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Abstract: A numerical study is presented of two-dimensional laminar steady-state on megneto-hydrodynamics 
(MHD) free convection for heat flow patterns within trapezoidal enclosures. A finite element analysis is 

performed to investigate the effects of unifor heating and is also used for solving the Navier-Stokes and 

Energybalance equations.In this study, cold bottom walls, uniformly heated left and right (side) walls and 

insulated top walls with inclination angles (ф) are considered in a trapezoidal enclosure. The present numerical 
procedure adopted in this investigation yields consistent performance over a wide range of parameters, Prandtl 

numbers, (Pr = 0.026 - 0.7), and Rayleigh numbers (Ra = 103 – 105), Hartmann number (Ha = 50) with various 

tilt angles Ф = 450, 300 and 00(square).Numerical results are presented in terms of streamlines, isotherms, heat 

function (total heat flux) and nusselt numbers.for different Ra and Pr. As Ra increases conduction dominant 

region changes for different Pr. Complete heat transfer analysis is performed in terms of local and average 

nusselt numbers.   
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Nomenclature 

B0         Magnetic Induction 

Cp        Specific Heat At Constant Pressure (J/Kg K) 

G         Gravitational Acceleration (M/S2) 
Gr        Grashof Number 

H        Convective Heat Transfer Coefficient  

            (W/M2 K) 

Ha       Hartmann Number 

K         Thermal Conductivity Of Fluid(W/M K) 

L          Height Or Base Of Trapezoidal Cavity (M) 

K         Thermal Conductivity Ratio Fluid  

N         Total Number Of Nodes  

Nuav     Average Nusselt Number 

Nulocal  Local Nusselt Number 

P          Non-Dimensional Pressure 
P          Pressure 

Pr        Prandtl Number 

Ra        Rayleigh Number 

T          Non-Dimensional Temperature 

Th         Temperature Of Hot Bottom Wall (K) 

Tc         Temperature Of Cold  Bottom Wall (K) 

U         X Component Of Dimensionless  Velocity 

U          X Component Of  Velocity (M/S) 

V          Y Component Of Dimensionless  Velocity 

 

 

 

V          Y Component Of  Velocity (M/S) 

V0        Lid Velocity 

X, Y      Cartesian Coordinates 

X, Y     Dimensionless Cartesian Coordinates 

 

Greek Symbols 

         Thermal Diffusivity (M2/S) 

         Coefficient Of Thermal Expansion (K-1) 

         Density Of The Fluid (Kg/M3) 

∆Θ       Temperature Difference 
Θ         Fluid Temperature 

Μ          Dynamic Viscosity Of The Fluid (Pa S) 

Π         Heatfunction 

Ν           Kinematic Viscosity Of The Fluid (M2/S) 

Σ          Fluid Electrical Conductivity(Ω-1m-1) 

 

Subscripts 

B         Bottom Wall 

L           Left Wall 

R          Right Wall 

S          Side Wall  
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I. Introduction 
The well-known buoyancy driven Phenomena of convection motion of fluid has attracted many 

researchers over the past few years. The phenomenon of heat and mass transfer frequently exist in chemically 

processed industries such as food processing and polymer production. The phenomenon of free convection flow 

involving coupled heat and mass transfer occurs frequently in nature. In these studies the magnetohydrodynamic 

phenomenon is applied. Magnetohydrodynamics (MHD) has attracted the attention of a large number of 

scholars due to its diversified applications. The study of the effects of magnetic field on free convection flow is 

important in liquid-metals, electrolytes and ionized gases. Magnetohydrodynamic flows have applications in 

meteorology, solar physics, cosmic fluid dynamics, astrophysics, geophysics and in the motion of earthes core. 

Shanker and Kishan [1] presented the effect of mass transfer on the MHD flow past an impulsively started 

infinite vertical plate. Elabashbeshy [2] studied heat and mass transfer along a vertical plate in the presence of 

magnetic field. However, Free convection in enclosed cavities has received significant attention due to many 

engineering applications [3–7]. The extensive studies for rectangular and square enclosures using various 
numerical simulations reported by Patterson and Imberger [8], Nicolette et al.[9], Hall et al. [10], Hyun and Lee 

[11], Fusegi et al. [12], Lage and Bejan [13,14], Xia and Murthy [15] and Al-Amiri et al.[16]ensure that several 

attempts have been made to acquire a basic understanding of natural convection flows and heat 

transfercharacteristics in an enclosure. The majority of works dealing with convection in enclosures are 

restricted to the cases of simple geometry e.g., rectangular, square, cylindrical and spherical cavities. But the 

configurations of actual containers occurring in practice are often far from being simple. A few studies on 

natural convection on triangular enclosures filled with a viscous fluid or a porous medium have been carried out 

by earlier researchers [17–19]. In recent years, most of the enclosures commonly used in industries are 

cylindrical, rectangular, trapezoidal, triangular etc. Trapezoidal enclosures have also received a considerable 

attention for their application in various fields.  

A comprehensive understanding of energy flow and entropy generation is needed for an optimal 
process design via reducing irreversibilities in terms of „entropy generation‟. In this study, analysis on entropy 

generation during natural convection in a trapezoidal cavity with various inclination angles (φ = 45°, 60° and 

90°) have been carried out for an efficient thermal processing of various fluids of industrial importance 

(Pr = 0.015, 0.7 and 1000) in the range of Rayleigh number (103 − 105) by Basak et. al [20]. Basak et al. [21] 

studied a comprehensive heatline based approach for natural convection flows in trapezoidal enclosures with the 

effect of various walls heating. The present numerical study deals with natural convection flow in closed 

trapezoidal enclosures. Anandalakshmi and Basak [22] studied for the energy distribution and thermal mixing in 

steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for 

various industrial applications. Here simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh 

(Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy 

distribution, respectively. Basak et al. [23] also investigated the numerical investigation of natural convection in 
a porous trapezoidal enclosures for uniformly or non-uniformly heated bottom wall. Penalty finite element 

analysis with bi-quadratic elements is used for solving the Navier–Stokes and energy balance equations. The 

numerical solutions are studied in terms of streamlines, isotherms, heatlines, local and average Nusselt numbers 

for a wide range of parameters Da(10−5–10−3), Pr(0.015–1000) and Ra(Ra = 103–106). At low Darcy number 

(Da = 10−5), heat transfer is primarily due to conduction for all φ‟s as seen from the heatlines which are normal 

to the isotherms. Basak et al. [24] also performed heat flow patterns in the presence of natural convection within 

trapezoidal enclosures with heatlines concept. In this study, natural convection within a trapezoidal enclosure 

for uniformly and non-uniformly heated bottom wall, insulated top wall and isothermal side walls with 

inclination angle have been investigated. Momentum and energy transfer are characterized by streamfunctions 

and heatfunctions, respectively, such that streamfunctions and heatfunctions satisfy the dimensionless forms of 

momentum and energy balance equations, respectively. Finite element method has been used to solve the 

velocity and thermal fields and the method has also been found robust to obtain the streamfunction and 
heatfunction accurately. The unique solution of heatfunctions for situations in differential heating is a strong 

function of Dirichlet boundary condition which has been obtained from average Nusselt numbers for hot or cold 

regimes. Natarajan et. al [25] presented a numerical study of combined natural convection and surface radiation 

heat transfer in a solar trapezoidal cavity absorber for Compact Linear Fresnel Reflector (CLFR) . The 

numerical simulation results are presented in terms of Nusselt number correlation to show the effect of these 

parameters on combined natural convection and surface radiation heat loss. 

In the present investigation, visualization of heat flows via heatlines for magneto-hydrodynamics 

(MHD) free convection with uniformly heated side walls were reported for trapezoidal enclosures. Results are 

obtained to display the circulations and for different physical parameters in terms of streamlines, stream 

functions, total heat flux, isotherms and  heat transfer  rates for the walls in terms of  average and local nusselt 

numbers.  
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II. Model Specification 

The geometry for the configuration with the system of co-ordinates is schametically shown in Fig. 1. 

The model considered here is a two-dimensional trapezoidal enclosures of height L with the left wall inclined at 

an angle ф = 450, 300, 00 with Y axis. Here left wall and right (side) walls are subjected to hot Th temperature; 

bottom wall is subjected to cold Th temperature while the top wall is kept insulated. The boundary conditions for 

velocity are considered as no-slip on solid boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the physical system for (a) ф = 45
0
 (b) ф = 30

0
 and (c) ф = 0

0 

 

2.1   Mathematical Formulation  
The flow inside the cavity is assumed to be two-dimensional, steady, laminar and incompressible and the fluid 

properties are said to be constant. For the treatment of buoyancy term in the momentum equation, Boussinesq 

approximation is used.The dimensionless governing equations describing the flow are as follows: 

Continuity Equation 
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Energy Equation 
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Here Ha, Ra, Pr, Gr are Hartmann number , Rayleigh number, Prandtl number and Grashof number 

respectively. Thermal diffusivity, volumetric thermal expansion coefficient, dynamic viscosity, kinematic 

viscosity, electrical conductivity, density and dimensional temperature difference of the fluid are represented by 

the symbols α, β, μ, ν, σ, ρ, ΔT, respectively.  

2.2   Boundary Conditions 

The boundary conditions (also shown in Fig. 1), for the present problem are specified as follows: 
At the bottom wall:  

0, 0, 1, 0, 0 1U V Y X        

At the left wall: 

0, 0, 0, cos sin 0, 0 1U V X Y Y           

At the right wall: 

0, 0, 0, cos sin cos , 0 1U V X Y Y          

 
At the top wall: 

 0, 0, 0, 1, tan 1 tanU V Y X
Y


 


        

  
where X and Y are dimensionless coordinates varying along horizontal and vertical directions, respectively; U 

and V are dimensionless velocity components in X and Y directions, respectively;   is the dimensionless 

temperature. 
The local Nusselt number at the heated surface of the cavity which is defined by the following expression: 

l r b sNu Nu Nu Nu
n


    

 ,

where n denotes the normal direction on a plane. 

The average Nusselt number at the cold bottom wall, uniformly heated left and right (side) walls and insulated 

top walls of the enclosures based on the non-dimensional variables may be expressed as, 
1 1 1 1

0 0 0 0

l r s bNu Nu dX Nu dX Nu dX Nu dX      
. 

The non-dimensional stream function is defined as,  ,U V
Y X

 
 
 

 

III. Research Methodology 
Finite element analysis is a method to solve differential equations numericallywhich can be applied to 

many problems in engineering and scientific fields. Finite element simulation of free convection in a two-

dimensional trapezoidal enclosures has been studied.This research starts from two-dimensional Navier-Stoke‟s 

equations together with the energy equation to obtain the corresponding finite element equations.Galerkin‟s 

weighted resudal method is applied to discretize the non-dimentional governing equations. Triangular mesh is 

used to obtain the solution. Because this type of mesh can be used in any shape of domain .Details of method are 
available in Taylor and Hood [26] and Dechaumphai [27]. 

 

IV. Grid Independence Test 
In order to determine the proper grid size for this study, a grid independence test are conducted with Pr 

= 0.7, Phi =450, Ha=50 and Ra = 105. The following five types of mesh are considered for the grid 

independence test.These grid densites are 1527, 2541, 3573, 4563, 5858 nodes and 216, 365, 527, 668, 864 

elements. Average Nusselt numbers at the heated surface study of trapezoidal enclosures are used as a measure 

of accuracy of solution. From the table 1, a grid size of 4563 nodes and 668 elements is chosen for better 

accuracy. 

 

 

 

 

 

 

 

Table1: Grid Sensitivity Check at Pr = 0.7, Phi = 45
0
, Ha= 50 and Ra = 10

5
. 

 

Nodes 
 

(Elements) 

1527 
 

(216) 

2541 
 

(365) 

3573 
 

(527) 

4563 
 

(668) 

5858 
 

(864) 

Nu 1.751726 1.747969 1.834902 1.848767 2.050656 

Time (s) 4.609 5.672 7.204 8.016 9.625 
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V. Code Validation 

The present numerical solution is validated by comparing the current code results against the numerical 
result of Basak et al. [24] for free convection in a trapezoidal cavity for streamlines, isotherms and heatflux.  For  

three different Rayleigh numbers (Ra = 103, 104 and 105), while the prandtl number  and angle are fixed i.e. Pr = 

0.7 , ф = 450for uniform heating of side wall, average Nusselt number is calculated. The numerical solutions 

(present work and Basak et al. [24]) are in good agreement. 

 

 

Ra 

Average Nusselt Number, ( Nuav ) 

Present 
work 

Basak et al. (March 
2009) 

ф =  450 ф =  450 

103 1.672972 1.27778 

104 1.842988 1.83453 

105 2.797346 
2.71105 

 

Table 2: Code Validation For Uniform Heating of Side Wall With Pr = 0.7. 

VI. Results And Discussion 

In this section we present numerical results for streamlines, isotherms and heat function or heatflux for 

different Rayleigh number Ra = 103- 105 and Prandtl number, Pr = 0.026, 0.7 for the fluid with various angles, ф 
= 450, 300, 00. These are shown in figure (2-4). Addition, heat transfer rate for local and average nusselt numbers 

have been shown for various values of Rayleigh and Prandtl numbers and angles ф. 

6.1 Uniform Heating  

Figure 2 shows the effects of streamlines, isotherms and heat function for Rayleigh numbers. Here the 

magnitudes of streamfunction and heat transfers are primarily due to conduction at low Rayleigh number. 

Isotherms with θ = 0.10 - 0.20 take place symmetrically along side (left or right) walls and with θ ≥ 0.30 are 

smooth curves symmetric with respect to vertical symmetrical line for Ra = 103, Pr = 0.026 and ф = 00(square 

cavity) (Fig. 2a). Again, for Ra = 103, Pr = 0.026 and ф = 300 the temperature contours with θ = 0.10 – 0.40 

come about symmetrically near the side walls of the enclosure and with  θ ≥ 0.50 are smooth curves symmetric 

with respect to central symmetrical line (Fig. 2b). Also for Ra = 103, Pr = 0.026 and ф = 450 isotherms 

(temperature) with θ = 0.10 – 0.50 arise symmetrically near the side walls of the enclosure and with θ ≥ 0.60 are 

smooth curves symmetric with respect to vertical symmetrical line (Fig. 2c).The heatlines or total heat flux or 
heat function are shown in panels of fig 2a-c. The heatlines illustrate similar attribute that were observed for 

uniform heating cases. Besides, we see that vortices are obtained for streamlines in fig 2a-c. 

The interesting message is that at the bottom corner point ф = 00(square cavity) is superior to ф = 450 

and 300. It is evident that heatlines near the bottom portion of side walls are more dense for ф = 450 and less 

dense for ф = 00(square cavity). The dense heatlines are also indicating enhanced rate of heat transfer from the 

bottom to the side walls. Therefore for ф = 450 isotherms with θ = 0.05 – 0.35 are shifted toward the side walls. 

It is also observed that at the top portion of the cavity for ф = 45
0
 and 30

0
 heat transfer is higher compressed to 

ф = 00(square cavity) based on value of heatfunction (Π). At the corners of bottom wall as the heat transfer is 

quite large, the thermal boundary layer is found to develop near the bottom edges and thickness of boundary 

layer is bigger at the top portion of the cold wall signifying less heat transfer to the top portion. 
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                                 a      b     c    
    

Figure 2: Stream function (Ψ), temperature (θ), heat function or total heat flux (П) for 

uniform bottom heating θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 10
3
 (a) Φ = 0

o
  

(b)  Φ  = 30
o
   (c) Φ = 45

o
 

Figure 3 shows that the magnitudes of streamfunction are smaller for Ra = 105
,
 Pr = 0.026 and 

isotherms (temperature) with θ = 0.05 – 0.15, θ = 0.05 – 0.30,  θ = 0.05 – 0.35  occur symmetrically near the 

side walls of the enclosure and with  θ ≥ 0.25, θ ≥ 0.30, θ ≥ 0.35  are smooth curves symmetric with respect to 

central symmetrical line for Ra = 105
, Pr = 0.026 and ф = 450, 300, 00(square cavity) ( Fig 5.9a-c, 5.10a-c)  and 

heatlines enhanced the rate of heat transfer from the bottom to side walls for Ra = 104, Pr = 0.026. It is observed 

that at critical Ra the middle portion of isotherms starts getting deformed and the maximum value of ψ is at the 
eye of vortices. As Ra increases, the buoyancy driven circulation inside the cavity is also increased as seen from 

greater magnitudes of stream function (fig. 3). It is also observed that the greater circulation in bottom regime 

follows a progressive wrapping and isotherms are more compressed towards the side wall as can be seen figure 

3. 

Figure 4 demonstrates that the magnitudes of streamfunction  are circular or elliptical near the core but 

the streamlines near the wall is almost parallel to wall exhibiting large intensity of flow for Pr = 0.7 and Ra = 

105. Vortices are also enhanced for every case of enclosures. Also for Pr = 0.7 isotherms with θ = 0.05 – 0.15, θ 

= 0.05 – 0.45,  θ = 0.05 – 0.50 for 0.7 and Ra = 105 transpire symmetrically near the side walls of the enclosure 

and θ ≥ 0.20, θ ≥ 0.50, θ ≥ 0.55  are flat curves symmetric with respect to central symmetrical line for Ra = 105
,  

Pr = 0.7 and ф = 450, 300, 00(square cavity). The detection is that for  

irrespective of angles ф the intensity of flow has been increased as seen in fig 3. Although for intensity 

of flow streamlines near the wall is almost parallel to wall but streamlines look like circular or elliptical near the 
core (see figure 3). It is fascinating that multiple correlations are absent for Pr = 0.7 and Ra = 105. Due to 

enhanced flow circulations the isotherms are highly compressed near the side walls except near the bottom wall 

especially for ф = 450 and 300. The large temperature gradient near the side walls are due to noteworthy number 

of heatlines with a large variation of heatfunction as seen in figure 4a-c .  
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        a    b       c 

Figure 3: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) for 

uniform heating of side wall θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 10
5
(a) Φ = 0

o
 

(b)  Φ  = 30
o
   (c) Φ = 45

o
 

  

  

  

            a     b                      c 

Figure 4: Stream function (Ψ), temperature (θ), heat function or total heat flux(П) 

contours for uniform bottom heating θ(X,0) = 1 with Pr = 0.7, Ha = 50 and Ra = 10
5
 (a) 

Φ = 0
o
 (b)  Φ  = 30

o
   (c) Φ = 45

o
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6.2  Heat Transfer Rates: Local And Average Nusselt Numbers  

Figure 5(a-c) shows the effect of local heat transfer rates (Nus) vs distance for various inclination tilt 

angles i.e. for ф = 00, 300, 450 when Ra = 103 and Pr = 0.7for uniform heating of side wall. It is observed that 

local heat transfer rate is maximum at the bottom edge of side wall and thereafter decreases sharply upto a point 

which is very near to the bottom edge. It is seen that Nus increase upto a point near to the top wall and also 
decreases with distance near to the bottom wall. The boundary layer starts to form at the bottom edge of the side 

wall and the boundary layer thickness is quite large near the bottom wall for all фs. Due to large intensity of 

convection at Ra = 103 the thickness of the boundary layers are small at the middle portions of side walls and is 

found to be larger near the top portion. But also figure 5(b-c) shows the similar effects of local heat transfer 

rates (Nus) with distance for same Pr and different Ra respectively. As Ra increases, magnitudes of local heat 

transfer rates become smaller and maximum heat transfer occurs near the top portion. It may be mentioned that 

the larger degree of compression of isotherms for uniform heating case results in larger and Nus(local) is quite 

large near to the bottom wall.  

                      

 
         (a)                                                    (b) 

 
           (c) 

Figure 5: Variations of local Nusselt numbers (Nub) with distance for different Rayleigh 

numbers, (a) Ra = 10
3
, (b) 10

4
, (c)10

5
 and angles Φ = 0

o
, 30

o
, 45

o
 when Pr = 0.7 

 

The heat transfer rates are presented in figure 6(a)-(c), where distributions of average Nusselt number 

are plotted vs the logarithmic Rayleigh number respectively. Here figure 6(a)-(c) illustrates uniform heating of 

side walls respectively. It may be noted that average Nusselt number is obtained by considering temperature 

gradient. It also be noted that as Ra increases then the average Nusselt number increases. It is seen in figure 6(a) 

that as Ra increases from 103-105 then average Nusselt number is straightly moving for Φ = 0o , 300 but for Φ = 
45o Ra increases more when Pr = 0.026. As Pr increases (figure 6(b)) then conduction dominant heat transfer is 

narrowed down. It is also seen from figure 6(c) that, as Pr increases more than from uniform heating case it is 

analyzed that average Nusselt number for bottom wall is also slightly increasing during the entire Rayleigh 

number regime.. As Pr increases then for conduction dominant heat transfer, the average Nusselt number is 

generally constant irrespective of Ra. It is observed that Nus at the middle portion of bottom wall for Φ = 0o is 

larger for uniform heating case whereas for Φ = 30o and 45o heat transfer rates are identical. It is also observed 

that when Pr = 0.026,  heat transfer rates for Φ = 45o is swiftly increasing except Φ = 30o and 0o.  
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                          (a)                                                    (b) 

Figure 6: Variations of Average Nusselt Number vs Rayleigh number for (a) Pr = 

0.026, (b) Pr = 0.7 and of angles Φ = 0
o
, 30

o
, 45

o
 for uniform heating of side wall. 

 

VII. Conclusions 

The problem of MHD free convection within trapezoidal enclosures for uniformly heated side wall 
with heatlines concept has been studied numerically. Flow and temperature field in terms of streamlines and 

isotherms and heat function or total heat flux have been displayed. The results of the numerical analysis lead to 

the following conclusions: 

 Local Nusselt number of uniform heating of side wall is largest at the bottom edge of the side wall and 

thereafter that decreases sharply upto a point which is very near to the bottom edge.  

 The heat transfer rate average Nusselt Number, Nuav increases with the increase of Rayleigh number, Ra, 

for uniform heating of side wall.  

 The maximum rate of heat transfer is obtained for the highest Pr. 

 Various vortices entering into the flow field and secondary vortex at the vicinity boundary wall and bottom 

wall of the cavity is seen in the streamlines.  

  
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