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Abstract: In this paper, an implicit one-step method for numerical solution of second order Initial Value 

Problems of Ordinary Differential Equations has been developed by collocation and interpolation technique. 

The one-step method was developed using Chebyshev polynomial as basis function and, the method was 

augmented by the introduction of offstep points in order to bring about zero stability and upgrade the order of 

consistency of the new method. An advantage of the derived continuous scheme is that it can produce several 

outputs of solution at the off-grid points without requiring additional interpolation. Numerical examples are 

presented to portray the applicability and the efficiency of the method. 
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I. Introduction 
The general second order Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) of 

the form: 
)1(],[,)(,)('),',,('' baxyayzayyyxfy oo   

where f is continuous in [a,b], is often encountered in areas such as satellite tracking/warning systems, 

celestial mechanics, mass action kinetics, solar systems and molecular biology [1]. Many of such problems may 

not be easily solved analytically, hence numerical schemes are developed to solve (1). These equations are 
usually reduced to a system of two first order ODEs and numerical methods for first order differential equations 

are used to solve it. For such systems of first order ODEs, Linear Multistep Methods (LMMs) are powerful 

numerical methods. 

Some researchers have attempted the solution of (1) using LMMs without reduction to system of first 

order ODEs. They include [2], [3], [4], [5] to mention a few. [6], proposed a continuous scheme based on 

collocation which was found to have better error estimate and provided approximation at all interior points of 

the interval of consideration. The main setback of the scheme proposed by [6] is in the need to develop 

computer sub-programs needed to initialize the starting values; hence, much time is lost and the cost of 

implementation is high. In view of these disadvantages, many researchers concentrated efforts on advancing the 

numerical solution of IVPs in ODEs. One of the outcomes is the development of a class of methods called Block 

method. The method, which shall briefly be discussed in the next section simultaneously generates 
approximations at different grid points in the interval of integration and is less expensive in terms of the number 

of function evaluations compared to the LMMs or Runge-Kutta methods. 

 

II. Block Methods 

Block methods are formulated in terms of LMMs. They provide the traditional advantage of one-step 

methods, e.g., Runge-Kutta methods, of being self-starting and permitting easy change of step length [7]. 

Another important feature of the block approach is that all the discrete schemes are of uniform order and are 

obtained from a single continuous formula in contrast to the non-self starting predictor-corrector approach. 

In what now immediately follows, we shall develop the new method with Chebyshev polynomial as basis 
function. 

 

III. Development Of The Method 

In this section, we intend to derive a continuous representation of a one-step method which will be used 

to generate the main method and other methods required to set up the block method. We set out by 

approximating the analytical solution of problem (1) with a Chebyshev polynomial of the form: 
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on the partition 

  a = x0<xI< … <xn< xn+1< …<xN = b 

on the integration interval [a,b], with a constant step size h, given by h = xn+1 – xn; n = 0, 1, …, N-1. 
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Convectionally, we need to interpolate at at least two points to be able to approximate (1) and, to make this 

happen, we proceed by arbitrarily selecting an offstep point, xn+v, vϵ(0,1), in (xn, xn+1) in such a manner that the 

zero-stability of the main method is guaranteed. Then (2) is interpolated at xn+i, i = 0, v and its second derivative 

is collocated at xn+i, i = 0, v and 1  so as to obtain a system of five equations each of degree four i.e. k = 4 as 

follows: 
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In what follows, let us arbitrarily set 
2

1
v . Then, collocating (4) at 

2

1
1,0, andixx in  

, and 

interpolating (3) at 
2

1
0, andixx in  

 lead to a system of equations written in the matrix form AX = B as: 
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Equation (5) is solved by Gaussian elimination method to obtain the value of the unknown parameters 

aj, j= 0 (1) 4 as follows: 

)6(

768384768

192192

19296

5

192

19248

5

64

256128

7

256

1

2

2

1

22

4

2

1

2

3

1

2

2

1

22

2

1

2

2

1

22

2

11

1

2

2

1

22

2

10













































n
n

n

nn

n
n

n

n
n

nn
n

n
n

n
n

f
h

f
h

f
h

a

f
h

f
h

a

f
h

f
h

f
h

a

f
h

f
h

f
h

yya

f
h

f
h

f
h

ya

 

Substituting (6) into (2) yields a continuous implicit hybrid one-step method in the form: 
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where )()( xandx jj   are continuous coefficients, )( jhxyy njn  is the numerical approximation of 

the analytical solution at jnx   and ).,,( '

jnjnjnjn yyxff    

Equation (7) yields the parameters j  and j  as the following continuous function of t: 
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Evaluating (7) at 1nx , the main method is obtained as: 
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To derive the block method, additional equations are needed since equation (9) alone will not be sufficient for 

the solution at 

2

1
n

x  and 1nx  to be obtained simultaneously. The additional methods can be obtained from 

evaluating the first derivative of equation (7): 
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at
1

2
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n
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n xandxx respectively. This yields the following discrete derivative schemes: 
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Equations (9), (11), (12) and (13) are then solved simultaneously to obtain the following explicit results: 
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IV. Numerical Examples 
We consider here two test problems for the efficiency and accuracy of the one-step method 

implemented as a block method. 
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Table 1a: Showing the exact solutions and the computed results from the proposed methods for problem 

1 

X Exact Solution The New Method(TNM) 

0.1 -0.105170918 -0.105170902 

0.2 -0.221402758 -0.221402723 

0.3 -0.349858807 -0.34985857 

0.4 -0.491824697 -0.491824433 

0.5 -0.64872127 -0.648720974 

0.6 -0.8221188 -0.822118466 

0.7 -1.013752707 -1.013752329 

0.8 -1.225540928 -1.225540498 

0.9 -1.459603111 -1.45960262 

1.0 -1.718281828 -1.718281267 

 

Table 1b: Comparing the absolute errors in The New Method (TNM) to error in [5] in problem 1 

X Error in TNM, p=4, k=1  Error in [5],p=4, k=2 

0.1 0.160756E-07  0.87931600E-04 

0.2 0.351602E-07  0.32671800-03 

0.3 0.237576E-06  0.22155640E-02 

0.4 0.2646413E-06  0.48570930E-02 

0.5 0.2967001E-06  0.90977340E-02 
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0.6 0.3343905E-06  0.14391394E-01 

0.7 0.3784705E-06  0.21437918E-01 

0.8 0.4304925E-06  0.29898724E-01 

0.9 0.4911569E-06  0.40300719E-01 

1.0 0.561459E-06  0.52552130E-01 

 

V. Table of Results 
Table 2a: Showing the exact solutions and the computed results from the proposed methods for problem 

2 

X Exact Solution  The New Method 

0.1 0.90483742E+00  0.90483742+00 

0.2 0.81873075E+00  0.81873075E+00 

0.3 0.74081822E+00  0.74081822E+00 

0.4 0.67032005E+00  0.67032005E+00 

0.5 0.60653066E+00  0.60653066E+00 

0.6 0.54881163E+00  0.54881164E+00 

0.7 0.49658530E+00  0.49658530E+00 

0.8 0.44932896E+00  0.44932896E+00 

0.9 0.40656965E+00  0.40656966E+00 

1.0 0.36787944E+00  0.36787944E+00 

 

Table 2b: Comparing the absolute errors in the New Method to error in [8] in problem 2 

X Error in TNM, p=4, k=1  Error in [8],p=6, k=5 

0.1 0.23596E-09  0.698677E-11 

0.2 0.47798E-09  0.100275E-11 

0.3 0.58172E-09  0.785878E-11 

0.4 0.73564E-09  0.104778E-10 

0.5 0.81263E-09  0.632212E-10 

0.6 0.89403E-09  0.100508E-10 

0.7 0.99141E-09  0.936336E-11 

0.8 0.101722E-08  0.264766E-11 

0.9 0.10406E-08  0.106793E-10 

1.0 0.107144E-08  0.232731E-10 

 

VI. Conclusion 
The desirable property of a numerical solution is to behave like the theoretical solution of the problem 

which can be seen in the result above. It is obvious from TABLE 1 that the new method is more efficient and 

accurate. However, even though the multiple finite difference method of [8] seemed to have produced a better 

results at most of the points of evaluation in TABLE 2b, it should be noticed that the method had step number k 

= 5 against the new method of step number k = 1. 

Also, the investigation, through the new method reveals the viability of this approach to solve higher order 

problems. In view of this, we intend to extend the work to step number k = 2 and also consider more offstep 
points. 
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