =0. o

Definition2.5. For each n > 1, we define %, the choas of order n as the closed linear
subspaceof L*(Q, F, P)generated by therandom variables {Hn(W(h)): he, |h|. :1}.
Theorem?2.6. ThespaceL? (Q, g, P)can be decomposed into the infinity orthogonal
sumof the subspaces#,[9]:

(2.9.P)-D= .
proof.Let X e L*(Q, F,P)be orthogonal to#, for all n > 0. We show that X =0.
We have that E(XH (W (h)))= 0 for all h € % such that/h//_, =1. Using the fact that +"
can be expressed as a linear combination of theHermite polynomial Hr(x),O <r<n,
we have E(XW (h)”): 0V n > Otherefore,

E(X exp(tw (h))=0 (3)
VteR and forall h e # of norm1. By thelemma above which statesthat the random variables

{e"® he#}forma totalsubset of L (Q, 4, P), wehave that equation (3) implies

that X=0 o

3. The Malliavin Derivative

We consider the set C‘;’(R" )of all infinitely differentiable functions f :R" — R denoted
such that f and all of its derivatives have at most polynomialgrowth (p denoted partial
derivatives with polynomialgrowth).Let n >1and f € C} (R“ ) we denote by S the

set of all random variable the form

F=ftWh,)...W(h,)) (4)
whereh,,...,h, € #and F € S, a smooth variable.
Definition3.1. Thederivative of random variable F < S is define as
DF =30, f{W(h)....W (h,)h,. (5)

where the derivative is a mappingDF: Q — %,
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Lemma3.2Let F e Zand h € # then

E((DF,h)_)=E(Fw (b)) (6)
Proof.Supposethat | h | =1.Duetothe linearity of thescalar producton W,
there exists an orthonomal family of . {g, ...e, } such that h = e,, such that that we
can write F as

F=fW(,)...W,))

for a suitable function f € C{ (R") Let ¥ () be the multivariate density of the
standard normal distribution, that is

)= (2s)Son -2 3 |

=1
We have by classical integratlon by partsformular

DF h)., I a, T (X (x)x,dx = J' (X (x) xdx
=E(FW (e,)) = E(FW (h)).
This completes the proof.
Let ¢:R™ — R be acontinously diferentiable

Proposition 3.3. (Nualart,2006).
Suppose F =(F,,..., F, )is a random

function with bounded partial derivatives.
vector withcomponentsin D*. Then o(F) is in D*? and

m
D(¢(F)) =2 2,¢(F)DF'.
i=1
The proof of proposition 3.3 is similar to the proof of proposition 1.20, pp. 13
Of (Nualart, 2009). The chain rule can be extended to the case of a Lipschitz function.

Theorem 3.4 (Closability).
Assume F € L*(P)and F, e D*?, k =1,2,...such that

1. F —>F, k—owinl*P)
2. {D,F. |, converges in L*(Px 1),
Then Fe D" and D,F, — D,F,k —o,in L*(Px4).

Proof. Let F = ZI andFZI( D)k =12,..

By (1) we have fn — f,,k —>o0,in Lz(ﬂ”) for all n.
By (2) we have

I :HDtFk || 5,0 j,k — o0
()

Hence, by Fatou Lemma,
2

<lim lim Znn'”f fU =0.

Lz}“n k—>o j—>oo

“n L2 (=)

Thisgivess F e D™, D,F, — D,F,k — o0,in LZ(sz). o

Proposition 3.5. [8] Suppose F & D*?js 4 square integrable random variable
With a decomposition given above, we have
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DtF :inln—l(fn (!t)) (7)

Proof. We prove the statement for a simple function (see proposition 1.2.7 of [8]).
Using a simple function, the general case results from the density of the simple function.

Let F = Im(fm) for a symmetric function f_, then, by applying

DF = Za f(W(h),... W (h)h

to  gW(A,...W(A,))withg(x,,..., X, )= X,,-.., X, We have
DtF :i ) iail...imw(Ail)"'lAij"W(Aim) = mlm—l(fm (!t)) =

Theorem 3.6. Let F be a square integrable random variable denoted by

F= Zl )Let Ac B, then E(F\7,) Zl (,15")

Proof. Assume that F = In(fn) such that f_ isa functionin E_ . Wealso

assume that the kernel f, isof the form 1, with B,,..., B, being mutually

disjoint sets of finite measure. Through the linearity of W and the properties of the
conditional expectation we have

E(F\7,)=EW(B,).W(B,)/Z,)= E(H(\N(Bi AA) +W (B, mAC))\;;,j
i=1
= In(l(BlmA)x..x(BnmA)) =
IV. The Divergence Operator
In this section, we consider the divergence operator, defined as the adjoint of the derivative operator. If

the underlying Hilbert % is an L? -space of the form L? (T,{s’, ,u), where [ is a o —finiteatomless

measure, we interpret the divergence operator as a stochastic integral and call it Skorohod integral because in
the Brownian motion case it coincides with the generalization of the 1tO stochastic integral to anticipating
integrands. We first introduce the divergence operator in the framework of Gaussian isonormal process

W = {W (h),h e %} associated with the Hilbert space % . We assume that W is defined on a complete
probability space (Q, Z, P), and that %7 is generated by W. We shall consider results from[1], [8] [ and [12].
We note that the derivative operator D is a closed and unbounded operator with values in L2 (Q; 7/) defined

on the dense subset D" of L*(Q).
Definition 4.1. The adjoint of the operator D denote by 8 is an unbounded operator
on L*(; %) and satisfies
. The domain of & denoted as Domd is the set of 7 -valued square integrable random variable
ue LZ(Q, 74’1) where
E(DF.u),)|<c|F|, forall Fep*
such that the c is a constant dependlng onu.
Let u € Domd, then 8(u) is an element of L? (Q) characterized by

E(Fo(u))=£((DF.u),) ®

each for F € D*?

From equation (8) above, E(6(u)) = 0 if u € Domd and F = 1. We see Sy to be the
class of smooth elementary elements of the form

u:Zl:thj 9)
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such that Fj are smooth random variables and the h jare elements of # . Applying integration-by-parts
formula, we deduce that u € Domd and

5(u):iFjW(hj)—z<Dthj>¢. (10)

Theorem 4.2. Let F e D**and u € Domsd such that Fu e L (Q; ‘Zf) Then Fu belongs to
Domd and we have the equality

5(Fu)=Fs(u)-(DF,u)_
provided the right hand side is square integrable.
Proof. Let G be any smooth random variable, we obtain

E[GS(Fu))=E|(DG, Fu)_ |=E|u, D(FG)-GDF)_|

=E[6u)F -(u.DF) 6} o
Lemma 4.3. Let Dh(u) = Zn: Dh(Fj )hj where u € S_, the class of smooth elementary processes of the
j=1

n
form U = Z thj, F €S, h e #, we have that the following commutativity relationship holds
=1

D"(5(u))= (u,h)_ +&(D")

This is true from the following:

5(u)= ZI:, Fjw(hj)_Z<Dthi>¢'

j=1
yields
D"(5(u))= Y. (D(FW(h,))-D(DF,,h;)_.h)
j=1
=Y F,(hh;) +Z(D“Fjvv(hj)—<D(D“Fj),hj>¢)
i=1 M

= (u,h)_ +5(D"u) :
Remark 4.4. Let h e and F € D"?.Then Fh belongs to domain of & and the following equality
is true

5(Fh)=Fw(h)-D"F.
Theorem 4.5 (The Clark-Ocone formula).
Let F € D*? and W is a one-dimensional Brownian motion on [0,1]. Then

F =£(F)+ [ E(DFlz Jw,.

Proof. Suppose that F = Z In(fn ), n=1,2,...(see[9] and Proposition 1.3.8 of
n=0
[12], we have

IOTE[DtF|7t]=IOT E{gnlnl(fn(”t)jm}dw(t)
[ Zreln (o))

Thus,
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jE[DF|z] jannl[f ()25, () W (t)

-] z< 1R = S [ 0= 1)
—Zl f] F - E[f] O

Note. The Clark- Ocone formula and its proof can be found in [7], [8] and [10].

V. A model of a financial market
The Black-Scholes Model. We consider a market consisting of a non-risky asset (Bank account) B and a risky
asset (stock) S. Let the process of the risky asset be given by

S(t) =S, 0 ((u— $)t+oW () (1)
where W:{\N(t):te[O,T]} is a Brownian motion defined on a complete probabilityspace

(Q, 7, P)and {?t,t IS [O,T]} is a filtration generated by Brownian motion o; denote the volatility process, p

is the mean rate of return, and are all assumed to be constant.
The price of the bond B(t) and the price of the stock S(t) satisfies the differential equations:

dB(t) = rB(t)dt
B(O)=1
and
dS(t) = S(t)(zdt + odW (t))
S(0)=0, S(t)=S;
We have that
B(t) =B, =e" 12)
where r denotes the interest rate and it is a nonnegative adapted process satisfying

.
J;rtdt<oo as.

Definition 5.1. Let Q be a probability measure on (Q, 7) which is equivalent to P. Q is called equivalent
(Local) martingale measure (or a non-risky probability
measure) if the discounted price process S, = B;lst = e’”St, te [O,T] is a local martingale under Q.

We note that: A process X is sub-martingale (respectively, a super-martingale)
if and only if X, =M¢+A; (respectively, X, =M - A;) where, M is a local martingale
and A is an increasing predictable process.

Suppose &, > Oforallt [0, T ]and jg ”93”2(:13 < o0 as.

where 9=4-F

We define theprocess

Z, =exp (— J:esdws —%J:”gS”? de

which is positive local martingale. If
- T 1,7 2
’c;(exp (_ [ 00w, -1[o) dtD _

d

then the process Zt is a martingale and measure Q such that d_g =7Z; isa
probability measure, equivalent to P, such that under Q,, the process

~ t

W, =W, + [ 0.ds
0

is a Brownian motion.
In terms of the processW, , the price process can be expressed as
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t B t ~
S, =S, exp(J.0 (r, —%)ds +Lasd\N).

Thus, the discounted prices from a local martingale:

~ . t ~ ] et
S, =B'S, =S, exp ansdws -3 [0 dsj.

Definition 5.2. A derivative is contract on the risky asset that produces a payoff
H at maturity T. The payoff is an 7 -measurable nonnegative random variable H.
Some fact about filtration:

o Filtrations are used to model the flow of information over time.
J At time t, one can decide if the event A € Z has occurred or not.
. Taking conditional expectation E[X | Z 1 of a random variable X means taking

the expectation on the basis of all information available at time t.
Proposition 5.3. (Girsanov theorem)
There exist a probability Q absolutely continuous with respect to P such that

i t
QoT‘1=P(that|s, Wt+Lust) has the law of Brownian motion under Q) if and
dQ

only if E(&) =1 and in this case P =¢.

Proof. See Proposition 4.1.2, pp. 227 of [8]
Remark 5.4. The probability P o T is absolutely continuous with respect to P.
Proposition 5.5 [8] Suppose that F,G are two random variables such that F € D2,

Let u be an H —valued random variable such that D"F = <DF, U>W # 0 almost surely and

Gu(D"F)™ € Domd. Then, for any differentiable function f with bounded
derivative we have

E(f'(F)G)=E(f(F)H(F,G)),
where

H(F,G)=5(Gu(D"F)™*)
Proof. By chain rule, we have

D'(f(F))= f'(F)D"F.
By the duality relationship, equation (8), we obtain

E(f'(F)G) g(D“(f(F))(D“F)*G):£(<D(f(F)),u(D“F)‘1G>¢)
_(t(Fwleu(p*F)* )=t (F)slou( F) ) 2

33

We recall that in Malliavin Calculus, Integrating by part is

E[ [ (DSF)u(s)ds} —E[F5()]= E[F [ ut)aw (t)}

VI. Applications

Greeks are used for risk management purposes referred to as hedging in financial mathematics. Finite
difference methods have been used to find the sensitivities of options by the use of Monte-Carlo methods, but
the speed of convergence is not so fast very close to the discontinuities. The use of Malliavin Calculus provides
a better way to calculate the greeks, both in terms of simplicity and speed of convergence. Thus, this method
provides a good solution when the payoff function is strongly discontinuous. A greek can be defined as the
derivative of a financial quantity with respect to a parameter of the model.
List of Greeks include:

. Delta: = The derivative with respect to the price of the underlying; A: = % .
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o Gamma: =Second derivative with respect to the price of the underlying;
=2
T 052
. Vega: = Derivative with respect to the volatility; V::%
. Rho: = Derivative with respect to interest rate; p :=2-
. Theta: = Derivative with respect to time; ® = %

Greeks are useful in studying the stability of the quantity under variations of the
chosen parameters. If the price of an option is calculated using the measure Q as

V =E°[e " a(x)|
where @(X) is the payoff function; the greek will be calculated under the same
simulation together with the price. The equation gives

Greek=E? [e’r(T’t)CI)(X).W]
where W is a random variable called Malliavin weight.
Malliavin Calculus is a special tool for calculating sensitivities of financial derivatives to change in its
underlying parameter. We now discuss the model of a financial market and the computation of the greeks.
6.1 Computation of the Greeks
We consider the Hilbert space which are constant on compact interval. We Assume that W = {W(h),he H}
denotes an isonormal Gaussian process associated with the Hilbert space H. Let W be defined on a complete
probability space (€2, F, P) and let F be generated by W .

Remark 6.1.1 The following observation will be important for the application of
proposition 5.5.

. If u is deterministic. Then, for Gu(D"F)™ € Doms it suffices to say that
Gu(D"F)™ € D*? as this implies that Gu((DF, u)ﬁ()’1 e D" = Doms.
. If u = DF, then the conclusion of Proposition 5.5 is written as
Ter GDF
E[f(F)G]=E| f(F)s 1|
IoFIL

We consider an option with payoff H such that E®(H?) < 0. We have that
_ Tsd
V, ((p) = EQ(e Ji "H |7t ] The priceatt=0 gives V, = E° (e"T H) Suppose

¢ represent one of the parameters of Sy, o, r.
Let H=f (Fg) Then

dF
No _gmg0 f(F)—=| (13)
0 *dg
From Proposition 5.5, we have
dF
Mo _emge| f(F)H[F, Tx | (14)
oc : *dg

If f is not smooth, then (14) provides better result in combination with Monte-Carlo
Simulation than (13).
We note that the following:

o In the calculation of the greeks, differentiation can be done before finding the
expectation, this will still give the same result.

. The Malliavin derivative of D,S; =4 (t,w)= & S;.

o From proposition 5.5 D"F must not be zero in order to make sure that DﬁF
exist.

. Let S(t)z S, exp((,u — )t + GW(t)),t € [O,T]; then,
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0S 2 s
Sr—eo(u- T +owm)=5

S,

o In calculating the greeks, we assume that

S(t)=S, e (1 — Dt + W)t [0,T]
except otherwise stated.

6.2 Computation of Delta
We discuss delta of European options. Suppose H depends only on the price of the stock at maturity time T, that

is, H=®(Sy). Let the price of the stock at time 0 be given by E(e’rTCD) ,
‘ZQ -rT -7
R STE I T S T,
oS, oS, oS, S,
From proposition 5.5, by letting u =1, F = St, and G = Sy, we obtain
u T T
D'S; = [ DSdt=[ oSdt=0TS;.

From the condition in the above remark, we have

-1
S STUT DtSTdtj _sl o AW W
0 ol 0 ol of

As aresult,
e—rT
A= EQ(d(S; W, ). (15)
S,oT
The weight is given by
weight = —
Nedl

6.3 Computation of Gamma

LoV _ *(E2(e T a(s,)) EQ(e_rT o, )EasT ](asT B

082 oSz 8S, \ &S,
2
S e’
=EQ e "®"(S; ) = | |=—-E(®"(S;)S?).
{e m{ason (s

We now apply the Malliavin derivative property in order to eliminate . Suppose
@' is Lipschitz, let G= SZ,F=Srand u= 1.

From proposition 5.5 we have

a
5(5?(]5 DtSTdtD - 508_TT - s&(ﬁj —<DST,%>

s Tidw_<di 1>

0 5T dw 'oT
_s W; _J-TO'STdt
ToT 9 o7
W W
=S — S =S | —-1/.
ToT T T{O‘T ]

Thus,

www.iosrjournals.org 39 | Page



Stochastics Calculus: Malliavin Calculus in a simplest way

EQ(@"(S, )s2)=E° (cp’(sT ), @/—} - 1}]

Using Malliavin property, we now eliminate the remaining ™.
From proposition 5.5, taking G = S; (\Q-IT_T - 1)_ F=Syandu=1gives

-1
of it -3 [ o) -5l -1 L |
=0 (ST (% - 1X°'TST )71)
5% - )=o(%:)-5(2)
:wTa[#j—<DWT,azi>— T W

T dW _J‘T dt W;

As a result,

This implies that

—rT 2
r= segaT EQ[CD(ST )(V;/—} _ é ~W, D (16)
6.4 Computation of Vega
LV, _ e a(s,))
oo oo
_ &0, 00 (k- ) row, )
oo

—E9(e (s, %)
=e TEY(®'(S; )S; W, —oT)).
Applying proposition 5.5, let G = St (Wt —oT), F = Sy and u = 1 we have

5£ST W, —oT )UOT DtSTdt)_lj - 5(ST(WT—_UT)j _ 5(Mj

ol S; ol

SERMER
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2
e Low || a7)

v=e"TE? ®(S;)
ol o

The above formulas still hold by means of an approximate procedure although the function @ and its derivative
are not Lipschitz. The important thing is that @ should be piecewise continuous with jump discontinuities and
with a linear growth.

The formulas are applicable in the case of European call option (D (x) = (x - K)")

and European put option (D (x) = (K - x)"), or a digital (D (x) = Le).
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